TIBCO WebFOCUS®

Using Functions

Release 9.0.0
May 2022
DN4501670.0522
Contents

1. How to Use This Manual ... 19
 Available Languages .. 19
 Operating Systems ... 19

2. Introducing Functions ... 21
 Using Functions .. 21
 Types of Functions ... 22
 TIBCO WebFOCUS-Specific Functions 24
 Simplified Analytic Functions ... 24
 Simplified Character Functions ... 25
 Character Functions .. 27
 Variable Length Character Functions 30
 Character Functions for DBCS Code Pages 31
 Maintain-specific Character Functions 32
 Data Source and Decoding Functions 33
 Simplified Date and Date-Time Functions 35
 Date Functions .. 36
 Standard Date Functions .. 36
 Legacy Date Functions ... 37
 Date-Time Functions .. 39
 Maintain-specific Date and Time Functions 41
 Maintain-specific Standard Date and Time Functions 41
 Maintain-specific Legacy Date Functions 41
 Simplified Conversion Functions .. 42
 Format Conversion Functions .. 42
 Maintain-specific Light Update Support Functions 44
 Simplified Numeric Functions .. 44
 Numeric Functions .. 45
 Maintain-specific Script Functions ... 47
 Simplified Statistical Functions .. 47
 Machine Learning (Python-based) Functions 48
 Simplified System Functions .. 49
 System Functions ... 49

Using Functions

3
PARTITION_REF: Using Prior or Subsequent Field Values in Calculations 112
INCREASE: Calculating the Difference Between the Current and a Prior Value of a Field 116
PCT_INCREASE: Calculating the Percentage Difference Between the Current and a Prior Value of a Field ... 120
PREVIOUS: Retrieving a Prior Value of a Field .. 123
RUNNING_AVE: Calculating an Average Over a Group of Rows 125
RUNNING_MAX: Calculating a Maximum Over a Group of Rows 128
RUNNING_MIN: Calculating a Minimum Over a Group of Rows 131
RUNNING_SUM: Calculating a Sum Over a Group of Rows 134

5. Simplified Character Functions .. 137
CHAR_LENGTH: Returning the Length in Characters of a String 138
CONCAT: Concatenating Strings ... 139
DIFFERENCE: Measuring the Phonetic Similarity Between Character Strings 141
DIGITS: Converting a Number to a Character String .. 144
GET_TOKEN: Extracting a Token Based on a String of Delimiters 146
INITCAP: Capitalizing the First Letter of Each Word in a String 147
LAST_NONBLANK: Retrieving the Last Field Value That is Neither Blank nor Missing 148
LEFT: Returning Characters From the Left of a Character String 150
LOWER: Returning a String With All Letters Lowercase 152
LPAD: Left-Padding a Character String ... 153
LTRIM: Removing Blanks From the Left End of a String 155
OVERLAY: Replacing Characters in a String .. 156
PATTERNS: Returning a Pattern That Represents the Structure of the Input String 158
POSITION: Returning the First Position of a Substring in a Source String 160
POSITION: Returning the Position of a Search String in a Source String 162
Regular Expression Functions ... 163
Using Regular Expressions on z/OS. ... 164
REGEX: Matching a String to a Regular Expression ... 164
REGEXP_COUNT: Counting the Number of Matches to a Pattern in a String 167
REGEXP_INSTR: Returning the First Position of a Pattern in a String 171
REGEXP_REPLACE: Replacing All Matches to a Pattern in a String 174
REGEXP_SUBSTR: Returning the First Match to a Pattern in a String 176
6. Character Functions ... 197

Character Function Notes .. 198
ARGLEN: Measuring the Length of a String 198
ASIS: Distinguishing Between Space and Zero 199
BITSON: Determining If a Bit Is On or Off 201
BITVAL: Evaluating a Bit String as an Integer 203
BYTVAL: Translating a Character to Decimal 204
CHKFMT: Checking the Format of a String 206
CHKNUM: Checking a String for Numeric Format 208
CTRAN: Translating One Character to Another 209
CTRFLD: Centering a Character String .. 212
EDIT: Extracting or Adding Characters ... 213
GETTOK: Extracting a Substring (Token) .. 215
LCWORD: Converting a String to Mixed-Case 217
LCWORD2: Converting a String to Mixed-Case 218
LCWORD3: Converting a String to Mixed-Case 219
LJUST: Left-Justifying a String .. 220
LOCASE: Converting Text to Lowercase ... 222
OVRLAY: Overlaying a Character String ... 223
PARAG: Dividing Text Into Smaller Lines 225
PATTERN: Generating a Pattern From a String 227
7. Variable Length Character Functions ... 253

Overview .. 253
LENV: Returning the Length of an Alphanumeric Field 254
LOCASV: Creating a Variable Length Lowercase String 255
POSITV: Finding the Beginning of a Variable Length Substring 256
SUBSTV: Extracting a Variable Length Substring ... 258
TRIMV: Removing Characters From a String ... 260
UPCASV: Creating a Variable Length Uppercase String 262

8. Character Functions for DBCS Code Pages ... 265

DCTRAN: Translating A Single-Byte or Double-Byte Character to Another 265
DEDIT: Extracting or Adding Characters .. 266
DSTRIE: Removing a Single-Byte or Double-Byte Character From a String 268
DSUBSTR: Extracting a Substring .. 269
JPTRANS: Converting Japanese Specific Characters 270
KKFCUT: Truncating a String ... 275
SFTDEL: Deleting the Shift Code From DBCS Data 276
SFTINS: Inserting the Shift Code Into DBCS Data .. 278

9. Maintain-specific Character Functions ... 281

CHAR2INT: Translating a Character Into an Integer Value 282
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT2CHAR: Translating an Integer Value Into a Character</td>
<td>282</td>
</tr>
<tr>
<td>LCWORD and LCWORD2: Converting a Character String to Mixed-Case</td>
<td>283</td>
</tr>
<tr>
<td>LENGTH: Determining the Length of a Character String</td>
<td>284</td>
</tr>
<tr>
<td>LJUST: Left-Justifying a Character String (Maintain)</td>
<td>285</td>
</tr>
<tr>
<td>LOWER: Converting a Character String to Lowercase</td>
<td>285</td>
</tr>
<tr>
<td>MASK: Extracting or Adding Characters</td>
<td>286</td>
</tr>
<tr>
<td>MNTGETTOK: Extracting Tokens From a String Function</td>
<td>287</td>
</tr>
<tr>
<td>NLSCHR: Converting Characters From the Native English Code Page</td>
<td>290</td>
</tr>
<tr>
<td>OVRLAY: Overlaying a Character String (Maintain)</td>
<td>291</td>
</tr>
<tr>
<td>POSIT: Finding the Beginning of a Substring (Maintain)</td>
<td>292</td>
</tr>
<tr>
<td>RJUST: Right-Justifying a Character String (Maintain)</td>
<td>293</td>
</tr>
<tr>
<td>SELECTS: Decoding a Value From a Stack</td>
<td>294</td>
</tr>
<tr>
<td>STRAN: Substituting One Substring for Another</td>
<td>295</td>
</tr>
<tr>
<td>STRCMP: Comparing Character Strings</td>
<td>297</td>
</tr>
<tr>
<td>STRICMP: Comparing Character Strings and Ignoring Case</td>
<td>298</td>
</tr>
<tr>
<td>STRNCOMP: Comparing Character Substrings</td>
<td>299</td>
</tr>
<tr>
<td>STRTOKEN: Extracting a Substring Based on Delimiters</td>
<td>299</td>
</tr>
<tr>
<td>SUBSTR: Extracting a Substring (Maintain)</td>
<td>301</td>
</tr>
<tr>
<td>TRIM: Removing Trailing Occurrences (Maintain)</td>
<td>302</td>
</tr>
<tr>
<td>TRIMLEN: Determining the Length of a String Excluding Trailing Spaces</td>
<td>302</td>
</tr>
<tr>
<td>UPCASE: Converting Text to Uppercase (Maintain)</td>
<td>303</td>
</tr>
</tbody>
</table>

10. Data Source and Decoding Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHECKMD5: Computing an MD5 Hash Check Value</td>
<td>306</td>
</tr>
<tr>
<td>CHECKSUM: Computing a Hash Sum</td>
<td>307</td>
</tr>
<tr>
<td>COALESCE: Returning the First Non-Missing Value</td>
<td>308</td>
</tr>
<tr>
<td>DB_EXPR: Inserting an SQL Expression Into a Request</td>
<td>310</td>
</tr>
<tr>
<td>DB_INFILE: Testing Values Against a File or an SQL Subquery</td>
<td>312</td>
</tr>
<tr>
<td>DB_LOOKUP: Retrieving Data Source Values</td>
<td>319</td>
</tr>
<tr>
<td>DECODE: Decoding Values</td>
<td>322</td>
</tr>
<tr>
<td>FIND: Verifying the Existence of a Value in a Data Source</td>
<td>326</td>
</tr>
<tr>
<td>IMPUTE: Replacing Missing Values With Aggregated Values</td>
<td>328</td>
</tr>
<tr>
<td>LAST: Retrieving the Preceding Value</td>
<td>333</td>
</tr>
</tbody>
</table>
LOOKUP: Retrieving a Value From a Cross-referenced Data Source 335
Using the Extended LOOKUP Function. .. 339
NULLIF: Returning a Null Value When Parameters Are Equal 340

11. Simplified Date and Date-Time Functions .. 343
 DAYNAME: Returning the Name of the Day From a Date Expression 344
 DT_CURRENT_DATE: Returning the Current Date .. 345
 DT_CURRENT_DATETIME: Returning the Current Date and Time 345
 DT_CURRENT_TIME: Returning the Current Time ... 346
 DT_TOLOCAL: Converting Universal Coordinated Time to Local Time 347
 DT_TOUTC: Converting Local Time to Universal Coordinated Time 349
 DTADD: Incrementing a Date or Date-Time Component 353
 DTDIFF: Returning the Number of Component Boundaries Between Date or Date-Time Values . 356
 DTIME: Extracting Time Components From a Date-Time Value 357
 DTPART: Returning a Date or Date-Time Component in Integer Format 359
 DTRUNC: Returning the Start of a Date Period for a Given Date 361
 MONTHNAME: Returning the Name of the Month From a Date Expression 365

12. Date Functions .. 367
 Overview of Date Functions .. 368
 Using Standard Date Functions .. 369
 Specifying Work Days. .. 369
 Specifying Business Days. .. 369
 Specifying Holidays. ... 370
 Enabling Leading Zeros For Date and Time Functions in Dialogue Manager 375
 DATEADD: Adding or Subtracting a Date Unit to or From a Date 377
 DATECVT: Converting the Format of a Date ... 380
 DATEDIF: Finding the Difference Between Two Dates ... 382
 DATEMOV: Moving a Date to a Significant Point .. 385
 DATETRAN: Formatting Dates in International Formats ... 392
 DPART: Extracting a Component From a Date .. 408
 FIQTR: Obtaining the Financial Quarter .. 410
 FIYR: Obtaining the Financial Year .. 412
 FIYYQ: Converting a Calendar Date to a Financial Date 414
13. Date-Time Functions

Using Date-Time Functions .. 438

Date-Time Parameters.. 438

Specifying the Order of Date Components.. 438
Specifying the First Day of the Week for Use in Date-Time Functions.... 439
Controlling Processing of Date-Time Values.................................... 440

Supplying Arguments for Date-Time Functions.................................. 441

Using Date-Time Formats... 442

Numeric String Format... 443
Formatted-string Format... 443
Translated-string Format... 444
Time Format.. 444

Assigning Date-Time Values.. 445

HADD: Incrementing a Date-Time Value ... 448
HCNVRT: Converting a Date-Time Value to Alphanumeric Format.......... 451
HDATE: Converting the Date Portion of a Date-Time Value to a Date Format 452
HDIFF: Finding the Number of Units Between Two Date-Time Values 454
HDTTM: Converting a Date Value to a Date-Time Value 455
14. Maintain-specific Date and Time Functions .. 481

Maintain-specific Standard Date and Time Functions 481

 HHMMSS: Retrieving the Current Time (Maintain). 481
 Initial_HHMMSS: Returning the Time the Application Was Started. 482
 Initial_TODAY: Returning the Date the Application Was Started............... 482
 TODAY: Retrieving the Current Date (Maintain). 482
 TODAY2: Returning the Current Date. ... 483
 ADD: Adding Days to a Date. .. 484
 DAY: Extracting the Day of the Month From a Date. 485
 JULIAN: Determining How Many Days Have Elapsed in the Year. 485
 MONTH: Extracting the Month From a Date. 486
 QUARTER: Determining the Quarter. ... 487
 SETMDY: Setting the Value to a Date. .. 487
 SUB: Subtracting a Value From a Date. ... 488
 WEEKDAY: Determining the Day of the Week for a Date. 489
 YEAR: Extracting the Year From a Date. .. 490

15. Simplified Conversion Functions .. 491
16. Format Conversion Functions ... 505

ATODBL: Converting an Alphanumeric String to Double-Precision Format 505
EDIT: Converting the Format of a Field .. 507
FPRINT: Converting Fields to Alphanumeric Format 508
FTOA: Converting a Number to Alphanumeric Format 513
HEXBYTE: Converting a Decimal Integer to a Character 514
ITONUM: Converting a Large Binary Integer to Double-Precision Format 517
ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format 518
ITOZ: Converting a Number to Zoned Format ... 520
PCKOUT: Writing a Packed Number of Variable Length 521
PTOA: Converting a Packed-Decimal Number to Alphanumeric Format 522
TSTOPACK: Converting an MSSQL or Sybase Timestamp Column to Packed Decimal 524
UFMT: Converting an Alphanumeric String to Hexadecimal 526
XTPACK: Writing a Packed Number With Up to 31 Significant Digits to an Output File 527

17. Maintain-specific Light Update Support Functions 531

IWC.FindAppCGIValue: Retrieving a TIBCO WebFOCUS Parameter or Variable Value 531
IWC.GetAppCGIValue: Importing a TIBCO WebFOCUS Parameter or Variable 532

18. Simplified Numeric Functions ... 535

ASCII: Returning the ASCII Code for the Leftmost Character in a String 536
CEILING: Returning the Smallest Integer Value Greater Than or Equal to a Value 536
EXPONENT: Raising e to a Power ... 538
FLOOR: Returning the Largest Integer Less Than or Equal to a Value 539
LOG10: Calculating the Base 10 Logarithm .. 540
MOD: Calculating the Remainder From a Division 541
POWER: Raising a Value to a Power .. 543
ROUND: Rounding a Number to a Given Number of Decimal Places 544
SIGN: Returning the Sign of a Number ... 545
TRUNCATE: Truncating a Number to a Given Number of Decimal Places 546

19. Numeric Functions ... 549

ABS: Calculating Absolute Value ... 550
ASIS: Distinguishing Between a Blank and a Zero .. 550
BAR: Producing a Bar Chart ... 551
CHKPCK: Validating a Packed Field .. 553
DMOD, FMOD, and IMOD: Calculating the Remainder From a Division 555
EXP: Raising e to the Nth Power ... 557
EXPN: Evaluating a Number in Scientific Notation .. 558
FMLCAP: Retrieving FML Hierarchy Captions ... 559
FMLFOR: Retrieving FML Tag Values ... 560
FMLINFO: Returning FOR Values ... 561
FMLLIST: Returning an FML Tag List ... 563
INT: Finding the Greatest Integer ... 564
LOG: Calculating the Natural Logarithm .. 564
MAX and MIN: Finding the Maximum or Minimum Value 565
MIRR: Calculating the Modified Internal Return Rate 566
NORMSDST and NORMSINV: Calculating Normal Distributions 570
 NORMSDST: Calculating Standard Cumulative Normal Distribution 570
 NORMSINV: Calculating Inverse Cumulative Normal Distribution 573
PRDNOR and PRDUNI: Generating Reproducible Random Numbers 574
RDNORM and RDUNIF: Generating Random Numbers 577
SQRT: Calculating the Square Root .. 578
XIRR: Calculating the Modified Internal Return Rate (Periodic or Non-Periodic) ... 579

20. Maintain-specific Script Functions .. 583

IWCLink: Displaying a URL in a Browser or Frame 583
IWCSwitchToSecure and IWCSwitchToUnsecure: Turning the Secure Sockets Layer On and Off ... 585
IWCTrigger: Calling a Maintain Function From a Script Handler .. 586
IWC.FindAppCGIValue: Finding a TIBCO WebFOCUS Parameter or Variable Value 587
IWC.GetAppCGIValue: Retrieving a TIBCO WebFOCUS Parameter or Variable 589

21. **Simplified Statistical Functions** .. 591

- Specify the Partition Size for Simplified Statistical Functions ... 591
- CORRELATION: Calculating the Degree of Correlation Between Two Sets of Data 592
- KMEANS_CLUSTER: Partitioning Observations Into Clusters Based on the Nearest Mean Value .. 593
- MULTIREGRESS: Creating a Multivariate Linear Regression Column 596
- OUTLIER: Identifying Outliers in Numeric Data ... 598
- RSERVE: Running an R Script .. 600
- STDDEV: Calculating the Standard Deviation for a Set of Data Values 605

22. **Machine Learning (Python-based) Functions** .. 607

- ANOMALY_IF: Detecting Outliers ... 608
- CLASSIFY_BLR: Binary Logistic Regression .. 611
- CLASSIFY_KNN: K-Nearest Neighbors Classification .. 615
- CLASSIFY_RF: Random Forest Classification .. 617
- CLASSIFY_XGB: Extreme Gradient Boosting Classification .. 621
- REGRESS_KNN: K-Nearest Neighbors Regression .. 624
- REGRESS_POLY: Polynomial Regression ... 626
- REGRESS_RF: Random Forest Regression .. 630
- REGRESS_XGB: Extreme Gradient Boosting Regression .. 633
- RUN_MODEL and RUN_MODEL2: Running a Saved Python Model 636

23. **Simplified System Functions** ... 641

- EDAPRINT: Inserting a Custom Message in the EDAPRINT Log File 641
- ENCRYPT: Encrypting a Password ... 642
- GETENV: Retrieving the Value of an Environment Variable ... 643
- PUTENV: Assigning a Value to an Environment Variable .. 643
- SLACK: Posting a Message to a Slack Channel ... 644

24. **System Functions** ... 647

- CHECKPRIVS: Retrieving the Privilege State for the Connected User 648
- CLSDDREC: Closing All Files Opened by the PUTDDREC Function 648
FEXERR: Retrieving an Error Message ... 649
FGETENV: Retrieving the Value of an Environment Variable 650
FINDMEM: Finding a Member of a Partitioned Data Set 651
FPUTENV: Assigning a Value to an Environment Variable 652
GETCOOKI: Retrieving a Browser Cookie Value .. 654
GETHEADR: Retrieving an HTTP Header Variable .. 655
GETPDS: Determining If a Member of a Partitioned Data Set Exists 656
GETUSER: Retrieving a User ID ... 658
GRPLIST: Retrieving the Group List of the Connected User 659
JOBNAME: Retrieving the Current Process Identification String 660
MVSDYNAM: Passing a DYNAM Command to the Command Processor 661
PUTCOOKI: Submitting a Value to a Browser Cookie 662
PUTDDREC: Writing a Character String as a Record in a Sequential File 663
SLEEP: Suspending Execution for a Given Number of Seconds 666
SPAWN: Creating a Subprocess From a Procedure 667
SYSTEM: Calling a System Program ... 668
SYSVAR: Retrieving the Value of a z/OS System Variable 670

25. Simplified Geography Functions .. 673
 Sample Geography Files .. 674
 GIS_DISTANCE: Calculating the Distance Between Geometry Points 678
 GIS_DRIVE_ROUTE: Calculating the Driving Directions Between Geometry Points 680
 GIS_GEOCODE_ADDR: Geocoding a Complete Address 684
 GIS_GEOCODE_ADDR_CITY: Geocoding an Address Line, City, and State 685
 GIS_GEOCODE_ADDR_POSTAL: Geocoding an Address Line and Postal Code 687
 GIS_GEOMETRY: Building a JSON Geometry Object 688
 GIS_IN_POLYGON: Determining if a Point is in a Complex Polygon 692
 GIS_LINE: Building a JSON Line ... 693
 GIS_POINT: Building a Geometry Point ... 697
 GIS_REVERSE_COORDINATE: Returning a Geographic Component 700
 GIS_SERVICE_AREA: Calculating a Geometry Area Around a Given Point 702
 GIS_SERV_AREA_XY: Calculating a Service Area Around a Given Coordinate 706

26. SQL Character Functions ... 713

Using Functions
LOCATE: Returning the Position of a Substring in a String .. 713

27. SQL Miscellaneous Functions ... 715
CHR: Returning the ASCII Character Given a Numeric Code ... 715

28. Trigonometric Functions ... 717
ACOS: Calculating an Angle Given its Cosine ... 717
ASIN: Calculating an Angle Given its Sine ... 718
ATAN: Calculating an Angle Given its Tangent .. 720
ATAN2: Calculating an Angle Given the Coordinates of its Tangent 721
COS: Calculating the Cosine of an Angle .. 722
COT: Calculating the Cotangent of an Angle ... 723
DEGREES: Converting Radians to Degrees .. 724
PI: Returning the Constant Pi .. 725
RADIANS: Converting Degrees to Radians ... 726
SIN: Calculating the Sine of an Angle .. 727
TAN: Calculating the Tangent of an Angle .. 728

A. Creating a Subroutine ... 731
Writing a Subroutine ... 731
 Naming a Subroutine. .. 733
 Creating Arguments. ... 733
 Language Considerations. ... 734
 Programming a Subroutine. ... 737
 Executing a Subroutine at an Entry Point. .. 738
 Including More Than 200 Arguments in a Subroutine Call. .. 739
Compiling and Storing a Subroutine .. 742
 Compiling and Storing a Subroutine on z/OS. ... 743
 Compiling and Storing a Subroutine on UNIX. ... 743
 Compiling and Storing a Subroutine on Windows. ... 743
Testing the Subroutine ... 743
Using a Custom Subroutine: The MTHNAM Subroutine ... 744
 Writing the MTHNAM Subroutine. .. 744
 Calling the MTHNAM Subroutine From a Request. ... 750
Subroutines Written in REXX .. 751
How to Use This Manual

This manual describes the functions supplied with your TIBCO WebFOCUS® product. It is intended for application developers who call these functions from their programs to perform calculations or manipulate data. Other users who access corporate data to produce reports can call these functions.

This manual also explains how to create functions tailored to individual needs (called subroutines) for use with your product.

In this chapter:

- Available Languages
- Operating Systems

Available Languages

A function is available in the reporting language, the Maintain language, or both:

- The reporting language includes all commands used to create a report. It is available to users of any WebFOCUS® product.

- The Maintain language includes all commands used to maintain data sources with the Maintain product. It is available only to those who purchased Maintain.

Look in the description of an individual function for the available language, or in the categorized list of functions in Introducing Functions on page 21.

Operating Systems

Except in cases noted specifically, all functions run on all server-supported operating systems.
The following topics offer an introduction to functions and explain the different types of functions available.

In this chapter:

- Using Functions
- Types of Functions
- Character Chart for ASCII and EBCDIC

Using Functions

Functions operate on one or more arguments and return a single value. The returned value can be stored in a field, assigned to a Dialogue Manager variable, used in a calculation or other processing, or used in a selection or validation test. Functions provide a convenient way to perform certain calculations and manipulations.

There are three types of functions:

- **Internal functions.** Built into the WebFOCUS language, requiring no extra work to access or use. The following functions are internal functions. You cannot replace any of these internal functions with your own functions of the same name. All other functions are external.

 - ABS
 - ASIS
 - DMY, MDY, and YMD
 - DECODE
 - EDIT
 - FIND
 - LAST
 - LOG
 - LOOKUP
Types of Functions

- MAX and MIN
- SQRT
- All Maintain-specific functions

- **External functions.** Stored in an external library that must be accessed. When invoking these functions, an argument specifying the output field or format of the result is required. External functions are distributed with WebFOCUS. You can replace these functions with your own functions of the same name. However, in this case, you must set USERFNS=LOCAL.

- **Subroutines.** Written by the user and stored externally. For details, see Creating a Subroutine on page 731.

For information on how to use an internal or external function, see Accessing and Calling a Function on page 61.

Types of Functions

You can access any of the following types of functions:

- **Simplified analytic functions.** Perform calculations using multiple rows in the internal matrix. For details, see Simplified Analytic Functions on page 24.

- **Simplified character functions.** Character functions with streamlined parameter lists and no output arguments, similar to those used by SQL functions. For details, see Simplified Character Functions on page 25.

- **Character functions.** Manipulate alphanumeric fields or character strings. For details, see Character Functions on page 27.

- **Variable length character functions.** Manipulate AnV fields or character strings. For details, see Variable Length Character Functions on page 30.

- **Character functions for DBCS code pages.** Manipulate alphanumeric fields or character strings on DBCS code pages. For details, see Character Functions for DBCS Code Pages on page 31.

- **Maintain-specific character functions.** Manipulate alphanumeric fields or character strings. These functions are available only in Maintain Data. For details, see Maintain-specific Character Functions on page 32.

- **Data source and decoding functions.** Search for or retrieve data source records or values, and assign values. For details, see Data Source and Decoding Functions on page 33.
Simplified date and date-time functions. Date and date-time functions with streamlined parameter lists and no output arguments, similar to those used by SQL functions. For details, see *Simplified Date and Date-Time Functions* on page 35.

Date functions. Manipulate dates. For details, see *Date Functions* on page 36.

Date-time functions. Manipulate date-time values. For details, see *Date-Time Functions* on page 39.

Maintain-specific date and time functions. Manipulate dates and times. These functions are available only in Maintain Data. For details, see *Maintain-specific Date and Time Functions* on page 41.

Simplified conversion functions. Convert fields from one format to another using streamlined parameter lists. For details, see *Simplified Conversion Functions* on page 42.

Format conversion functions. Convert fields from one format to another. For details, see *Format Conversion Functions* on page 42.

Maintain-specific Light Update Support functions. Retrieve WebFOCUS variable or parameter data implicitly from within a Maintain procedure. These functions are available only in Maintain Data. For details, see *Maintain-specific Light Update Support Functions* on page 44.

Simplified numeric functions. Perform calculations on numeric constants and fields using streamlined parameter lists. For details, see *Simplified Numeric Functions* on page 44.

Numeric functions. Perform calculations on numeric constants and fields. For details, see *Numeric Functions* on page 45.

Maintain-specific Script functions. Integrate JavaScript and VBScripts into your Maintain Data application and perform client-side execution without returning to the TIBCO WebFOCUS® Reporting Server. These functions are available only in Maintain Data. For details, see *Maintain-specific Script Functions* on page 47.

Simplified statistical functions. Perform statistical calculations. For details, see *Simplified Statistical Functions* on page 47.

Simplified system functions. Call the operating system to obtain information about the operating environment or to use a system service, using streamlined parameter lists. For details, see *Simplified System Functions* on page 49.
TIBCO WebFOCUS-Specific Functions

Most supplied functions are available in both WebFOCUS and FOCUS. However, some functions are available only in WebFOCUS. They are:

- SPAWN
- SYSTEM

For details on these functions, see the individual topics.

Simplified Analytic Functions

The following functions perform calculations based on multiple rows in the internal matrix. For details, see Simplified Analytic Functions on page 83.

FORECAST_MOVAVE

Calculates a simple moving average column.

FORECAST_EXPAVE

Calculates a single exponential smoothing column.

FORECAST_DOUBLEEXP

Calculates a double exponential smoothing column.

FORECAST_SEASONAL

Calculates a triple exponential smoothing column.

FORECAST_LINEAR

Calculates a linear regression column.

PARTITION_AGGR

Creates rolling calculations.
PARTITION_REF
Retrieves prior or subsequent fields.

INCREASE
Calculates the difference between a value in the current row and a prior row within a partition.

PCT_INCREASE
Calculates the percent difference between a value in the current row and a prior row within a partition.

PREVIOUS
Retrieves a prior value within a partition.

RUNNING_AVE
Calculate the average over a group of rows within a partition.

RUNNING_MIN
Calculate the minimum over a group of rows within a partition.

RUNNING_MAX
Calculate the maximum over a group of rows within a partition.

RUNNING_SUM
Calculate the sum over a group of rows within a partition.

Simplified Character Functions
The following functions manipulate alphanumeric fields or character strings and have simplified parameter lists. For details, see Simplified Character Functions on page 137.

CHAR_LENGTH
Returns the length, in characters, of a string.
Available Languages: reporting

DIGITS
Converts a number to a character string of the specified length.
Available Languages: reporting

GET_TOKEN
Extracts a token (substring) based on a token number and a string listing acceptable delimiter characters.
Available Languages: reporting

INITCAP
Capitalizes the first letter of every word in a string and makes all other letters lowercase, where a word starts at the beginning of the string, after a blank space, or after a special character.

Available Languages: reporting

LAST_NONBLANK
retrieves the last field value that is neither blank nor missing. If all previous values are either blank or missing, returns a missing value.

LOWER
Translates a string to lowercase.

Available Languages: reporting

LPAD
Left-pads a string with a given character.

Available Languages: reporting

LTRIM
Removes all blanks from the left end of a string.

Available Languages: reporting

PATTERNS
Returns a pattern that represents the structure of the source string.

Available Languages: reporting

POSITION
Returns the first position (in characters) of a substring in a source string.

Available Languages: reporting

REGEX
Matches a string to a regular expression and returns true (1) or false (0).

RPAD
Right-pads a string with a given character.

Available Languages: reporting
RTRIM

Removes all blanks from the right end of a string.

Available Languages: reporting

SUBSTRING

Extracts a substring from a source string.

Available Languages: reporting

TOKEN

Extracts a token (substring) based on a token number and a delimiter string.

Available Languages: reporting

TRIM

Removes all occurrences of a single character from either the beginning or end of a string, or both.

Available Languages: reporting

UPPER

Translates a string to uppercase.

Available Languages: reporting

Character Functions

The following functions manipulate alphanumeric fields or character strings. For details, see *Character Functions* on page 197.

ARGLEN

Measures the length of a character string within a field, excluding trailing blanks.

Available Languages: reporting, Maintain

ASIS

Distinguishes between a blank and a zero in Dialogue Manager.

Available Languages: reporting

BITSON

Evaluates an individual bit within a character string to determine whether it is on or off.

Available Languages: reporting, Maintain
BITVAL
Evaluates a string of bits within a character string and returns its value.
Available Languages: reporting, Maintain

BYTVAL
Translates a character to its corresponding ASCII or EBCDIC decimal value.
Available Languages: reporting, Maintain

CHKFMT
Checks a character string for incorrect characters or character types.
Available Languages: reporting, Maintain

CTRAN
Translates a character within a character string to another character based on its decimal value.
Available Languages: reporting, Maintain

CTRFLD
Centers a character string within a field.
Available Languages: reporting, Maintain

EDIT
Extracts characters from or adds characters to a character string.
Available Languages: reporting

GETTOK
Divides a character string into substrings, called tokens, where a specific character, called a delimiter, occurs in the string.
Available Languages: reporting, Maintain

LCWORD
Converts the letters in a character string to mixed case.
Available Languages: reporting, Maintain

LCWORD2
Converts the letters in a character string to mixed case.
Available Languages: reporting, Maintain
LCWORD3
Converts the letters in a character string to mixed case.
Available Languages: reporting, Maintain

LJUST
Left-justifies a character string within a field.
Available Languages: reporting

LOCASE
Converts alphanumeric text to lowercase.
Available Languages: reporting, Maintain

OVRLAY
Overlays a base character string with a substring.
Available Languages: reporting

PARAG
Divides a line of text into smaller lines by marking them with a delimiter.
Available Languages: reporting, Maintain

POSIT
Finds the starting position of a substring within a larger string.
Available Languages: reporting

REVERSE
Reverses the characters in a character string.
Available Languages: reporting, Maintain

RJUST
Right-justifies a character string.
Available Languages: reporting

SOUNDEX
Searches for a character string phonetically without regard to spelling.
Available Languages: reporting, Maintain
SPELLNM
Takes an alphanumeric string or a numeric value with two decimal places and spells it out with dollars and cents.
Available Languages: reporting, Maintain

SQUEEZ
Reduces multiple contiguous spaces within a character string to a single space.
Available Languages: reporting, Maintain

STRIP
Removes all occurrences of a specific character from a string.
Available Languages: reporting, Maintain

STRREP
Replaces all occurrences of a specific character string.
Available Languages: reporting, Maintain

SUBSTR
Extracts a substring based on where it begins and its length in the parent string.
Available Languages: reporting

TRIM
Removes leading and/or trailing occurrences of a pattern within a character string.
Available Languages: reporting

UPCASE
Converts a character string to uppercase.
Available Languages: reporting

Variable Length Character Functions
The following functions manipulate variable length alphanumeric fields or character strings. For details, see Variable Length Character Functions on page 253.

LENV
Returns the actual length of an AnV field or the size of an An field.
Available Languages: reporting
LOCASV
Converts alphanumeric text to lowercase in an AnV field.
Available Languages: reporting

POSITV
Finds the starting position of a substring in an AnV field.
Available Languages: reporting

SUBSTV
Extracts a substring based on where it begins and its length in the parent string in an AnV field.
Available Languages: reporting

TRIMV
Removes leading and/or trailing occurrences of a pattern within a character string in an AnV field.
Available Languages: reporting

UPCASV
Converts a character string to uppercase in an AnV field.
Available Languages: reporting

Character Functions for DBCS Code Pages
The following functions manipulate character strings for DBCS code pages. For details, see Character Functions for DBCS Code Pages on page 265.

DCTRAN
Translates a single-byte or double-byte character to another character.

DEDIT
Extracts characters from or adds characters to a string.

DSTRIP
Removes a single-byte or double-byte character from a string.

DSUBSTR
Extracts a substring based on its length and position in the source string.
JPTRANS

Converts Japanese specific characters.

Maintain-specific Character Functions

The following functions manipulate alphanumeric fields or character strings. They are available only in the Maintain language. For details, see *Maintain-specific Character Functions* on page 281.

CHAR2INT

Translates an ASCII or EBCDIC character to the integer value it represents, depending on the operating system.

INT2CHAR

Translates an integer into the equivalent ASCII or EBCDIC character, depending on the operating system.

LCWORD and LCWORD2

Converts the letters in a character string to mixed case.

LENGTH

Measures the length of a character string, including trailing blanks.

LJUST

Left-justifies a character string within a field.

LOWER

Converts a character string to lowercase.

MASK

Extracts characters from or adds characters to a character string.

MNTGETTOK

Divides a character string into substrings, called tokens.

NLSCHR

Converts a character from the native English code page to the running code page.

OVRLAY

Overlays a base character string with a substring.

POSIT

Finds the starting position of a substring within a larger string.
RJUST
Right-justifies a character string.

SELETS
Decodes a value from a stack.

STRAN
Substitutes a substring for another substring in a character string.

STRCMP
Compares two alphanumeric strings using the ASCII or EBCDIC collating sequence.

STRICMP
Compares two alphanumeric strings using the ASCII or EBCDIC collating sequence, but ignoring case differences.

STRNRCMP
Compares a specified number of characters in two character strings starting at the beginning of the strings using the EBCDIC or ASCII collating sequence.

SUBSTR
Extracts a substring based on where it begins and its length in the parent string.

TRIM
Removes trailing occurrences of a pattern within a character string.

TRIMLEN
Determines the length of a character string excluding trailing spaces.

UPCASE
Converts a character string to uppercase.

Data Source and Decoding Functions

The following functions search for data source records, retrieve data source records or values, and assign values. For details, see *Data Source and Decoding Functions* on page 305.

COALESCE
Returns the value of the first non-missing argument.

Available Languages: reporting
DB_EXPR

Inserts an SQL expression into the SQL generated for a request against a relational data source.

Available Languages: reporting, MODIFY

DB_INFILE

Compares values in a source file to values in a target file, or if the source file is a relational data source, to values retrieved by a subquery.

Available Languages: reporting, MODIFY

CHECKMD5

Computes an MD5 hash check value of its input parameter.

Available Languages: reporting

CHECKSUM

Computes hash sum of its input parameter.

Available Languages: reporting

DB_LOOKUP

Retrieves a data value from a lookup data source.

Available Languages: reporting, MODIFY

DECODE

Assigns values based on the coded value of an input field.

Available Languages: reporting, Maintain

FIND

Determines if an incoming data value is in an indexed FOCUS data source field.

Available Languages: reporting

IMPUTE

Replaces missing values with aggregated values.

LAST

Retrieves the preceding value for a field.

Available Languages: reporting
LOOKUP
Retrieves a data value from a cross-referenced FOCUS data source in a MODIFY request.
Available Languages: MODIFY, Maintain

NULLIF
Returns a missing value when its parameters have equal values.
Available Languages: reporting

Simplified Date and Date-Time Functions
The following functions manipulate date and date-time values. For details see Simplified Date and Date-Time Functions on page 343.

DT_CURRENT_DATE
Returns the current date.

DT_CURRENT_DATETIME
Returns the current date and time.

DT_CURRENT_TIME
Returns the current time.

DTADD
Returns a new date after adding the specified number of a supported component
Available Languages: reporting, Maintain

DTDIFF
Returns the number of given component boundaries between the two dates.
Available Languages: reporting, Maintain

DTIME
Extracts time components from a date-time value.

DTPART
Returns a component value in integer format.
Available Languages: reporting, Maintain

DTRUNC
Returns the first date within a period
Available Languages: reporting, Maintain

Date Functions

The following functions manipulate dates. For details see *Date Functions* on page 367.

Standard Date Functions

DATEADD

Adds a unit to or subtracts a unit from a date format.

Available Languages: reporting, Maintain

DATECVT

Converts date formats.

Available Languages: reporting, Maintain

DATEDIF

Returns the difference between two dates in units.

Available Languages: reporting, Maintain

DATEMOV

Moves a date to a significant point on the calendar.

Available Languages: reporting, Maintain

DATETRAN

Formats dates in international formats.

Available Languages: reporting, Maintain

DPART

Extracts a component from a date field and returns it in numeric format.

Available Languages: reporting, Maintain

FIYR

Returns the financial year, also known as the fiscal year, corresponding to a given calendar date based on the financial year starting date and the financial year numbering convention.

Available Languages: reporting, Maintain

FIQTR

Returns the financial quarter corresponding to a given calendar date based on the financial year starting date and the financial year numbering convention.
Available Languages: reporting, Maintain

FIYYQ

Returns a financial date containing both the financial year and quarter that corresponds to a given calendar date.

Available Languages: reporting, Maintain

HMASK

Extracts components from a date-time value and moves them to a target date-time field with all other components of the target field preserved.

Available Languages: reporting, Maintain

TODAY

Retrieves the current date from the system.

Available Languages: reporting, Maintain

Legacy Date Functions

AYM

Adds or subtracts months from dates that are in year-month format.

Available Languages: reporting, Maintain

AYMD

Adds or subtracts days from dates that are in year-month-day format.

Available Languages: reporting, Maintain

CHGDAT

Rearranges the year, month, and day portions of alphanumerical dates, and converts dates between long and short date formats.

Available Languages: reporting, Maintain

DA

Converts dates to the corresponding number of days elapsed since December 31, 1899.
DADMY converts dates in day-month-year format.
DADYM converts dates in day-year-month format.
DAMDY converts dates in month-day-year format.
DAMYD converts dates in month-year-day format.
DAYDM converts dates in year-day-month format.
DAYMD converts dates in year-month-day format.
Available Languages: reporting, Maintain

DMY, MDY, and YMD
Calculate the difference between two dates.
Available Languages: reporting, Maintain

DOWK and DOWKL
Find the day of the week that corresponds to a date.
Available Languages: reporting, Maintain

DT
Converts the number of days elapsed since December 31, 1899 to the corresponding date.

DTDMY converts numbers to day-month-year dates.
DTDYM converts numbers to day-year-month dates.
DTMDY converts numbers to month-day-year dates.
DTMYD converts numbers to month-year-day dates.
DTYDM converts numbers to year-day-month dates.
DTYMD converts numbers to year-month-day dates.
Available Languages: reporting, Maintain

GREGDT
Converts dates in Julian format to year-month-day format.
Available Languages: reporting, Maintain

JULDAT
Converts dates from year-month-day format to Julian (year-day format).
Available Languages: reporting, Maintain
YM
Calculates the number of months that elapse between two dates. The dates must be in year-month format.
Available Languages: reporting, Maintain

Date-Time Functions
The following functions manipulate date-time values. For details see Date-Time Functions on page 437.

HADD
Increments a date-time field by a given number of units.
Available Languages: reporting, Maintain

HCNVRT
Converts a date-time field to a character string.
Available Languages: reporting, Maintain

HDATE
Extracts the date portion of a date-time field, converts it to a date format, and returns the result in the format YYMD.
Available Languages: reporting, Maintain

HDIFF
Calculates the number of units between two date-time values.
Available Languages: reporting, Maintain

HDTTM
Converts a date field to a date-time field. The time portion is set to midnight.
Available Languages: reporting, Maintain

HEXTR
Extracts components from a date-time value and moves them to a target date-time field with all other components set to zero.
Available Languages: reporting, Maintain

HGETC
Stores the current date and time in a date-time field.
Available Languages: reporting, Maintain
HMASK

Extracts components from a date-time value and moves them to a target date-time field with all other components of the target field preserved.

Available Languages: reporting, Maintain

HHMMSS

Retrieves the current time from the system.

Available Languages: reporting

HINPUT

Converts an alphanumeric string to a date-time value.

Available Languages: reporting, Maintain

HMINUT

Changes the time portion of a date-time field to midnight (all zeros).

Available Languages: reporting, Maintain

HNAME

Extracts a specified component from a date-time field and returns it in alphanumeric format.

Available Languages: reporting, Maintain

HPART

Extracts a specified component from a date-time field and returns it in numeric format.

Available Languages: reporting, Maintain

HSETPT

Inserts the numeric value of a specified component into a date-time field.

Available Languages: reporting, Maintain

HTIME

Converts the time portion of a date-time field to the number of milliseconds or microseconds.

Available Languages: reporting, Maintain

HTMTOTS/TIMETOTS

Converts a time to a timestamp.
Maintain-specific Date and Time Functions

The following functions manipulate dates and times. They are available only in the Maintain language. For details, see *Maintain-specific Date and Time Functions* on page 481.

Maintain-specific Standard Date and Time Functions

HHMMSS
Retrieves the current time from the system.

Initial_HHMMSS
Retrieves the time that the Maintain module was started.

Initial_TODAY
Retrieves the date that the Maintain module was started.

TODAY
Retrieves the current date from the system.

TODAY2
Retrieves the current date from the system.

Maintain-specific Legacy Date Functions

ADD
Adds a given number of days to a date.

DAY
Extracts the day of the month from a date.

JULIAN
 Determines the number of days that have elapsed so far in the year up to a given date.

MONTH
Extracts the month from a date.

QUARTER
Determines the quarter of the year in which a date resides.

SETMDY
Sets a value to a date.
SUB
Subtracts a given number of days from a date.

WEEKDAY
Determines the day of the week for a date.

YEAR
Extracts the year from a date.

Simplified Conversion Functions
The following functions convert fields from one format to another, using streamlined parameter lists. For details, see Simplified Conversion Functions on page 491.

CHAR
Returns a character based on a numeric code.

COMPACTFORMAT
Converts a numeric value to an alphanumeric value that represents the number in an abbreviated format, using the characters K, M, B, and T to represent the abbreviation.

Available Languages: reporting

CTRLCHAR
Returns a non-printable control character.

DT_FORMAT
Converts a date or date-time value to an alphanumeric string.

FPRINT
Converts a numeric, date, or date-time value to a character string.

HEXTYPE
Returns the hexadecimal view of an input value.

PHONETIC
Returns a phonetic key.

Format Conversion Functions
The following functions convert fields from one format to another. For details, see Format Conversion Functions on page 505.

ATODBL
Converts a number in alphanumeric format to double-precision format.

Available Languages: reporting, Maintain
EDIT
Converts an alphanumeric field that contains numeric characters to numeric format or converts a numeric field to alphanumeric format.
Available Languages: reporting

FPRINT
Converts a field to alphanumeric format.
Available Languages: reporting

FTOA
Converts a number in a numeric format to alphanumeric format.
Available Languages: reporting, Maintain

HEXBYT
Obtains the ASCII or EBCDIC character equivalent of a decimal integer value.
Available Languages: reporting, Maintain

ITONUM
Converts a large binary integer in a non-FOCUS data source to double-precision format.
Available Languages: reporting, Maintain

ITOPACK
Converts a large binary integer in a non-FOCUS data source to packed-decimal format.
Available Languages: reporting, Maintain

ITOZ
Converts a number in numeric format to zoned format.
Available Languages: reporting, Maintain

PCKOUT
Writes a packed number of variable length to an extract file.
Available Languages: reporting, Maintain

PTOA
Converts a packed decimal number from numeric format to alphanumeric format.
Available Languages: reporting, Maintain
TSTOPACK

Converts a Microsoft SQL Server or Sybase TIMESTAMP column (which contains an incremented counter) to packed decimal.

Available Languages: reporting

UFMT

Converts characters in alphanumeric field values to hexadecimal representation.

Available Languages: reporting, Maintain

XTPACK

Stores a packed number with up to 31 significant digits in an alphanumeric field, retaining decimal data.

Maintain-specific Light Update Support Functions

The following functions retrieve WebFOCUS variable or parameter data implicitly from within a Maintain procedure. These functions are available only in Maintain Data. For details, see Maintain-specific Light Update Support Functions on page 531.

IWC.GetAppCGIValue

Imports the value of a WebFOCUS parameter or variable into a Maintain Data variable.

IWC.FindAppCGIValue

Retrieves WebFOCUS parameter or variable values.

Simplified Numeric Functions

The following functions perform calculations on numeric constants or fields, using streamlined parameter lists. For details, see Simplified Numeric Functions on page 535.

CEILING

Returns the smallest integer value greater than or equal to a value.

EXPONENT

Raises e to a power.

FLOOR

Returns the largest integer value less than or equal to a value.

MOD

Calculates the remainder from a division.

POWER

Raises a value to a power.
Numeric Functions

The following functions perform calculations on numeric constants or fields. For details, see Numeric Functions on page 549.

ABS

Returns the absolute value of a number.

Available Languages: reporting, Maintain

ASIS

Distinguishes between a blank and a zero in Dialogue Manager.

Available Languages: reporting

BAR

Produces a horizontal bar chart.

Available Languages: reporting, Maintain

CHKPCK

Validates the data in a field described as packed format.

Available Languages: reporting, Maintain

DMOD, FMOD, and IMOD

Calculate the remainder from a division.

Available Languages: reporting, Maintain

EXP

Raises the number "e" to a specified power.

Available Languages: reporting, Maintain

EXPN

Is an operator that evaluates a number expressed in scientific notation. For information, see Using Expressions in the Creating Reports With TIBCO WebFOCUS® Language manual.

FMLINFO

Returns the FOR value associated with each row in an FML report.

Available Languages: reporting

FMLLIST

Returns a string containing the complete tag list for each row in an FML request.

Available Languages: reporting
Types of Functions

FMLFOR
Retrieves the tag value associated with each row in an FML request.
Available Languages: reporting

FMLCAP
Returns the caption value for each row in an FML hierarchy request.
Available Languages: reporting

INT
Returns the integer component of a number.
Available Languages: reporting, Maintain

LOG
Returns the natural logarithm of a number.
Available Languages: reporting, Maintain

MAX and MIN
Return the maximum or minimum value, respectively, from a list of values.
Available Languages: reporting, Maintain

MIRR
Calculates the modified internal rate of return for a series of periodic cash flows.
Available Languages: reporting

NORMSDST and NORMSINV
Perform calculations on a standard normal distribution curve.
Available Languages: reporting

PRDNOR and PRDUNI
Generate reproducible random numbers.
Available Languages: reporting, Maintain

RDNORM and RDUNIF
Generate random numbers.
Available Languages: reporting, Maintain

SQRT
Calculates the square root of a number.
Available Languages: reporting, Maintain

XIRR
Calculates the internal rate of return for a series of cash flows that can be periodic or non-periodic.
Available Languages: reporting

Maintain-specific Script Functions
Script functions integrate JavaScript and VBScripts into your Maintain Data applications and perform client-side execution without returning to the WebFOCUS® Reporting Server. These functions are available only in Maintain Data. For details, see *Maintain-specific Script Functions* on page 583.

IWCLink
Executes external procedures.

IWCSwitchToSecure and IWCSwitchToUnsecure
Turns the Secure Sockets layer on and off, respectively.

IWCTrigger
Returns control from the script to your application.

Simplified Statistical Functions
The following functions perform statistical functions. For details, see *Simplified Statistical Functions* on page 591.

CORRELATION
Calculates the degree of correlation between two independent sets of data.

KMEANS_CLUSTER
Partitions observations into clusters based on the nearest mean value.

MULTIREGRESS
Calculates a linear regression column based on multiple fields.

OUTLIER
Identifies outliers in a numeric field using the 1.5 * IQR rule.

RSERVE
Runs an R script.

STDDEV
Calculates the standard deviation in a set of data values.
Machine Learning (Python-based) Functions

The following functions run Python scripts to perform classification and regression. For details, see *Machine Learning (Python-based) Functions* on page 607.

ANOMALY_IF
Detects outliers using an Isolation Forest.

CLASSIFY_BLR
Finds the best linear separation between two classes in the space spanned by the predictors, and returns either a class assignment (0 or 1) or the probability of belonging to class 1.

CLASSIFY_KNN
Assigns a class membership to a data point by assigning the class most common among its k nearest neighbors.

CLASSIFY_RF
Creates a random forest (ensemble of decision trees), and returns the prediction that is the average of the individual predictions.

CLASSIFY_XGB
Creates a random forest (ensemble of decision trees), where each new tree attempts to improve on the predictive capabilities of the prior trees.

REGRESS_KNN
Predicts a target value for a data point by assigning the average of the target values of its k nearest neighbors.

REGRESS_POLY
Fits the target column to a polynomial expression of the predictor columns.

REGRESS_RF
Creates a random forest (ensemble of decision trees), and returns the prediction that is the majority vote of the individual classification predictions.

REGRESS_XGB
Creates a random forest (ensemble of decision trees), where each new tree attempts to improve on the predictive capabilities of the prior trees.

RUN_MODEL and **RUN_MODEL2**
RUN_MODEL runs a saved model where the field names in the data source used to run the model are the same as the field names in the data source used to create the model.
RUN_MODEL2 runs a saved model where the field names in the data source used to run the model are not the same as the field names in the data source used to create the model.
Simplified System Functions

The following functions call the operating system to obtain information about the operating environment or to use a system service, using streamlined parameter lists. For details, see *Simplified System Functions* on page 641.

EDAPRINT
Inserts a custom message in the EDAPRINT log file.

ENCRYPT
Encrypts a password.

GETENV
Retrieves the value of an environment variable.

PUTENV
Assigns a value to an environment variable.

SLACK
Posts a message to a Slack channel from a WebFOCUS request.

System Functions

The following functions call the operating system to obtain information about the operating environment or to use a system service. For details, see *System Functions* on page 647.

CLSDDREC
Closes a file and frees the memory used to store information about open files.

Available Languages: reporting, Maintain

FEXERR
Retrieves a WebFOCUS error message.

Available Languages: reporting, Maintain

FINDMEM
Determines if a specific member of a partitioned data set (PDS) exists in batch processing.

Available Operating Systems: z/OS

Available Languages: reporting, Maintain

GETCOOKI
Retrieves the value of a browser cookie.

Available Languages: reporting, Maintain
GETHEADR
Retrieves the value of an HTTP Header variable.
Available Languages: reporting, Maintain

GETPDS
Determines if a specific member of a partitioned data set (PDS) exists, and if it does, returns the PDS name.
Available Operating Systems: z/OS
Available Languages: reporting, Maintain

GETUSER
Retrieves the ID of the connected user.
Available Languages: reporting, Maintain

MVSDYNAM
Transfers a FOCUS DYNAM command to the DYNAM command processor.
Available Operating Systems: z/OS
Available Languages: reporting, Maintain

PUTCOOKI
Submits a value to a browser cookie.
Available Languages: reporting, Maintain

PUTDDREC
Writes a character string as a record in a sequential file. Opens the file if it is closed.
Available Languages: reporting, Maintain

SLEEP
Suspends execution for a specified number of seconds.
Available Languages: reporting

SPAWN
Spawns a child process to execute system commands without terminating the current procedure. After the child process terminates, control returns to the parent process. This function is available only for WebFOCUS.
Available Operating Systems: UNIX
Available Languages: reporting
SYSTEM

Calls a DOS program, a DOS batch program, or a Windows application. This function is available only for WebFOCUS.

Available Operating Systems: Windows
Available Languages: reporting

SYSVAR

Retrieves the value of a z/OS system variable.

Available Operating Systems: z/OS
Available Languages: reporting

Simplified Geography Functions

These functions perform location-based calculations and retrieve geocoded points for various types of location data. For details, see Simplified Geography Functions on page 673.

GIS_DISTANCE

Calculates the distance between geography points.

GIS_DRIVE_ROUTE

Calculates the driving directions between geography points.

GIS_POINT

Builds a geometry point.

GIS_GEOCODE_ADDR

Geocodes a complete address.

GIS_GEOCODE_ADDR_CITY

Geocodes an address line, city, and state.

GIS_GEOCODE_ADDR_POSTAL

Geocodes an address line and postal code.

GIS_GEOMETRY

Builds a JSON geometry object.

GIS_IN_POLYGON

Determines whether a point is in a complex polygon.

GIS_LINE

Builds a JSON line.

GIS_REVERSE_COORDINATE

Given a longitude, latitude, and component name, returns the applicable geographic component.
GIS_SERVICE_AREA
Calculates a geometry area around a given point.

GIS_SERV_AREA_XY
Calculates a geometry area around a given coordinate.

Trigonometric Functions

The trigonometric functions provide trigonometric calculations, inverse trigonometric calculations, and angle conversion functions. For details, see Trigonometric Functions on page 717.

ACOS
Given the cosine of an angle in radians, ACOS (arccosine) returns an angle between 0 (zero) and pi radians.

ASIN
Given the sine of an angle in radians, ASIN (arcsine) returns an angle between -(pi/2) and pi/2 radians.

ATAN
Given the tangent of an angle in radians, ATAN (arctangent) returns an angle between -(pi/2) and pi/2 radians.

ATAN2
Given the coordinates of the tangent of an angle in radians, ATAN2 (arctangent2) returns an angle between -pi and pi radians.

COS
Given an angle in radians, COS calculates the cosine of the angle.

COT
Given an angle in radians, COT calculates the cotangent of the angle.

DEGREES
Converts an angle in radians to an angle in degrees.

PI
Returns the constant pi as a floating-point number.

RADIANS
Converts an angle in degrees to an angle in radians.
SIN

Given an angle in radians, SIN calculates the sine of the angle.

TAN

Given an angle in radians, TAN calculates the tangent of the angle.

Character Chart for ASCII and EBCDIC

This chart shows the primary printable characters in the ASCII and EBCDIC character sets and their decimal equivalents. Extended ASCII codes (above 127) are not included.

<table>
<thead>
<tr>
<th>Decimal</th>
<th>ASCII</th>
<th>EBCDIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>&</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>'</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>(</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>)</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>,</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Character Chart for ASCII and EBCDIC

<table>
<thead>
<tr>
<th>Decimal</th>
<th>ASCII</th>
<th>EBCDIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>:</td>
<td>colon</td>
</tr>
<tr>
<td>59</td>
<td>;</td>
<td>semicolon</td>
</tr>
<tr>
<td>60</td>
<td><</td>
<td>less-than sign</td>
</tr>
<tr>
<td>61</td>
<td>=</td>
<td>equal sign</td>
</tr>
<tr>
<td>62</td>
<td>></td>
<td>greater-than sign</td>
</tr>
<tr>
<td>63</td>
<td>?</td>
<td>question mark</td>
</tr>
<tr>
<td>64</td>
<td>@</td>
<td>at sign</td>
</tr>
<tr>
<td>65</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>66</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>67</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>68</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>69</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>70</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Decimal</td>
<td>ASCII</td>
<td>EBCDIC</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>71</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>J</td>
<td>¥</td>
</tr>
<tr>
<td>75</td>
<td>K</td>
<td>.</td>
</tr>
<tr>
<td>76</td>
<td>L</td>
<td><</td>
</tr>
<tr>
<td>77</td>
<td>M</td>
<td>(</td>
</tr>
<tr>
<td>78</td>
<td>N</td>
<td>+</td>
</tr>
<tr>
<td>79</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>P</td>
<td>&</td>
</tr>
<tr>
<td>81</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Z</td>
<td>!</td>
</tr>
<tr>
<td>91</td>
<td>[</td>
<td>$</td>
</tr>
<tr>
<td>92</td>
<td>\</td>
<td>*</td>
</tr>
<tr>
<td>Decimal</td>
<td>ASCII</td>
<td>EBCDIC</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>93</td>
<td>]</td>
<td>)</td>
</tr>
<tr>
<td>94</td>
<td>^</td>
<td>;</td>
</tr>
<tr>
<td>95</td>
<td>_</td>
<td>¬</td>
</tr>
<tr>
<td>96</td>
<td>\</td>
<td>-</td>
</tr>
<tr>
<td>97</td>
<td>a</td>
<td>/</td>
</tr>
<tr>
<td>98</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>j</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>k</td>
<td>,</td>
</tr>
<tr>
<td>108</td>
<td>l</td>
<td>%</td>
</tr>
<tr>
<td>109</td>
<td>m</td>
<td>_</td>
</tr>
<tr>
<td>110</td>
<td>n</td>
<td>></td>
</tr>
<tr>
<td>111</td>
<td>o</td>
<td>?</td>
</tr>
<tr>
<td>112</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>r</td>
<td></td>
</tr>
</tbody>
</table>
2. Introducing Functions

<table>
<thead>
<tr>
<th>Decimal</th>
<th>ASCII</th>
<th>EBCDIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>116</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>117</td>
<td>u</td>
<td>u</td>
</tr>
<tr>
<td>118</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>119</td>
<td>w</td>
<td>w</td>
</tr>
<tr>
<td>120</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>121</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>122</td>
<td>z</td>
<td>z</td>
</tr>
<tr>
<td>123</td>
<td>{</td>
<td>opening brace</td>
</tr>
<tr>
<td>124</td>
<td></td>
<td>vertical line</td>
</tr>
<tr>
<td>125</td>
<td>}</td>
<td>closing brace</td>
</tr>
<tr>
<td>126</td>
<td>~</td>
<td>tilde</td>
</tr>
<tr>
<td>127</td>
<td>"</td>
<td>quotation mark</td>
</tr>
<tr>
<td>129</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>130</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>131</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>132</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>133</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>134</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>135</td>
<td>g</td>
<td>g</td>
</tr>
<tr>
<td>136</td>
<td>h</td>
<td>h</td>
</tr>
<tr>
<td>137</td>
<td>i</td>
<td>i</td>
</tr>
</tbody>
</table>
Character Chart for ASCII and EBCDIC

<table>
<thead>
<tr>
<th>Decimal</th>
<th>ASCII</th>
<th>EBCDIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td></td>
<td>j</td>
</tr>
<tr>
<td>146</td>
<td></td>
<td>k</td>
</tr>
<tr>
<td>147</td>
<td></td>
<td>l</td>
</tr>
<tr>
<td>148</td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>149</td>
<td></td>
<td>n</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>151</td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>152</td>
<td></td>
<td>q</td>
</tr>
<tr>
<td>153</td>
<td></td>
<td>r</td>
</tr>
<tr>
<td>162</td>
<td></td>
<td>s</td>
</tr>
<tr>
<td>163</td>
<td></td>
<td>t</td>
</tr>
<tr>
<td>164</td>
<td></td>
<td>u</td>
</tr>
<tr>
<td>165</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>166</td>
<td></td>
<td>w</td>
</tr>
<tr>
<td>167</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>168</td>
<td></td>
<td>y</td>
</tr>
<tr>
<td>169</td>
<td></td>
<td>z</td>
</tr>
<tr>
<td>185</td>
<td></td>
<td>\</td>
</tr>
<tr>
<td>193</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>194</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>195</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>196</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>Decimal</td>
<td>ASCII</td>
<td>EBCDIC</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>197</td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>198</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>199</td>
<td></td>
<td>G</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>201</td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>209</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>210</td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>211</td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>212</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>213</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>214</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>215</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>216</td>
<td></td>
<td>Q</td>
</tr>
<tr>
<td>217</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>226</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>227</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>228</td>
<td></td>
<td>U</td>
</tr>
<tr>
<td>229</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>230</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>231</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>232</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>233</td>
<td></td>
<td>Z</td>
</tr>
<tr>
<td>Decimal</td>
<td>ASCII</td>
<td>EBCDIC</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>240</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>241</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>242</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>243</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>244</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>245</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>246</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>247</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>248</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>249</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>
Accessing and Calling a Function

The following topics describe the considerations for supplying arguments in a function, and explain how to use a function in a command and access functions stored externally.

In this chapter:

- Calling a Function
- Supplying an Argument in a Function
- Calling a Function From a DEFINE, COMPUTE, or VALIDATE Command
- Calling a Function From a Dialogue Manager Command
- Calling a Function From Another Function
- Calling a Function in WHERE or IF Criteria
- Calling a Function in WHEN Criteria
- Calling a Function From a RECAP Command
- Storing and Accessing an External Function

Calling a Function

You can call a function from a COMPUTE, DEFINE, or VALIDATE command. You can also call functions from a Dialogue Manager command, a Financial Modeling Language (FML) command, or a Maintain command. A function is called with the function name, arguments, and, for external functions, an output field.

For more information on external functions, see *Types of Functions* on page 22.

Some Maintain-specific functions require that the MNTUWS function library be retrieved when calling the function. For functions that require this, it is specified in the detailed information for that function. For more information on retrieving the MNTUWS library, see *How to Access the Maintain MNTUWS Function Library* on page 63.
Syntax: How to Call a Function

\[\text{function}(\text{arg1, arg2, ... [outfield]}) \]

where:

\[\text{function} \]

Is the name of the function.

\[\text{arg1, arg2, ...} \]

Are the arguments.

\[\text{outfield} \]

Is the field that contains the result, or the format of the output value enclosed in single quotation marks. This argument is required only for external functions.

In Dialogue Manager, you must specify the format. In Maintain Data, you must specify the name of the field.

Syntax: How to Store Output in a Field

\[\text{COMPUTE field/fmt} = \text{function}(\text{input1, input2, ... [outfield]}); \]

or

\[\text{DEFINE FILE file field/fmt} = \text{function}(\text{input1, input2, ... [outfield]}); \]

or

\[-\text{SET &var} = \text{function}(\text{input1, input2, ... [outfield]}); \]

where:

\[\text{DEFINE} \]

Creates a virtual field that may be used in a request as though it is a real data source field.

\[\text{COMPUTE} \]

Calculates one or more temporary fields in a request. The field is calculated after all records have been selected, sorted, and summed.

\[\text{field} \]

Is the field that contains the result.
file
Is the file in which the virtual field is created.

var
Is the variable that contains the result.

fmt
Is the format of the field that contains the result.

function
Is the name of the function, up to eight characters long.

input1, input2,...
Are the input arguments, which are data values or fields used in function processing. For more information about arguments, see Supplying an Argument in a Function on page 63.

outfield
Is the field that contains the result, or the format of the output value enclosed in single quotation marks. This argument is required only for external functions.

In Dialogue Manager, you must specify the format. In Maintain Data, you must specify the name of the field.

Syntax: How to Access the Maintain MNTUWS Function Library
Place the following statement directly after the MAINTAIN command at the top of your procedure:

MODULE IMPORT (MNTUWS);

Supplying an Argument in a Function
When supplying an argument in a function, you must understand which types of arguments are acceptable, the formats and lengths for these arguments, and the number and order of these arguments.

Argument Types
The following are acceptable arguments for a function:

- Numeric constant, such as 6 or 15.
- Date constant, such as 022802.
Supping an Argument in a Function

- Date in alphanumeric, numeric, date, or AnV format.
- Alphanumeric literal, such as STEVENS or NEW YORK NY. A literal must be enclosed in single quotation marks.
- Number in alphanumeric format.
- Field name, such as FIRST_NAME or HIRE_DATE. A field can be a data source field or temporary field. The field name can be up to 66 characters long or a qualified field name, unique truncation, or alias.
- Expression, such as a numeric, date, or alphanumeric expression. An expression can use arithmetic operators and the concatenation sign (||). For example, the following are valid expressions:

 \texttt{CURR_SAL} * 1.03

 and

 \texttt{FN | | LN}

- Dialogue Manager variable, such as &CODE or &DDNAME.
- Format of the output value enclosed in single quotation marks.
- Another function.
- Label or other row or column reference (such as R or E), or name of another RECAP calculation, when the function is called in an FML RECAP command.

Argument Formats

Depending on the function, an argument can be in alphanumeric, numeric, or date format. If you supply an argument in the wrong format, you will cause an error or the function will not return correct data. The following are the types of argument formats:

- **Alphanumeric argument.** An alphanumeric argument is stored internally as one character per byte. An alphanumeric argument can be a literal, an alphanumeric field, a number or date stored in alphanumeric format, an alphanumeric expression, or the format of an alphanumeric field. A literal is enclosed in single quotation marks, except when specified in operating systems that support Dialogue Manager RUN commands (for example, -MVS RUN).
 Numeric argument. A numeric argument is stored internally as a binary or packed number. A numeric argument includes integer (I), floating-point single-precision (F), floating-point double-precision (D), and packed decimal (P) formats. A numeric argument can be a numeric constant, field, or expression, or the format of a numeric field.

All numeric arguments are converted to floating-point double-precision format when used with a function, but results are returned in the format specified for the output field.

Note: With CDN ON, numeric arguments must be delimited by a comma followed by a space.

Date argument. A date argument can be in either alphanumeric, numeric, or date format. The list of arguments for the individual function will specify what type of format the function accepts. A date argument can be a date in alphanumeric, numeric, or date format; a date field or expression; or the format of a date field.

If you supply an argument with a two-digit year, the function assigns a century based on the YRTHRESH and DEFCENT parameter settings.

Argument Length

An argument is passed to a function by reference, meaning that the memory location of the argument is passed. No indication of the length of the argument is given.

You must supply the argument length for alphanumeric strings. Some functions require a length for the input and output arguments (for example, SUBSTR), and others use one length for both arguments (for example, UPCASE).

Be careful to ensure that all lengths are correct. Providing an incorrect length can cause incorrect results:

- If the specified length is shorter than the actual length, a subset of the string is used. For example, passing the argument 'ABCDEF' and specifying a length of 3 causes the function to process a string of 'ABC'.

- If the specified length is too long, whatever is in memory up to that length is included. For example, passing an argument of 'ABC' and specifying a length of 6 causes the function to process a string beginning with 'ABC' plus the three characters in the next three positions of memory. Depending on memory utilization, the extra three characters could be anything.

Some operating system routines are very sensitive to incorrectly specified lengths and read them into incorrectly formatted memory areas.
Number and Order of Arguments

The number of arguments required varies according to each function. Supplied functions may require up to six arguments. User-written subroutines may require a maximum of 200 arguments including the output argument. If a function requires more than 200 arguments, you must use two or more calls to pass the arguments to the function.

Arguments must be specified in the order shown in the syntax of each function. The required order varies according to the function.

Verifying Function Parameters

The USERFCHK setting controls the level of verification applied to DEFINE FUNCTION and supplied function arguments. It does not affect verification of the number of parameters; the correct number must always be supplied.

USERFCHK is not supported from Maintain Data.

Functions typically expect parameters to be a specific type or have a length that depends on the value of another parameter. It is possible in some situations to enforce these rules by truncating the length of a parameter and, therefore, avoid generating an error at run time.

The level of verification and possible conversion to a valid format performed depends on the specific function. The following two situations can usually be converted satisfactorily:

- If a numeric parameter specifies a maximum size for an alphanumeric parameter, but the alphanumeric string supplied is longer than the specified size, the string can be truncated.
- If a parameter supplied as a numeric literal specifies a value larger than the maximum size for a parameter, it can be reduced to the proper value.

Syntax: How to Enable Parameter Verification

Parameter verification can be enabled only for DEFINE FUNCTIONs and supplied functions. If your site has a locally written function with the same name as a supplied function, the USERFNS setting determines which function is used.

SET USERFNS= {SYSTEM|LOCAL}

where:

SYSTEM

Gives precedence to supplied functions. SYSTEM is the default value. This setting is required in order to enable parameter verification.
LOCAL

Gives precedence to locally written functions. Parameter verification is not performed with this setting in effect.

Note: When USERFNS is set to LOCAL, DT functions only display a six-digit date.

Syntax:

How to Control Function Parameter Verification

Issue the following command in FOCPARM, FOCPROF, on the command line, in a FOCEXEC, or in an ON TABLE command. Note that the USERFNS=SYSTEM setting must be in effect.

```
SET USERFCHK = setting
```

where:

setting

Can be one of the following:

- **ON** is the default value. Verifies parameters in requests, but does not verify parameters for functions used in Master File DEFINEs. If a parameter has an incorrect length, an attempt is made to fix the problem. If such a problem cannot be fixed, an error message is generated and the evaluation of the affected expression is terminated.

Because parameters are not verified for functions specified in a Master File, no errors are reported for those functions until the DEFINE field is used in a subsequent request when, if a problem occurs, the following message is generated:

```
(FOC003) THE FIELDNAME IS NOT RECOGNIZED
```

- **OFF** does not verify parameters except in the following cases:

 - If a parameter that is too long would overwrite the memory area in which the computational code is stored, the size is automatically reduced without issuing a message.

 - If an alphanumeric parameter is too short, it is padded with blanks to the correct length.

Note:

- The OFF setting will be deprecated in a future release.
 - We strongly recommend that you not use the OFF setting, as disabling parameter checking can lead to unexpected issues.

- **FULL** is the same as ON, but also verifies parameters for functions used in Master File DEFINEs.
/** ALERT** verifies parameters in a request without halting execution when a problem is detected. It does not verify parameters for functions used in Master File DEFINEs. If a parameter has an incorrect length and an attempt is made to fix the problem behind the scenes, the problem is corrected with no message. If such a problem cannot be fixed, a warning message is generated. Execution then continues as though the setting were OFF, but the results may be incorrect.

Note:

- If a parameter provided is the incorrect type, verification fails and processing terminates.
- Errors encountered during subroutine processing, unless fatal at the system level, are communicated to the calling routine through the return of an unchanged return parameter, which is the last parameter in the subroutine call. This is always communicated as spaces for alphanumeric outputs.

Example: *Verifying Parameters With Correctable Errors*

The following request uses SUBSTR to extract the substring that starts in position 6 and ends in position 14 of the TITLE field. The fifth argument specifies a substring length (500) that is too long (it should be no longer than 9).

```
SET USERFCHK = ON
TABLE FILE MOVIES
PRINT TITLE
COMPUTE
   NEWTITLE/A9 = SUBSTR(39, TITLE, 6, 14, 500, NEWTITLE);
WHERE CATEGORY EQ 'CHILDREN'
END
```

When the request is executed with USERFCHK=ON or OFF, the incorrect length is corrected and the request continues processing:

<table>
<thead>
<tr>
<th>TITLE</th>
<th>NEWTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMURFS, THE</td>
<td>S, THE</td>
</tr>
<tr>
<td>SHAGGY DOG, THE</td>
<td>Y DOG, TH</td>
</tr>
<tr>
<td>SCOOBY-DOO-A DOG IN THE RUFF</td>
<td>Y-DOO-A D</td>
</tr>
<tr>
<td>ALICE IN WONDERLAND</td>
<td>IN WONDE</td>
</tr>
<tr>
<td>SESAME STREET-BEDTIME STORIES AND SONGS</td>
<td>E STREET-</td>
</tr>
<tr>
<td>ROMPER ROOM-ASK MISS MOLLY</td>
<td>R ROOM-AS</td>
</tr>
<tr>
<td>SLEEPING BEAUTY</td>
<td>ING BEAUT</td>
</tr>
<tr>
<td>BAMBI</td>
<td></td>
</tr>
</tbody>
</table>
Example: Verifying Parameters With Uncorrectable Errors

The following request has an incorrect data type in the last argument to SUBSTR. This parameter should specify an alphanumeric field or format for the extracted substring:

```
SET USERFCHK = ON
TABLE FILE MOVIES
PRINT TITLE
COMPUTE
  NEWTITLE/F9  = SUBSTR(39, TITLE, 6 ,14, 500, 'F9');
WHERE CATEGORY EQ 'CHILDREN'
END
```

- When the request is executed with USERFCHK=ON, a message is produced and the request terminates:

```
ERROR AT OR NEAR LINE      5  IN PROCEDURE USERFC3 FOCEXEC
(FOC279) NUMERIC ARGUMENTS IN PLACE WHERE ALPHA ARE CALLED FOR
(FOC009) INCOMPLETE REQUEST STATEMENT
UNKNOWN FOCUS COMMAND WHERE
BYPASSING TO END OF COMMAND
```

- When the request is executed with USERFCHK=OFF, no verification is done and no message is produced. The request executes and produces incorrect results. In some environments, this type of error may cause abnormal termination of the application:

```
DIRECTOR          TITLE                                   NEWTITLE
--------          -----                                   --------
SMURFS, THE                            *********
BARTON C.         SHAGGY DOG, THE                        *********
GEROMINI          SCOOBY-DOO-A DOG IN THE RUFF           *********
                   ALICE IN WONDERLAND                            1
                   SESAME STREET-BEDTIME STORIES AND SONGS -265774
                   ROMPER ROOM-ASK MISS MOLLY                     *********
DISNEY W.         SLEEPING BEAUTY                        *********
DISNEY W.         BAMBI                                      0
```

Calling a Function From a DEFINE, COMPUTE, or VALIDATE Command

You can call a function from a DEFINE command or Master File attribute, a COMPUTE command, or a VALIDATE command.

Syntax: How to Call a Function From a COMPUTE, DEFINE, or VALIDATE Command

```
DEFINE [FILE filename]
  tempfield[/format] = function(input1, input2, input3, ... [outfield]);
COMPUTE
tempfield[/format] = function(input1, input2, input3, ... [outfield]);
VALIDATE
tempfield[/format] = function(input1, input2, input3, ... [outfield]);
```

Using Functions
where:

filename

Is the data source being used.

tempfield

Is the temporary field created by the DEFINE or COMPUTE command. This is the same field specified in outfile. If the function call supplies the format of the output value in outfile, the format of the temporary field must match the outfile argument.

format

Is the format of the temporary field. The format is required if it is the first time the field is created; otherwise, it is optional. The default value is D12.2.

function

Is the name of the function.

input1, input2, input3...

Are the arguments.

outfile

Is the field that contains the result, or the format of the output value enclosed in single quotation marks. This is required only for external functions.

In Dialogue Manager, you must specify the format. In Maintain Data, you must specify the name of the field.

Calling a Function From a Dialogue Manager Command

You can call a function with Dialogue Manager in the following ways:

- From a -SET command, storing the result of a function in a variable. For more information, see Assigning the Result of a Function to a Variable on page 71.

- From an -IF command. For more information, see Calling a Function in WHERE or IF Criteria on page 75.

- From an operating system -RUN command. For more information, see Calling a Function From an Operating System RUN Command on page 74.

Dialogue Manager converts a numeric argument to double-precision format. This occurs when the value of the argument is numeric; this is not affected by the format expected by the function. This means you must be careful when supplying arguments for a function in Dialogue Manager.
If the function expects an alphanumeric string and the input is a numeric string, incorrect results will occur because of conversion to floating-point double-precision. To resolve this problem, append a non-numeric character to the end of the string, but do not count this extra character in the length of the argument.

Dialogue Manager date variables such as &YYMD return alphanumeric legacy dates, not a date format (an offset from a base date). If a function requires a date offset rather than a legacy date, you must convert any date variable to a date offset (using the DATECVT function) before using it as an argument. You can then convert the result back to a legacy date, again with the DATECVT function. For example:

```dialogue
-SET &TODAY_OFFSET=DATECVT(&YYMD , 'I8YYMD' , 'YYMD');
-SET &BEG_CUR_YR=DATEMOV(&TODAY_OFFSET.EVAL , 'BOY');
-SET &CLOSE_DTBOY=DATECVT(&BEG_CUR_YR.EVAL , 'YYMD' , 'I8YYMD');
```

Assigning the Result of a Function to a Variable

You can store the result of a function in a variable with the -SET command.

A Dialogue Manager variable contains only alphanumeric data. If a function returns a numeric value to a Dialogue Manager variable, the value is truncated to an integer and converted to alphanumeric format before being stored in the variable.

Syntax:

How to Assign the Result of a Function to a Variable

```dialogue
-SET &variable = function(arg1, arg2[.LENGTH], ..., 'format');
```

where:

- **variable**: Is the variable to which the result will be assigned.

- **function**: Is the function.

- **arg1, arg2**: Are the function’s arguments.

- **.LENGTH**: Returns the length of the variable. If a function requires the length of a character string as an input argument, you can prompt for the character string and determine the length with the .LENGTH suffix.
Is the format of the result enclosed in single quotation marks. You cannot specify a Dialogue Manager variable for the output argument unless you use the .EVAL suffix; however, you can specify a variable for an input argument.

Example: Calling a Function From a -SET Command

AYMD adds 14 days to the value of &INDATE. The &INDATE variable is previously set in the procedure in the six-digit year-month-day format.

```plaintext
-SET &OUTDATE = AYMD(&INDATE, 14, 'I6');
```

The format of the output date is a six-digit integer (I6). Although the format indicates that the output is an integer, it is stored in the &OUTDATE variable as a character string. For this reason, if you display the value of &OUTDATE, you will not see slashes separating the year, month, and day.

Branching Based on the Result of a Function

You can branch based on the result of a function by calling a function from a Dialogue Manager -IF command.

If a branching command spans more than one line, continue it on the next line by placing a dash (-) in the first column.

Syntax: How to Branch Based on the Result of a Function

```plaintext
-IF function(args) relation expression GOTO label1 [ELSE GOTO label2];
```

where:

function

Is the function.

args

Are the arguments.

relation

Is an operator that determines the relationship between the function and expression, for example, EQ or LE.

expression

Is a value, logical expression, or function. Do not enclose a literal in single quotation marks unless it contains a comma or embedded blank.
label1, label2

Are user-defined names up to 12 characters long. Do not use embedded blanks or the name of any other Dialogue Manager command except -QUIT or -EXIT. Do not use a word that can be confused with a function, or an arithmetic or logical operation.

The label text can precede or follow the -IF criteria in the procedure.

ELSE GOTO

Passes control to label2 when the -IF test fails.

Example: Branching Based on the Function’s Result

The result of the AYMD function provides a condition for a -IF test. One of two requests is executed, depending on the function’s result:

1. -IF &INDATE EQ 0 GOTO EXIT;
2. -SET &WEEKDAY = DOWK(&INDATE, 'A4');
3. -TYPE START DATE IS &WEEKDAY &INDATE
4. -IF AYMD(&INDATE, &DAYS, 'I6YMD') LT 960101 GOTO EARLY;
5. -TYPE LONG PROJECT
 -*EX LONGPROJ
 -RUN
 -GOTO EXIT
6. -EARLY
 -TYPE SHORT PROJECT
 -*EX SHRTPROJ
 -RUN
 -EXIT

The procedure processes as follows:

1. If you enter a 0, it passes control to -EXIT which terminates execution.
2. The DOWK function obtains the day of the week for the start date.
3. The -TYPE command displays the day of the week and start date of the project.
4. The AYMD function calculates the date that the project will finish. If this date is before January 1, 1996, the -IF command branches to the label EARLY.
5. If the project will finish on or after January 1, 1996, the TYPE command displays the words LONG PROJECT and exits.
6. If the procedure branches to the label EARLY, the TYPE command displays the words SHORT PROJECT and exits.
Calling a Function From an Operating System RUN Command

You can call a function that contains only alphanumeric arguments from a Dialogue Manager -TSO RUN or -MVS RUN command. This type of function performs a specific task but typically does not return a value.

If a function requires an argument in numeric format, you must first convert it to floating-point double-precision format using the ATODBL function because, unlike the -SET command, an operating system RUN command does not automatically convert a numeric argument to double-precision.

Syntax: How to Call a Function From an Operating System -RUN Command

{TSO|-MVS} RUN function, input1, input2, ... [,&output]

where:

- TSO|MVS
 Is the operating system.

function

Is the name of the function.

input1, input2, ...

Are the arguments. Separate the function name and each argument with a comma. Do not enclose an alphanumeric literal in single quotation marks. If a function requires the length of a character string as an argument, you can prompt for the character string, then use the .LENGTH suffix to test the length.

&output

Is a Dialogue Manager variable. Include this argument if the function returns a value; otherwise, omit it. If you specify an output variable, you must pre-define its length using a -SET command.

For example, if the function returns a value that is eight bytes long, define the variable with eight characters enclosed in single quotation marks before the function call:

-SET &output = '12345678';
Example: Calling a Function From an Operating System -RUN Command

The following example calls the CHGDAT function from a -MVS RUN command:

```
-SET &RESULT = '12345678901234567';
-MVS RUN CHGDAT, YYMD., MXDYY, &YYMD, &RESULT
-TYPE &RESULT
```

Calling a Function From Another Function

A function can be an argument for another function.

Syntax: How to Call a Function From Another Function

```
field = function([arguments,] function2[arguments2,] arguments);
```

where:

- **field**

 Is the field that contains the result of the function.

- **function**

 Is a function.

- **arguments**

 Are arguments for function.

- **function2**

 Is the function that is an argument for function.

- **arguments2**

 Are arguments for function2.

Example: Calling a Function From Another Function

In the following example, the AYMD function is an argument for the YMD function:

```
-SET &DIFF = YMD(&YYMD, AYMD(&YYMD, 4, 'I8'));
```

Calling a Function in WHERE or IF Criteria

You can call a function in WHERE or IF criteria. When you do this, the output value of the function is compared against a test value.
Syntax:

How to Call a Function in WHERE Criteria

```
WHERE function relation expression
```

where:

- **function**
 Is a function.

- **relation**
 Is an operator that determines the relationship between the function and expression, for example, EQ or LE.

- **expression**
 Is a constant, field, or function. A literal must be enclosed in single quotation marks.

Syntax: How to Call a Function in IF Criteria

```
IF function relation value
```

where:

- **function**
 Is a function.

- **relation**
 Is an operator that determines the relationship between the function and expression, for example, EQ or LE.

- **value**
 Is a constant. In a DEFINE or COMPUTE command, the value must be enclosed in single quotation marks.

Example: Calling a Function in WHERE Criteria

The SUBSTR function extracts the first two characters of LAST_NAME as a substring, and the request prints an employee’s name and salary if the substring is MC.

```
TABLE FILE EMPLOYEE
PRINT FIRST_NAME LAST_NAME CURR_SAL
WHERE SUBSTR(15, LAST_NAME, 1, 2, 2, 'A2') IS 'MC';
END
```
The output is:

<table>
<thead>
<tr>
<th>FIRST_NAME</th>
<th>LAST_NAME</th>
<th>CURR_SAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOHN</td>
<td>MCCOY</td>
<td>$18,480.00</td>
</tr>
<tr>
<td>ROGER</td>
<td>MCKNIGHT</td>
<td>$16,100.00</td>
</tr>
</tbody>
</table>

Using a Calculation or Compound IF Command

You must specify the format of the output value in a calculation or compound IF command. There are two ways to do this:

- Pre-define the format within a separate command. In the following example, the AMOUNT field is pre-defined with the format D8.2 and the function returns a value to the output field AMOUNT. The IF command tests the value of AMOUNT and stores the result in the calculated value, AMOUNT_FLAG.

```
COMPUTE
AMOUNT/D8.2 =;
AMOUNT_FLAG/A5 = IF function(input1, input2, AMOUNT) GE 500
    THEN 'LARGE' ELSE 'SMALL';
```

- Supply the format as the last argument in the function call. In the following example, the command tests the returned value directly. This is possible because the function defines the format of the returned value (D8.2).

```
DEFINE
AMOUNT_FLAG/A5 = IF function(input1, input2, 'D8.2') GE 500
    THEN 'LARGE' ELSE 'SMALL';
```

Calling a Function in WHEN Criteria

You can call a function in WHEN criteria as part of a Boolean expression.

Syntax:

How to Call a Function in WHEN Criteria

```
WHEN({function|value} relation {function|value});
```

or

```
WHEN NOT(function)
```

where:

- **function**

 Is a function.
value
 Is a value or logical expression.

relation
 Is an operator that determines the relationship between the value and function, for example, LE or GT.

Example: Calling a Function in WHEN Criteria

This request checks the values in LAST_NAME against the result of the CHKFMT function. When a match occurs, the request prints a sort footing.

```
TABLE FILE EMPLOYEE
PRINT DEPARTMENT BY LAST_NAME
ON LAST_NAME SUBFOOT
"*** LAST NAME <LAST_NAME DOES MATCH MASK"
WHEN NOT CHKFMT(15, LAST_NAME, 'SMITH ', 'I6');
END
```

The output is:

```
LAST_NAME        DEPARTMENT
---------        ----------
BANNING          PRODUCTION
BLACKWOOD        MIS
CROSS            MIS
GREENSPAN        MIS
IRVING           PRODUCTION
JONES            MIS
MCCOY            MIS
MCKNIGHT         PRODUCTION
ROMANS           PRODUCTION
SMITH            MIS
*** LAST NAME SMITH DOES MATCH MASK
STEVENS          PRODUCTION
```

Calling a Function From a RECAP Command

You can call a function from an FML RECAP command.

Syntax: How to Call a Function From a RECAP Command

```
RECAP name[(n)|(n,m)|(n,m,i)][/format1] = function(input1,...,['format2']);
```

where:

name
 Is the name of the calculation.
\(n \)

Displays the value in the column number specified by \(n \). If you omit the column number, the value appears in all columns.

\(n, m \)

Displays the value in all columns beginning with the column number specified by \(n \) and ending with the column number specified by \(m \).

\(n, m, i \)

Displays the value in the columns beginning with the column number specified by \(n \) and ending with the column number specified by \(m \) by the interval specified by \(i \). For example, if \(n \) is 1, \(m \) is 5, and \(i \) is 2, the value displays in columns 1, 3, and 5.

\(format_1 \)

Is the format of the calculation. The default value is the format of the report column.

\(function \)

Is the function.

\(input_1, ... \)

Are the input arguments, which can include numeric constants, alphanumeric literals, row and column references (R notation, E notation, or labels), and names of other RECAP calculations.

\(format_2 \)

Is the format of the output value enclosed in single quotation marks. If the calculation’s format is larger than the column width, the value appears in that column as asterisks.

Example: Calling a Function in a RECAP Command

This request sums the AMOUNT field for account 1010 using the label CASH, account 1020 using the label DEMAND, and account 1030 using the label TIME. The MAX function displays the maximum value of these accounts.

```
TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
1010 AS 'CASH ON HAND' LABEL CASH OVER
1020 AS 'DEMAND DEPOSITS' LABEL DEMAND OVER
1030 AS 'TIME DEPOSITS' LABEL TIME OVER
BAR OVER
RECAP MAXCASH = MAX(CASH, DEMAND, TIME); AS 'MAX CASH'
END
```
Storing and Accessing an External Function

The output is:

<table>
<thead>
<tr>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASH ON HAND</td>
</tr>
<tr>
<td>DEMAND DEPOSITS</td>
</tr>
<tr>
<td>TIME DEPOSITS</td>
</tr>
<tr>
<td>MAX CASH</td>
</tr>
</tbody>
</table>

Storing and Accessing an External Function

Internal functions are built in and do not require additional work to access. External functions are stored in load libraries from which they must be retrieved. The way these external functions are accessed is determined by your platform. These techniques may not have to be used every time a function is accessed. Access to a load library may be set only once at the time of installation.

You can also access private user-written subroutines. If you have a private collection of subroutines (that is, you created your own or use customized subroutines), do not store them in the function library. Store them separately to avoid overwriting them whenever your site installs a new release. For more information on creating a subroutine, see Creating a Subroutine on page 731.

Storing and Accessing a Function on z/OS

On z/OS, load libraries are partitioned data sets containing link-edited modules. These libraries are stored as EDALIB.LOAD or FUSELIB.LOAD. In addition, your site may have private subroutine collections stored in separate load libraries. If so, you must allocate those libraries.

Procedure: How to Allocate a Load Library in z/OS Batch

To use a function stored as a load library, allocate the load library to ddname USERLIB in your JCL or CLIST.

The search order is USERLIB, STEPLIB, JOBLIB, link pack area, and linklist.

The WebFOCUS Reporting Server also adds the TASKLIB keyword to the search for non-APF authorized libraries. For more information, see the Server Installation, Configuration and Operations for MVS manual.

Example: Allocating the Load Library BIGLIB.LOAD in z/OS Batch (JCL)

//USERLIB DD DISP=SHR,DSN=BIGLIB.LOAD
Syntax:

How to Allocate a Load Library

```
DYNAM ALLOC FILE USERLIB DA lib SHR
```

where:

USERLIB

Is the ddname to which you allocate a load library.

```
lib1 lib2 lib3...
```

Are the names of the load libraries, concatenated to ddname USERLIB.

Example:

Allocating the FUSELIB.LOAD Load Library

```
DYNAM ALLOC FILE USERLIB DA MVS.FUSELIB.LOAD SHR
```

Example:

Concatenating a Load Library to USERLIB In TSO

Suppose a report request calls two functions: BENEFIT stored in library SUBLIB.LOAD, and EXCHANGE stored in library BIGLIB.LOAD. To concatenate the BIGLIB and SUBLIB load libraries in the allocation for ddname USERLIB, issue the following commands:

```
DYNAM ALLOC FILE USERLIB DA SUBLIB.LOAD SHR
DYNAM ALLOC FILE BIGLIB DA BIGLIB.LOAD SHR
DYNAM CONCAT FILE USERLIB BIGLIB
```

The load libraries are searched in the order in which they are specified in the ALLOCATE command.

Example:

Concatenating a Load Library to STEPLIB in Batch (JCL)

Concatenate the load library to the ddname STEPLIB in your JCL:

```
//FOCUS EXEC PGM=FOCUS
//STEPLIB DD DSN=FOCUS.FOCLIB.LOAD,DISP=SHR
// DD DSN=FOCUS.FUSELIB.LOAD,DISP=SHR
```

Storing and Accessing a Function on UNIX

No extra work is required.

Storing and Accessing a Function on Windows

No extra work is required.
Storing and Accessing an External Function
The analytic functions enable you to perform calculations and retrievals using multiple rows in the internal matrix.

In this chapter:

- **FORECAST_MOVAVE**: Using a Simple Moving Average
- **FORECAST_EXPAVE**: Using Single Exponential Smoothing
- **FORECAST_DOUBLEXP**: Using Double Exponential Smoothing
- **FORECAST_SEASONAL**: Using Triple Exponential Smoothing
- **FORECAST_LINEAR**: Using a Linear Regression Equation
- **PARTITION_AGGR**: Creating Rolling Calculations
- **PARTITION_REF**: Using Prior or Subsequent Field Values in Calculations
- **INCREASE**: Calculating the Difference Between the Current and a Prior Value of a Field
- **PCT_INCREASE**: Calculating the Percentage Difference Between the Current and a Prior Value of a Field
- **PREVIOUS**: Retrieving a Prior Value of a Field
- **RUNNING_AVE**: Calculating an Average Over a Group of Rows
- **RUNNING_MAX**: Calculating a Maximum Over a Group of Rows
- **RUNNING_MIN**: Calculating a Minimum Over a Group of Rows
- **RUNNING_SUM**: Calculating a Sum Over a Group of Rows

FORECAST_MOVAVE: Using a Simple Moving Average

A simple moving average is a series of arithmetic means calculated with a specified number of values from a field. Each new mean in the series is calculated by dropping the first value used in the prior calculation, and adding the next data value to the calculation.

Simple moving averages are sometimes used to analyze trends in stock prices over time. In this scenario, the average is calculated using a specified number of periods of stock prices. A disadvantage to this indicator is that because it drops the oldest values from the calculation as it moves on, it loses its memory over time. Also, mean values are distorted by extreme highs and lows, since this method gives equal weight to each point.
Predicted values beyond the range of the data values are calculated using a moving average that treats the calculated trend values as new data points.

The first complete moving average occurs at the \(n \)th data point because the calculation requires \(n \) values. This is called the lag. The moving average values for the lag rows are calculated as follows: the first value in the moving average column is equal to the first data value, the second value in the moving average column is the average of the first two data values, and so on until the \(n \)th row, at which point there are enough values to calculate the moving average with the number of values specified.

Syntax:

How to Calculate a Simple Moving Average Column

\[
\text{FORECAST_MOVAVE}(\text{display}, \text{infield}, \text{interval}, \text{npredict}, \text{npoint1})
\]

where:

- **display**

 Keyword

 Specifies which values to display for rows of output that represent existing data. Valid values are:

 - **INPUT_FIELD.** This displays the original field values for rows that represent existing data.

 - **MODEL_DATA.** This displays the calculated values for rows that represent existing data.

 Note: You can show both types of output for any field by creating two independent COMPUTE commands in the same request, each with a different display option.

- **infield**

 Is any numeric field. It can be the same field as the result field, or a different field. It cannot be a date-time field or a numeric field with date display options.

- **interval**

 Is the increment to add to each sort field value (after the last data point) to create the next value. This must be a positive integer. To sort in descending order, use the BY HIGHEST phrase. The result of adding this number to the sort field values is converted to the same format as the sort field.

 For date fields, the minimal component in the format determines how the number is interpreted. For example, if the format is YMD, MDY, or DMY, an interval value of 2 is interpreted as meaning two days. If the format is YM, the 2 is interpreted as meaning two months.
nPredict
Is the number of predictions for FORECAST to calculate. It must be an integer greater than or equal to zero. Zero indicates that you do not want predictions, and is only supported with a non-recursive FORECAST.

nPoint1
Is the number of values to average for the MOVAVE method.

Example: **Calculating a New Simple Moving Average Column**

This request defines an integer value named PERIOD to use as the independent variable for the moving average. It predicts three periods of values beyond the range of the retrieved data. The MOVAVE column on the report output shows the calculated moving average numbers for existing data points.

```plaintext
DEFINE FILE GGSALES
SDATE/YYM = DATE;
SYEAR/Y = SDATE;
SMONTH/M = SDATE;
PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
SUM UNITS DOLLARS
COMPUTE MOVAVE/D10.1= FORECAST_MOVAVE(MODEL_DATA, DOLLARS,1,3,3);
BY CATEGORY BY PERIOD
WHERE SYEAR EQ 97 AND CATEGORY NE 'Gifts'
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

Using Functions
In the report, the number of values to use in the average is 3 and there are no UNITS or DOLLARS values for the generated PERIOD values.

Each average (MOVAVE value) is computed using DOLLARS values where they exist. The calculation of the moving average begins in the following way:

- The first MOVAVE value (801,123.0) is equal to the first DOLLARS value.

<table>
<thead>
<tr>
<th>Category</th>
<th>PERIOD</th>
<th>Unit Sales</th>
<th>Dollar Sales</th>
<th>MOVAVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coffee</td>
<td>1</td>
<td>61666</td>
<td>801123</td>
<td>801,123.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>54870</td>
<td>682340</td>
<td>741,731.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>61608</td>
<td>765078</td>
<td>749,513.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>57050</td>
<td>691274</td>
<td>712,897.3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>59229</td>
<td>720444</td>
<td>725,598.7</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>58466</td>
<td>742457</td>
<td>718,058.3</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>60771</td>
<td>747253</td>
<td>736,718.0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>54633</td>
<td>655896</td>
<td>715,202.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>57829</td>
<td>730317</td>
<td>711,155.3</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>57012</td>
<td>724412</td>
<td>703,541.7</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>51110</td>
<td>620264</td>
<td>691,664.3</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>58981</td>
<td>762328</td>
<td>702,334.7</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>694,975.6</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>719,879.4</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>705,729.9</td>
</tr>
<tr>
<td>Food</td>
<td>1</td>
<td>54394</td>
<td>672727</td>
<td>672,727.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>54894</td>
<td>699073</td>
<td>685,900.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>52713</td>
<td>642802</td>
<td>671,534.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>58026</td>
<td>718514</td>
<td>686,796.3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>53289</td>
<td>660740</td>
<td>674,018.7</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>58742</td>
<td>734705</td>
<td>704,653.0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>60127</td>
<td>760586</td>
<td>718,677.0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>55622</td>
<td>695235</td>
<td>730,175.3</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>55787</td>
<td>683140</td>
<td>712,987.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>57340</td>
<td>713768</td>
<td>697,381.0</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>57459</td>
<td>710138</td>
<td>702,348.7</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>57290</td>
<td>705315</td>
<td>709,740.3</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>708,397.8</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>707,817.7</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>708,651.9</td>
</tr>
</tbody>
</table>
The second MOVAVE value (741,731.5) is the mean of DOLLARS values one and two:
\[(801,123 + 682,340) / 2.\]

The third MOVAVE value (749,513.7) is the mean of DOLLARS values one through three:
\[(801,123 + 682,340 + 765,078) / 3.\]

The fourth MOVAVE value (712,897.3) is the mean of DOLLARS values two through four:
\[(682,340 + 765,078 + 691,274) / 3.\]

For predicted values beyond the supplied values, the calculated MOVAVE values are used as new data points to continue the moving average. The predicted MOVAVE values (starting with 694,975.6 for PERIOD 13) are calculated using the previous MOVAVE values as new data points. For example, the first predicted value (694,975.6) is the average of the data points from periods 11 and 12 (620,264 and 762,328) and the moving average for period 12 (702,334.7). The calculation is: 694,975 = (620,264 + 762,328 + 702,334.7)/3.

Example: Displaying Original Field Values in a Simple Moving Average Column

This request defines an integer value named PERIOD to use as the independent variable for the moving average. It predicts three periods of values beyond the range of the retrieved data. It uses the keyword INPUT_FIELD as the first argument in the FORECAST parameter list. The trend values do not display in the report. The actual data values for DOLLARS are followed by the predicted values in the report column.

```
DEFINE FILE GGSALES
SDATE/YYM = DATE;
SYEAR/Y = SDATE;
SMONTH/M = SDATE;
PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
SUM UNITS DOLLARS
COMPUTE MOVAVE/D10.1 = FORECAST_MOVAVE(INPUT_FIELD,DOLLARS,1,3,3);
BY CATEGORY BY PERIOD
WHERE SYEAR EQ 97 AND CATEGORY NE 'Gifts'
on TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
FORECAST_MOVAWE: Using a Simple Moving Average

The output is shown in the following image:

<table>
<thead>
<tr>
<th>Category</th>
<th>PERIOD</th>
<th>Unit Sales</th>
<th>Dollar Sales</th>
<th>MOVAWE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coffee</td>
<td>1</td>
<td>61666</td>
<td>801123</td>
<td>801,123.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>54870</td>
<td>682340</td>
<td>682,340.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>61608</td>
<td>765078</td>
<td>765,078.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>57050</td>
<td>691274</td>
<td>691,274.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>59229</td>
<td>720444</td>
<td>720,444.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>58466</td>
<td>742457</td>
<td>742,457.0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>60771</td>
<td>747253</td>
<td>747,253.0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>54633</td>
<td>655896</td>
<td>655,896.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>57829</td>
<td>730317</td>
<td>730,317.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>57012</td>
<td>724412</td>
<td>724,412.0</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>51110</td>
<td>620264</td>
<td>620,264.0</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>58981</td>
<td>762328</td>
<td>762,328.0</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>694,975.6</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>719,879.4</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>705,729.9</td>
</tr>
<tr>
<td>Food</td>
<td>1</td>
<td>54394</td>
<td>672727</td>
<td>672,727.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>54894</td>
<td>699073</td>
<td>699,073.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>52713</td>
<td>642802</td>
<td>642,802.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>58026</td>
<td>718514</td>
<td>718,514.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>53289</td>
<td>660740</td>
<td>660,740.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>58742</td>
<td>734705</td>
<td>734,705.0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>60127</td>
<td>760586</td>
<td>760,586.0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>55622</td>
<td>695235</td>
<td>695,235.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>55787</td>
<td>683140</td>
<td>683,140.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>57340</td>
<td>713768</td>
<td>713,768.0</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>57459</td>
<td>710138</td>
<td>710,138.0</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>57290</td>
<td>705315</td>
<td>705,315.0</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>708,397.8</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>707,817.7</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>708,651.9</td>
</tr>
</tbody>
</table>
FORECAST_EXPAVE: Using Single Exponential Smoothing

The single exponential smoothing method calculates an average that allows you to choose weights to apply to newer and older values.

The following formula determines the weight given to the newest value.

\[k = \frac{2}{1+n} \]

where:

- \(k \) is the newest value.
- \(n \) is an integer greater than one. Increasing \(n \) increases the weight assigned to the earlier observations (or data instances), as compared to the later ones.

The next calculation of the exponential moving average (EMA) value is derived by the following formula:

\[EMA = (EMA \times (1-k)) + (datavalue \times k) \]

This means that the newest value from the data source is multiplied by the factor \(k \) and the current moving average is multiplied by the factor \((1-k)\). These quantities are then summed to generate the new EMA.

Note: When the data values are exhausted, the last data value in the sort group is used as the next data value.

Syntax: How to Calculate a Single Exponential Smoothing Column

\[\text{FORECAST_EXPAVE}(display, infield, interval, npredict, npoint1) \]

where:

- \(display \) Keyword
 - Specifies which values to display for rows of output that represent existing data. Valid values are:
 - **INPUT_FIELD.** This displays the original field values for rows that represent existing data.
 - **MODEL_DATA.** This displays the calculated values for rows that represent existing data.
Note: You can show both types of output for any field by creating two independent COMPUTE commands in the same request, each with a different display option.

infield
Is any numeric field. It can be the same field as the result field, or a different field. It cannot be a date-time field or a numeric field with date display options.

interval
Is the increment to add to each sort field value (after the last data point) to create the next value. This must be a positive integer. To sort in descending order, use the BY HIGHEST phrase. The result of adding this number to the sort field values is converted to the same format as the sort field.

For date fields, the minimal component in the format determines how the number is interpreted. For example, if the format is YMD, MDY, or DMY, an interval value of 2 is interpreted as meaning two days. If the format is YM, the 2 is interpreted as meaning two months.

npredict
Is the number of predictions for FORECAST to calculate. It must be an integer greater than or equal to zero. Zero indicates that you do not want predictions, and is only supported with a non-recursive FORECAST.

npoint1
For EXPAVE, this number is used to calculate the weights for each component in the average. This value must be a positive whole number. The weight, k, is calculated by the following formula:

\[k = \frac{2}{1 + npoint1} \]

Example: Calculating a Single Exponential Smoothing Column

The following defines an integer value named PERIOD to use as the independent variable for the moving average. It predicts three periods of values beyond the range of retrieved data.

```plaintext
DEFINE FILE GGSALES
SDATE/YYM = DATE;
SYEAR/Y = SDATE;
SMONTH/M = SDATE;
PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
SUM UNITS DOLLARS
COMPUTE EXPAVE/D10.1= FORECAST_EXPAVE(MODEL_DATA,DOLLARS,1,3,3);
BY CATEGORY BY PERIOD
WHERE SYEAR EQ 97 AND CATEGORY NE 'Gifts'
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
In the report, three predicted values of EXPAVE are calculated within each value of CATEGORY. For values outside the range of the data, new PERIOD values are generated by adding the interval value (1) to the prior PERIOD value.

Each average (EXPAVE value) is computed using DOLLARS values where they exist. The calculation of the moving average begins in the following way:

- The first EXPAVE value (801,123.0) is the same as the first DOLLARS value.
- The second EXPAVE value (741,731.5) is calculated as follows. Note that because of rounding and the number of decimal places used, the value derived in this sample calculation varies slightly from the one displayed in the report output:

 \[n=3 \text{ (number used to calculate weights)} \]

 \[k = \frac{2}{(1+n)} = \frac{2}{4} = 0.5 \]

 \[\text{EXPAVE} = (\text{EXPAVE}*(1-k)) + (\text{new}\text{-DOLLARS}*k) = (801123*0.5) + (682340*0.50) = 400561.5 + 341170 = 741731.5 \]
The third EXPAVE value (753,404.8) is calculated as follows:

\[
\text{EXPAVE} = (\text{EXPAVE} \times (1-k)) + (\text{new-DOLLARS} \times k) = (741731.5 \times 0.5) + (765078 \times 0.50) = 370865.75 + 382539 = 753404.75
\]

FORECAST.DOUBLEXP: Using Double Exponential Smoothing

Double exponential smoothing produces an exponential moving average that takes into account the tendency of data to either increase or decrease over time without repeating. This is accomplished by using two equations with two constants.

The first equation accounts for the current time period and is a weighted average of the current data value and the prior average, with an added component \(b \) that represents the trend for the previous period. The weight constant is \(k \):

\[
\text{DOUBLEXP}(t) = k \times \text{datavalue}(t) + (1-k) \times ((\text{DOUBLEXP}(t-1) + b(t-1))
\]

The second equation is the calculated trend value, and is a weighted average of the difference between the current and previous average and the trend for the previous time period. \(b(t) \) represents the average trend. The weight constant is \(g \):

\[
b(t) = g \times (\text{DOUBLEXP}(t) - \text{DOUBLEXP}(t-1)) + (1 - g) \times b(t-1))
\]

These two equations are solved to derive the smoothed average. The first smoothed average is set to the first data value. The first trend component is set to zero. For choosing the two constants, the best results are usually obtained by minimizing the mean-squared error (MSE) between the data values and the calculated averages. You may need to use nonlinear optimization techniques to find the optimal constants.

The equation used for forecasting beyond the data points with double exponential smoothing is

\[
\text{forecast}(t+m) = \text{DOUBLEXP}(t) + m \times b(t)
\]

where:

\(m \)

Is the number of time periods ahead for the forecast.

Syntax:

How to Calculate a Double Exponential Smoothing Column

FORECAST.DOUBLEXP(display, infield, interval, npredict, npoint1, npoint2)
where:

display
Keyword

Specifies which values to display for rows of output that represent existing data. Valid values are:

- INPUT_FIELD. This displays the original field values for rows that represent existing data.
- MODEL_DATA. This displays the calculated values for rows that represent existing data.

Note: You can show both types of output for any field by creating two independent COMPUTE commands in the same request, each with a different display option.

infield

Is any numeric field. It can be the same field as the result field, or a different field. It cannot be a date-time field or a numeric field with date display options.

interval

Is the increment to add to each sort field value (after the last data point) to create the next value. This must be a positive integer. To sort in descending order, use the BY HIGHEST phrase. The result of adding this number to the sort field values is converted to the same format as the sort field.

For date fields, the minimal component in the format determines how the number is interpreted. For example, if the format is YMD, MDY, or DMY, an interval value of 2 is interpreted as meaning two days. If the format is YM, the 2 is interpreted as meaning two months.

npredict

Is the number of predictions for FORECAST to calculate. It must be an integer greater than or equal to zero. Zero indicates that you do not want predictions, and is only supported with a non-recursive FORECAST.

npoint1

For DOUBLEXP, this number is used to calculate the weights for each component in the average. This value must be a positive whole number. The weight, k, is calculated by the following formula:

\[k = \frac{2}{1 + npoint1} \]

npoint2

For DOUBLEXP, this positive whole number is used to calculate the weights for each term in the trend. The weight, g, is calculated by the following formula:
\[g = \frac{2}{1 + n \text{point}_2} \]

Example: Calculating a Double Exponential Smoothing Column

The following sums the TRANSTOT field of the VIDEOTRK data source by TRANSDATE, and calculates a single exponential and double exponential moving average. The report columns show the calculated values for existing data points.

TABLE FILE VIDEOTRK
SUM TRANSTOT
COMPUTE EXP/D15.1 = FORECAST_EXPAVE(MODEL_DATA, TRANSTOT, 1, 0, 3);
DOUBLEXP/D15.1 = FORECAST_DOUBLEXP(MODEL_DATA, TRANSTOT, 1, 0, 3, 3);
BY TRANSDATE
WHERE TRANSDATE NE '19910617'
ON TABLE SET STYLE *
GRID=OFF,$
END

The output is shown in the following image:

<table>
<thead>
<tr>
<th>TRANSDATE</th>
<th>TRANSTOT</th>
<th>EXP</th>
<th>DOUBLEXP</th>
</tr>
</thead>
<tbody>
<tr>
<td>91/06/18</td>
<td>21.25</td>
<td>21.3</td>
<td>21.3</td>
</tr>
<tr>
<td>91/06/19</td>
<td>38.17</td>
<td>29.7</td>
<td>35.0</td>
</tr>
<tr>
<td>91/06/20</td>
<td>14.23</td>
<td>22.0</td>
<td>30.7</td>
</tr>
<tr>
<td>91/06/21</td>
<td>44.72</td>
<td>33.3</td>
<td>39.7</td>
</tr>
<tr>
<td>91/06/24</td>
<td>126.28</td>
<td>79.8</td>
<td>86.2</td>
</tr>
<tr>
<td>91/06/25</td>
<td>47.74</td>
<td>63.8</td>
<td>80.2</td>
</tr>
<tr>
<td>91/06/26</td>
<td>40.97</td>
<td>52.4</td>
<td>65.7</td>
</tr>
<tr>
<td>91/06/27</td>
<td>60.24</td>
<td>56.3</td>
<td>61.9</td>
</tr>
<tr>
<td>91/06/28</td>
<td>31.00</td>
<td>43.7</td>
<td>45.0</td>
</tr>
</tbody>
</table>

FORECAST_SEASONAL: Using Triple Exponential Smoothing

Triple exponential smoothing produces an exponential moving average that takes into account the tendency of data to repeat itself in intervals over time. For example, sales data that is growing and in which 25% of sales always occur during December contains both trend and seasonality. Triple exponential smoothing takes both the trend and seasonality into account by using three equations with three constants.
For triple exponential smoothing, you need to know the number of data points in each time period (designated as \(L \) in the following equations). To account for the seasonality, a seasonal index is calculated. The data is divided by the prior season index and then used in calculating the smoothed average.

- The first equation accounts for the current time period, and is a weighted average of the current data value divided by the seasonal factor and the prior average adjusted for the trend for the previous period. The weight constant is \(k \):

 \[
 \text{SEASONAL}(t) = k \times (\text{data value}(t)/I(t-L)) + (1-k) \times (\text{SEASONAL}(t-1) + \text{b}(t-1))
 \]

- The second equation is the calculated trend value, and is a weighted average of the difference between the current and previous average and the trend for the previous time period. \(b(t) \) represents the average trend. The weight constant is \(g \):

 \[
 b(t) = g \times (\text{SEASONAL}(t) - \text{SEASONAL}(t-1)) + (1-g) \times (b(t-1))
 \]

- The third equation is the calculated seasonal index, and is a weighted average of the current data value divided by the current average and the seasonal index for the previous season. \(I(t) \) represents the average seasonal coefficient. The weight constant is \(p \):

 \[
 I(t) = p \times (\text{data value}(t)/\text{SEASONAL}(t)) + (1 - p) \times I(t-L)
 \]

These equations are solved to derive the triple smoothed average. The first smoothed average is set to the first data value. Initial values for the seasonality factors are calculated based on the maximum number of full periods of data in the data source, while the initial trend is calculated based on two periods of data. These values are calculated with the following steps:

1. The initial trend factor is calculated by the following formula:

 \[
 b(0) = (1/L)\ ((y(L+1)-y(1))/L + (y(L+2)-y(2))/L + ... + (y(2L) - y(L))/L)
 \]

2. The calculation of the initial seasonality factor is based on the average of the data values within each period, \(A(j) \) (\(1 \leq j \leq N \)):

 \[
 A(j) = (y((j-1)L+1) + y((j-1)L+2) + ... + y(jL)) / L
 \]

3. Then, the initial periodicity factor is given by the following formula, where \(N \) is the number of full periods available in the data, \(L \) is the number of points per period and \(n \) is a point within the period (\(1 \leq n \leq L \)):

 \[
 I(n) = (y(n)/A(1) + y(L+n)/A(2) + ... + y((N-1)L+n)/A(N)) / N
 \]
The three constants must be chosen carefully. The best results are usually obtained by choosing the constants to minimize the mean-squared error (MSE) between the data values and the calculated averages. Varying the values of npoint1 and npoint2 affect the results, and some values may produce a better approximation. To search for a better approximation, you may want to find values that minimize the MSE.

The equation used to forecast beyond the last data point with triple exponential smoothing is:

\[\text{forecast}(t+m) = \frac{(\text{SEASONAL}(t) + m \times b(t))}{I(t-L+\text{MOD}(m/L))} \]

where:

\(m \)

is the number of periods ahead for the forecast.

Syntax:

How to Calculate a Triple Exponential Smoothing Column

\[
\text{FORECAST_SEASONAL(display, infield, interval, npredict, nperiod, npoint1, npoint2, npoint3)}
\]

where:

display

Keyword

Specifies which values to display for rows of output that represent existing data. Valid values are:

- **INPUT_FIELD.** This displays the original field values for rows that represent existing data.

- **MODEL_DATA.** This displays the calculated values for rows that represent existing data.

Note: You can show both types of output for any field by creating two independent COMPUTE commands in the same request, each with a different display option.

infield

Is any numeric field. It can be the same field as the result field, or a different field. It cannot be a date-time field or a numeric field with date display options.

interval

Is the increment to add to each sort field value (after the last data point) to create the next value. This must be a positive integer. To sort in descending order, use the BY HIGHEST phrase. The result of adding this number to the sort field values is converted to the same format as the sort field.
For date fields, the minimal component in the format determines how the number is interpreted. For example, if the format is YMD, MDY, or DMY, an interval value of 2 is interpreted as meaning two days. If the format is YM, the 2 is interpreted as meaning two months.

\textit{npredict}

Is the number of predictions for FORECAST to calculate. It must be an integer greater than or equal to zero. Zero indicates that you do not want predictions, and is only supported with a non-recursive FORECAST. For the SEASONAL method, npredict is the number of \textit{periods} to calculate. The number of \textit{points} generated is:

\[n \text{period} \times n \text{predict}\]

\textit{nperiod}

For the SEASONAL method, is a positive whole number that specifies the number of data points in a period.

\textit{npoint1}

For SEASONAL, this number is used to calculate the weights for each component in the average. This value must be a positive whole number. The weight, \(k \), is calculated by the following formula:

\[k = \frac{2}{1+n \text{point1}} \]

\textit{npoint2}

For SEASONAL, this positive whole number is used to calculate the weights for each term in the trend. The weight, \(g \), is calculated by the following formula:

\[g = \frac{2}{1+n \text{point2}} \]

\textit{npoint3}

For SEASONAL, this positive whole number is used to calculate the weights for each term in the seasonal adjustment. The weight, \(p \), is calculated by the following formula:

\[p = \frac{2}{1+n \text{point3}} \]
Example: Calculating a Triple Exponential Smoothing Column

In the following, the data has seasonality but no trend. Therefore, \(npoint2 \) is set high (1000) to make the trend factor negligible in the calculation:

```
TABLE FILE VIDEOTRK
SUM TRANSTOT
COMPUTE SEASONAL/D10.1 = FORECAST_SEASONAL(MODEL_DATA,TRANSTOT,
1,3,3,3,1000,1);
BY TRANSDATE
WHERE TRANSDATE NE '19910617'
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

In the output, \(npredict \) is 3. Therefore, three periods (nine points, \(nperiod \times npredict \)) are generated.

<table>
<thead>
<tr>
<th>TRANSDATE</th>
<th>TRANSTOT</th>
<th>SEASONAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>91/06/18</td>
<td>21.25</td>
<td>21.3</td>
</tr>
<tr>
<td>91/06/19</td>
<td>38.17</td>
<td>31.0</td>
</tr>
<tr>
<td>91/06/20</td>
<td>14.23</td>
<td>34.6</td>
</tr>
<tr>
<td>91/06/21</td>
<td>44.72</td>
<td>53.2</td>
</tr>
<tr>
<td>91/06/24</td>
<td>126.28</td>
<td>75.3</td>
</tr>
<tr>
<td>91/06/25</td>
<td>47.74</td>
<td>82.7</td>
</tr>
<tr>
<td>91/06/26</td>
<td>40.97</td>
<td>73.7</td>
</tr>
<tr>
<td>91/06/27</td>
<td>60.24</td>
<td>62.9</td>
</tr>
<tr>
<td>91/06/28</td>
<td>31.00</td>
<td>66.3</td>
</tr>
<tr>
<td>91/06/29</td>
<td></td>
<td>45.7</td>
</tr>
<tr>
<td>91/06/30</td>
<td></td>
<td>94.1</td>
</tr>
<tr>
<td>91/07/01</td>
<td></td>
<td>53.4</td>
</tr>
<tr>
<td>91/07/02</td>
<td></td>
<td>72.3</td>
</tr>
<tr>
<td>91/07/03</td>
<td></td>
<td>140.0</td>
</tr>
<tr>
<td>91/07/04</td>
<td></td>
<td>75.8</td>
</tr>
<tr>
<td>91/07/05</td>
<td></td>
<td>98.9</td>
</tr>
<tr>
<td>91/07/06</td>
<td></td>
<td>185.8</td>
</tr>
<tr>
<td>91/07/07</td>
<td></td>
<td>98.2</td>
</tr>
</tbody>
</table>
The linear regression equation estimates values by assuming that the dependent variable (the new calculated values) and the independent variable (the sort field values) are related by a function that represents a straight line:

\[y = mx + b \]

where:

\(y \)
Is the dependent variable.

\(x \)
Is the independent variable.

\(m \)
Is the slope of the line.

\(b \)
Is the y-intercept.

FORECAST_LINEAR uses a technique called Ordinary Least Squares to calculate values for \(m \) and \(b \) that minimize the sum of the squared differences between the data and the resulting line.

The following formulas show how \(m \) and \(b \) are calculated.

\[
m = \frac{(\sum xy - (\sum x \cdot \sum y)/n)}{(\sum x^2 - (\sum x)^2/n)}
\]

\[
b = (\sum y)/n - (m \cdot (\sum x)/n)
\]

where:

\(n \)
Is the number of data points.

\(y \)
Is the data values (dependent variables).

\(x \)
Is the sort field values (independent variables).

Trend values, as well as predicted values, are calculated using the regression line equation.
Syntax:

How to Calculate a Linear Regression Column

```
FORECAST_LINEAR(display, infield, interval, npredict)
```

where:

- **display**
 - Keyword
 - Specifies which values to display for rows of output that represent existing data. Valid values are:
 - INPUT_FIELD. This displays the original field values for rows that represent existing data.
 - MODEL_DATA. This displays the calculated values for rows that represent existing data.

 Note: You can show both types of output for any field by creating two independent COMPUTE commands in the same request, each with a different display option.

- **infield**
 - Is any numeric field. It can be the same field as the result field, or a different field. It cannot be a date-time field or a numeric field with date display options.

- **interval**
 - Is the increment to add to each sort field value (after the last data point) to create the next value. This must be a positive integer. To sort in descending order, use the BY HIGHEST phrase. The result of adding this number to the sort field values is converted to the same format as the sort field.

 For date fields, the minimal component in the format determines how the number is interpreted. For example, if the format is YMD, MDY, or DMY, an interval value of 2 is interpreted as meaning two days. If the format is YM, the 2 is interpreted as meaning two months.

- **npredict**
 - Is the number of predictions for FORECAST to calculate. It must be an integer greater than or equal to zero. Zero indicates that you do not want predictions, and is only supported with a non-recursive FORECAST.
Example: Calculating a New Linear Regression Field

The following request calculates a regression line using the VIDEOTRK data source of QUANTITY by TRANSDATE. The interval is one day, and three predicted values are calculated.

```
TABLE FILE VIDEOTRK
SUM QUANTITY
COMPUTE FORTOT=FORECAST_LINEAR(MODEL_DATA,QUANTITY,1,3);
BY TRANSDATE
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

The output is shown in the following image:

<table>
<thead>
<tr>
<th>TRANSDATE</th>
<th>QUANTITY</th>
<th>FORTOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>06/17/91</td>
<td>12</td>
<td>6.63</td>
</tr>
<tr>
<td>06/18/91</td>
<td>2</td>
<td>6.57</td>
</tr>
<tr>
<td>06/19/91</td>
<td>5</td>
<td>6.51</td>
</tr>
<tr>
<td>06/20/91</td>
<td>3</td>
<td>6.45</td>
</tr>
<tr>
<td>06/21/91</td>
<td>7</td>
<td>6.39</td>
</tr>
<tr>
<td>06/24/91</td>
<td>12</td>
<td>6.21</td>
</tr>
<tr>
<td>06/25/91</td>
<td>8</td>
<td>6.15</td>
</tr>
<tr>
<td>06/26/91</td>
<td>2</td>
<td>6.09</td>
</tr>
<tr>
<td>06/27/91</td>
<td>9</td>
<td>6.03</td>
</tr>
<tr>
<td>06/28/91</td>
<td>3</td>
<td>5.97</td>
</tr>
<tr>
<td>06/29/91</td>
<td></td>
<td>5.91</td>
</tr>
<tr>
<td>06/30/91</td>
<td></td>
<td>5.85</td>
</tr>
<tr>
<td>07/01/91</td>
<td></td>
<td>5.79</td>
</tr>
</tbody>
</table>

Note:

- Three predicted values of FORTOT are calculated. For values outside the range of the data, new TRANSDATE values are generated by adding the interval value (1) to the prior TRANSDATE value.
- There are no QUANTITY values for the generated FORTOT values.
- Each FORTOT value is computed using a regression line, calculated using all of the actual data values for QUANTITY.
TRANSDATE is the independent variable (x) and QUANTITY is the dependent variable (y). The equation is used to calculate QUANTITY FORECAST trend and predicted values.

The following version of the request charts the data values and the regression line.

```plaintext
GRAPH FILE VIDEOTRK
SUM QUANTITY
COMPUTE FORTOT=FORECAST_LINEAR(MODEL_DATA,QUANTITY,1,3);
BY TRANSDATE
ON GRAPH PC HOLD FORMAT JSCHART
ON GRAPH SET LOOKGRAPH VLINE
END
```

The output is shown in the following image.

![Graph showing QUANTITY and FORTOT](image)

PARTITION_AGGR: Creating Rolling Calculations

Using the PARTITION_AGGR function, you can generate rolling calculations based on a block of rows from the internal matrix of a TABLE request. In order to determine the limits of the rolling calculations, you specify a partition of the data based on either a sort field or the entire TABLE. Within either type of break, you can start calculating from the beginning of the break or a number of rows prior to or subsequent to the current row. You can stop the rolling calculation at the current row, a row past the start point, or the end of the partition.
By default, the field values used in the calculations are the summed values of a measure in the request. Certain prefix operators can be used to add a column to the internal matrix and use that column in the rolling calculations. The rolling calculation can be SUM, AVE, CNT, MIN, MAX, FST, or LST.

Syntax:

How to Generate Rolling Calculations Using PARTITION_AGGR

PARTITION_AGGR([prefix.]measure, reset_key, lower, upper, operation)

where:

- **prefix.** Defines an aggregation operator to apply to the measure before using it in the rolling calculation. Valid operators are:
 - **SUM.** which calculates the sum of the measure field values. SUM is the default operator.
 - **CNT.** which calculates a count of the measure field values.
 - **AVE.** which calculates the average of the measure field values.
 - **MIN.** which calculates the minimum of the measure field values.
 - **MAX.** which calculates the maximum of the measure field values.
 - **FST.** which retrieves the first value of the measure field.
 - **LST.** which retrieves the last value of the measure field.
 - **STDP.** which calculates the population standard deviation.
 - **STDS.** which calculates the sample standard deviation.

Note: The operators PCT., RPCT., TOT., MDN., and DST. are not supported. COMPUTEs that reference those unsupported operators are also not supported.

- **measure**
 Is the measure field to be aggregated. It can be a real field in the request or a calculated value generated with the COMPUTE command, as long as the COMPUTE does not reference an unsupported prefix operator.

- **reset_key**
 Identifies the point at which the calculation restarts. Valid values are:
 - The name of a sort field in the request.
PRESET, which uses the value of the PARTITION_ON parameter, as described in How to Specify the Partition Size for Simplified Statistical Functions on page 591.

TABLE, which indicates that there is no break on a sort field.

The sort field may use BY HIGHEST to indicate a HIGH-TO-LOW sort. ACROSS COLUMNS AND is supported. BY ROWS OVER and FOR are not supported.

lower

Identifies the starting point for the rolling calculation. Valid values are:

- **n, -n**, which starts the calculation \(n \) rows forward or back from the current row.
- **B**, which starts the calculation at the beginning of the current sort break (the first line with the same sort field value as the current line).

upper

Identifies the ending point of the rolling calculation. The lower row value must precede upper row value.

Valid values are:

- **C**, which ends the rolling calculation at the current row in the internal matrix.
- **n, -n**, which ends the calculation \(n \) rows forward or back from the current row.
- **E**, which ends the rolling calculation at the end of the sort break (the last line with the same sort value as the current row.)

Note: The values used in the calculations depend on the sort sequence (ascending or descending) specified in the request. Be aware that displaying a date or time dimension in descending order may produce different results than those you may expect.

operation

Specifies the rolling calculation used on the values in the internal matrix. Supported operations are:

- **SUM**, which calculates a rolling sum.
- **AVE**, which calculates a rolling average.
- **CNT**, which counts the rows in the partition.
- **MEDIAN**.
- **MIN**, which returns the minimum value in the partition.
- **MAX**, which returns the maximum value in the partition.
MEDIAN, which returns the median value in the partition.

MODE, which returns the mode value in the partition.

FST, which returns the first value in the partition.

LST, which returns the last value in the partition.

STDP, which returns the population standard deviation in the partition. Requires using the verb PRINT to avoid duplicate aggregation.

STDS, which returns the sample standard deviation in the partition. Requires using the verb PRINT to avoid duplicate aggregation.

The calculation is performed prior to any WHERE TOTAL tests, but after any WHERE_GROUPED tests.

Example: Calculating a Rolling Average

The following request calculates a rolling average of the current line and the previous line in the internal matrix, within the quarter.

```
TABLE FILE WF_RETAIL_LITE
SUM COGS_US
COMPUTE AVE1/D12.2M = PARTITION_AGGR(COGS_US, TIME_QTR, -1, C, AVE);
BY BUSINESS_REGION
BY TIME_QTR
BY TIME_MTH
WHERE BUSINESS_REGION EQ 'North America' OR 'South America'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
The output is shown in the following image. Within each quarter, the first average is just the value from Q1, as going back 1 would cross a boundary. The second average is calculated using the first two rows within that quarter, and the third average is calculated using rows 2 and 3 within the quarter.

<table>
<thead>
<tr>
<th>Customer Region</th>
<th>Sale Quarter</th>
<th>Sale Month</th>
<th>Cost of Goods</th>
<th>AVE1</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>1</td>
<td>1</td>
<td>$26,361,956.00</td>
<td>$26,361,956.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>$24,348,729.00</td>
<td>$25,355,342.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>$26,118,420.00</td>
<td>$25,233,574.50</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>$23,776,352.00</td>
<td>$23,776,352.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>$24,717,633.00</td>
<td>$24,246,992.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>$24,284,736.00</td>
<td>$24,501,184.50</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7</td>
<td>$25,317,633.00</td>
<td>$25,317,633.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>$25,916,286.00</td>
<td>$25,616,959.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>$24,968,297.00</td>
<td>$25,442,291.50</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10</td>
<td>$30,717,478.00</td>
<td>$30,717,478.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>$30,055,782.00</td>
<td>$30,386,630.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>$32,225,143.00</td>
<td>$31,140,462.50</td>
</tr>
<tr>
<td>South America</td>
<td>1</td>
<td>1</td>
<td>$3,216,999.00</td>
<td>$3,216,999.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>$2,745,677.00</td>
<td>$2,981,338.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>$3,163,526.00</td>
<td>$2,954,601.50</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>$2,852,809.00</td>
<td>$2,852,809.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>$2,952,020.00</td>
<td>$2,902,414.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>$2,918,017.00</td>
<td>$2,935,018.50</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7</td>
<td>$2,961,406.00</td>
<td>$2,961,406.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>$3,077,824.00</td>
<td>$3,019,615.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>$2,895,280.00</td>
<td>$2,986,552.00</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10</td>
<td>$3,642,505.00</td>
<td>$3,642,505.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>$3,482,327.00</td>
<td>$3,562,416.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>$3,517,651.00</td>
<td>$3,499,989.00</td>
</tr>
</tbody>
</table>

The following changes the rolling average to start from the beginning of the sort break.

`COMPUTE AVE1/D12.2M = PARTITION_AGGR(COGS_US, TIME_QTR ,B, C, AVE);`
The output is shown in the following image. Within each quarter, the first average is just the value from Q1, as going back would cross a boundary. The second average is calculated using the first two rows within that quarter, and the third average is calculated using rows 1 through 3 within the quarter.

<table>
<thead>
<tr>
<th>Customer Business Region</th>
<th>Sale Quarter</th>
<th>Sale Month</th>
<th>Cost of Goods</th>
<th>AVE1</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>1</td>
<td>1</td>
<td>$26,361,956.00</td>
<td>$26,361,956.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>$24,348,729.00</td>
<td>$25,355,342.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>$26,118,420.00</td>
<td>$25,609,701.67</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>$23,776,352.00</td>
<td>$23,776,352.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>$24,717,633.00</td>
<td>$24,246,992.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>$24,284,736.00</td>
<td>$24,259,573.67</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7</td>
<td>$25,317,633.00</td>
<td>$25,317,633.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>$25,916,286.00</td>
<td>$25,616,959.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>$24,968,297.00</td>
<td>$25,400,738.67</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10</td>
<td>$30,717,478.00</td>
<td>$30,717,478.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>$30,055,782.00</td>
<td>$30,386,630.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>$32,225,143.00</td>
<td>$30,999,467.67</td>
</tr>
<tr>
<td>South America</td>
<td>1</td>
<td>1</td>
<td>$3,216,999.00</td>
<td>$3,216,999.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>$2,745,677.00</td>
<td>$2,981,338.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>$3,163,526.00</td>
<td>$3,042,067.33</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>$2,852,809.00</td>
<td>$2,852,809.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>$2,952,020.00</td>
<td>$2,902,414.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>$2,918,017.00</td>
<td>$2,907,615.33</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7</td>
<td>$2,961,406.00</td>
<td>$2,961,406.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>$3,077,824.00</td>
<td>$3,019,615.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>$2,895,280.00</td>
<td>$2,978,170.00</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10</td>
<td>$3,642,505.00</td>
<td>$3,642,505.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>$3,482,327.00</td>
<td>$3,562,416.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>$3,517,651.00</td>
<td>$3,547,494.33</td>
</tr>
</tbody>
</table>

The following command uses the partition boundary TABLE.

```plaintext
COMPUTE AVE1/D12.2M = PARTITION_AGGR(COGS_US, TABLE, B, C, AVE);
```
The output is shown in the following image. The rolling average keeps adding the next row to the average with no sort field break.

<table>
<thead>
<tr>
<th>Customer Region</th>
<th>Sale Quarter</th>
<th>Sale Month</th>
<th>Cost of Goods</th>
<th>AVE1</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>1</td>
<td>1</td>
<td>$26,361,956.00</td>
<td>$26,361,956.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>$24,348,729.00</td>
<td>$25,355,342.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>$26,118,420.00</td>
<td>$25,609,701.67</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>$23,776,352.00</td>
<td>$25,151,364.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>$24,717,633.00</td>
<td>$25,064,618.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>$24,284,736.00</td>
<td>$24,934,637.67</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7</td>
<td>$25,317,633.00</td>
<td>$24,989,551.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>$25,916,286.00</td>
<td>$25,105,218.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>$24,968,297.00</td>
<td>$25,090,004.67</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10</td>
<td>$30,717,478.00</td>
<td>$25,652,752.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>$30,055,782.00</td>
<td>$26,053,027.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>$32,225,143.00</td>
<td>$26,567,370.42</td>
</tr>
<tr>
<td>South America</td>
<td>1</td>
<td>1</td>
<td>$3,216,999.00</td>
<td>$24,771,188.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>$2,745,677.00</td>
<td>$23,197,937.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>$3,163,526.00</td>
<td>$21,862,309.80</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>$2,852,809.00</td>
<td>$20,674,216.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>$2,952,020.00</td>
<td>$19,631,733.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>$2,918,017.00</td>
<td>$18,703,194.06</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7</td>
<td>$2,961,406.00</td>
<td>$17,874,678.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>$3,077,824.00</td>
<td>$17,134,836.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>$2,895,280.00</td>
<td>$16,456,762.05</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10</td>
<td>$3,642,505.00</td>
<td>$15,874,295.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>$3,482,327.00</td>
<td>$15,335,514.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>$3,517,651.00</td>
<td>$14,843,103.58</td>
</tr>
</tbody>
</table>

Reference: Usage Notes for PARTITION_AGGR

- Fields referenced in the PARTITION_AGGR parameters but not previously mentioned in the request will *not* be counted in column notation or propagated to HOLD files.

- Using the WITHIN phrase for a sum is the same as computing PARTITION_AGGR on the WITHIN sort field from B (beginning of sort break) to E (end of sort break) using SUM, as in the following example.
TABLE FILE WF_RETAIL_LITE
SUM COGS_US WITHIN TIME_QTR AS 'WITHIN Qtr'
COMPUTE PART_WITHIN_QTR/D12.2M = PARTITION_AGGR(COGS_US, TIME_QTR, B, E, SUM);
BY BUSINESS_REGION AS Region
BY TIME_QTR
BY TIME_MTH
WHERE BUSINESS_REGION EQ 'North America' OR 'South America'
ON TABLE SET PAGE NOPAGE
ON TABLE SET STYLE *
GRID=OFF, $
ENDSTYLE
END

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Region</th>
<th>Sale Quarter</th>
<th>Sale Month</th>
<th>WITHIN Qtr</th>
<th>PART_WITHIN QTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>1</td>
<td>1</td>
<td>$76,829,103.00</td>
<td>$76,829,105.00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>$76,829,105.00</td>
<td>$76,829,105.00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>$76,829,105.00</td>
<td>$76,829,105.00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>$72,778,721.00</td>
<td>$72,778,721.00</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>$72,778,721.00</td>
<td>$72,778,721.00</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>$72,778,721.00</td>
<td>$72,778,721.00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7</td>
<td>$76,202,216.00</td>
<td>$76,202,216.00</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>$76,202,216.00</td>
<td>$76,202,216.00</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>$76,202,216.00</td>
<td>$76,202,216.00</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10</td>
<td>$92,998,403.00</td>
<td>$92,998,403.00</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>11</td>
<td>$92,998,403.00</td>
<td>$92,998,403.00</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12</td>
<td>$92,998,403.00</td>
<td>$92,998,403.00</td>
</tr>
<tr>
<td>South America</td>
<td>1</td>
<td>1</td>
<td>$9,126,202.00</td>
<td>$9,126,202.00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>$9,126,202.00</td>
<td>$9,126,202.00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>$9,126,202.00</td>
<td>$9,126,202.00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>$8,722,846.00</td>
<td>$8,722,846.00</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>$8,722,846.00</td>
<td>$8,722,846.00</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>$8,722,846.00</td>
<td>$8,722,846.00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7</td>
<td>$8,934,510.00</td>
<td>$8,934,510.00</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>$8,934,510.00</td>
<td>$8,934,510.00</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>$8,934,510.00</td>
<td>$8,934,510.00</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10</td>
<td>$10,642,483.00</td>
<td>$10,642,483.00</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>11</td>
<td>$10,642,483.00</td>
<td>$10,642,483.00</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12</td>
<td>$10,642,483.00</td>
<td>$10,642,483.00</td>
</tr>
</tbody>
</table>
With other types of calculations, the results are not the same. For example, the following request calculates the average within quarter using the WITHIN phrase and the average within quarter using PARTITIONAgregar.

```
TABLE FILE WF_RETAIL_LITE
SUM COGS_US AS Cost
CNT.COGS_US AS Count AVE.COGS_US WITHIN TIME_QTR AS 'Ave Within'
COMPUTE PART_WITHIN_QTR/D12.2M = PARTITIONAgregar(COGS_US, TIME_QTR, B, E, AVE);
BY BUSINESS_REGION AS Region
BY TIME_QTR
ON TIME_QTR SUBTOTAL COGS_US CNT.COGS_US
BY TIME_MTH
WHERE BUSINESS_REGION EQ 'North America'
ON TABLE SET PAGE NOPAGE
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
The output is shown in the following image. The average using the WITHIN phrase divides the total cost for the quarter by the total count of instances for the quarter (for example, $76,829,105.00 \div 252850 = $303.85), while PARTITION_AGGR divides the total cost for the quarter by the number of report rows in the quarter (for example, $76,829,105.00 \div 3 = $25,609,701.67).

<table>
<thead>
<tr>
<th>Region</th>
<th>Quarter</th>
<th>Sale</th>
<th>Month</th>
<th>Cost</th>
<th>Count</th>
<th>Ave Within</th>
<th>PART_WITHIN_QTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>1</td>
<td>1</td>
<td>86369</td>
<td>$26,361,956.00</td>
<td>$303.85</td>
<td>$25,609,701.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>79791</td>
<td>$24,348,729.00</td>
<td>$303.85</td>
<td>$25,609,701.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>66099</td>
<td>$26,118,420.00</td>
<td>$303.85</td>
<td>$25,609,701.67</td>
<td></td>
</tr>
<tr>
<td>*TOTAL TIME_QTR 1</td>
<td></td>
<td></td>
<td></td>
<td>$76,829,105.00</td>
<td>252850</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>79093</td>
<td>$23,776,352.00</td>
<td>$303.40</td>
<td>$24,259,573.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>81317</td>
<td>$24,717,633.00</td>
<td>$303.40</td>
<td>$24,259,573.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>79469</td>
<td>$24,284,736.00</td>
<td>$303.40</td>
<td>$24,259,573.67</td>
<td></td>
</tr>
<tr>
<td>*TOTAL TIME_QTR 2</td>
<td></td>
<td></td>
<td></td>
<td>$72,778,721.00</td>
<td>239879</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7</td>
<td>82158</td>
<td>$25,317,633.00</td>
<td>$308.06</td>
<td>$25,400,738.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>83941</td>
<td>$25,916,286.00</td>
<td>$308.06</td>
<td>$25,400,738.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>81262</td>
<td>$24,968,297.00</td>
<td>$308.06</td>
<td>$25,400,738.67</td>
<td></td>
</tr>
<tr>
<td>*TOTAL TIME_QTR 3</td>
<td></td>
<td></td>
<td></td>
<td>$76,202,216.00</td>
<td>247361</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10</td>
<td>99572</td>
<td>$30,717,478.00</td>
<td>$309.47</td>
<td>$30,999,467.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>11</td>
<td>97042</td>
<td>$30,055,782.00</td>
<td>$309.47</td>
<td>$30,999,467.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12</td>
<td>103898</td>
<td>$32,325,143.00</td>
<td>$309.47</td>
<td>$30,999,467.67</td>
<td></td>
</tr>
<tr>
<td>*TOTAL TIME_QTR 4</td>
<td></td>
<td></td>
<td></td>
<td>$92,998,405.00</td>
<td>300512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>$318,808,445.00</td>
<td>1040602</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- If you use PARTITION_AGGR to perform operations for specific time periods using an offset, for example, an operation on the quarters for different years, you must make sure that every quarter is represented. If some quarters are missing for some years, the offset will not access the correct data. In this case, generate a HOLD file that has every quarter represented for every year (you can use BY QUARTER ROWS OVER 1 OVER 2 OVER 3 OVER 4) and use PARTITION_AGGR on the HOLD file.
PARTITION_REF: Using Prior or Subsequent Field Values in Calculations

Use of LAST in a calculation retrieves the LAST value of the specified field the last time this calculation was performed. In contrast, the PARTITION_REF function enables you to specify both how many rows back or forward to go in the output in order to retrieve a value, and a sort break within which the retrieval will be contained.

Syntax: How to Retrieve Prior or Subsequent Field Values for Use in a Calculation

PARTITION_REF([prefix.]field, reset_key, offset)

where:

prefix
Is optional. If used, it can be one of the following aggregation operators:

- AVE. Average
- MAX. Maximum
- MIN. Minimum
- CNT. Count
- SUM. Sum

field
Is the field whose value is to be retrieved.

reset_key
Identifies the point at which the retrieval break restarts. Valid values are:

- The name of a sort field in the request.
- PRESET, which uses the value of the PARTITION_ON parameter, as described in How to Specify the Partition Size for Simplified Statistical Functions on page 591.
- TABLE, which indicates that there is no break on a sort field.

The sort field may use BY HIGHEST to indicate a HIGH-TO-LOW sort. ACROSS COLUMNS AND is supported. BY ROWS OVER and FOR are not supported.

Note: The values used in the retrieval depend on the sort sequence (ascending or descending) specified in the request. Be aware that displaying a date or time dimension in descending order may produce different results than those you may expect.
offset

Is the integer number of records to go forward (for a positive offset) or backward (for a negative offset) to retrieve the value.

If the offset is prior to the partition boundary sort value, the return will be the default value for the field. The calculation is performed prior to any WHERE TOTAL tests, but after WHERE_GROUPED tests.

Example: Retrieving a Previous Record With PARTITION_REF

The following request retrieves the previous record within the sort field PRODUCTCATEGORY.

```
TABLE FILE WF_RETAIL_LITE
SUM DAYSDELAYED
COMPUTE NEWDAYS/I5=PARTITION_REF(DAYSDELAYED, PRODUCTCATEGORY, -1);
BY PRODUCTCATEGORY
BY PRODUCT_SUBCATEG
ON TABLE SET PAGE NOPAGE
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
The output is shown in the following image. The first value within each sort break is zero because there is no prior record to retrieve.

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Product Subcategory</th>
<th>Days Delayed</th>
<th>NEWDAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories</td>
<td>Charger</td>
<td>12,301</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Headphones</td>
<td>26,670</td>
<td>12301</td>
</tr>
<tr>
<td></td>
<td>Universal Remote Controls</td>
<td>20,832</td>
<td>26670</td>
</tr>
<tr>
<td>Camcorder</td>
<td>Handheld</td>
<td>29,464</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Professional</td>
<td>1,531</td>
<td>29446</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>22,248</td>
<td>1531</td>
</tr>
<tr>
<td>Computers</td>
<td>Smartphone</td>
<td>24,113</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tablet</td>
<td>21,293</td>
<td>24113</td>
</tr>
<tr>
<td>Media Player</td>
<td>Blu Ray</td>
<td>78,989</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>DVD Players</td>
<td>31</td>
<td>78989</td>
</tr>
<tr>
<td></td>
<td>Streaming</td>
<td>8,153</td>
<td>31</td>
</tr>
<tr>
<td>Stereo Systems</td>
<td>Home Theater Systems</td>
<td>47,214</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Receivers</td>
<td>17,999</td>
<td>47214</td>
</tr>
<tr>
<td></td>
<td>Speaker Kits</td>
<td>28,468</td>
<td>17999</td>
</tr>
<tr>
<td></td>
<td>iPod Docking Station</td>
<td>37,556</td>
<td>28468</td>
</tr>
<tr>
<td>Televisions</td>
<td>Flat Panel TV</td>
<td>10,941</td>
<td>0</td>
</tr>
<tr>
<td>Video Production</td>
<td>Video Editing</td>
<td>23,553</td>
<td>0</td>
</tr>
</tbody>
</table>

The following request retrieves the average cost of goods from two records prior to the current record within the PRODUCT_CATEGORY sort field.

```
TABLE FILE WF_RETAIL_LITE
SUM COGS_US AVE.COGS_US AS Average
COMPUTE PartitionAve/D12.2M=PARTITION_REF(AVE.COGS_US, PRODUCT_CATEGORY, -2);
BY PRODUCTCATEGORY
BY PRODUCT_SUBCATEG
ON TABLE SET PAGE NOPAGE
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
4. Simplified Analytic Functions

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Product Subcategory</th>
<th>Cost of Goods</th>
<th>Average</th>
<th>Partition Ave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories</td>
<td>Charger</td>
<td>$2,052,711.00</td>
<td>$27.48</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Headphones</td>
<td>$51,663,564.00</td>
<td>$319.05</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Universal Remote Controls</td>
<td>$36,037,623.00</td>
<td>$285.21</td>
<td>$27.48</td>
</tr>
<tr>
<td>Camcorder</td>
<td>Handheld</td>
<td>$20,576,916.00</td>
<td>$116.02</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Professional</td>
<td>$35,218,308.00</td>
<td>$3,897.56</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>$49,071,633.00</td>
<td>$359.54</td>
<td>$116.02</td>
</tr>
<tr>
<td>Computers</td>
<td>Smartphone</td>
<td>$44,035,774.00</td>
<td>$302.01</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Tablet</td>
<td>$25,771,890.00</td>
<td>$247.89</td>
<td>$0.00</td>
</tr>
<tr>
<td>Media Player</td>
<td>Blu Ray</td>
<td>$181,112,921.00</td>
<td>$376.11</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>DVD Players</td>
<td>$3,756,254.00</td>
<td>$281.45</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>DVD Players - Portable</td>
<td>$306,576.00</td>
<td>$77.01</td>
<td>$376.11</td>
</tr>
<tr>
<td></td>
<td>Streaming</td>
<td>$5,064,730.00</td>
<td>$104.99</td>
<td>$281.45</td>
</tr>
<tr>
<td>Stereo Systems</td>
<td>Boom Box</td>
<td>$840,373.00</td>
<td>$125.67</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Home Theater Systems</td>
<td>$56,428,589.00</td>
<td>$199.38</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Receivers</td>
<td>$40,329,668.00</td>
<td>$377.67</td>
<td>$125.67</td>
</tr>
<tr>
<td></td>
<td>Speaker Kits</td>
<td>$81,396,140.00</td>
<td>$471.02</td>
<td>$199.38</td>
</tr>
<tr>
<td></td>
<td>iPod Docking Station</td>
<td>$26,119,093.00</td>
<td>$118.66</td>
<td>$377.67</td>
</tr>
<tr>
<td>Televisions</td>
<td>CRT TV</td>
<td>$1,928,416.00</td>
<td>$590.09</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Flat Panel TV</td>
<td>$59,077,345.00</td>
<td>$900.19</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Portable TV</td>
<td>$545,348.00</td>
<td>$95.74</td>
<td>$390.09</td>
</tr>
<tr>
<td>Video Production</td>
<td>Video Editing</td>
<td>$40,105,657.00</td>
<td>$283.23</td>
<td>$0.00</td>
</tr>
</tbody>
</table>
Replacing the function call with the following syntax changes the partition boundary to TABLE.

\[
\text{COMPUTE PartitionAve/D12.2M=PARTITION_REF(AVE.COGS_US, TABLE, -2);}\
\]

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Product Subcategory</th>
<th>Cost of Goods</th>
<th>Average</th>
<th>PartitionAve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories</td>
<td>Charger</td>
<td>$2,032,711.00</td>
<td>$27.48</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Headphones</td>
<td>$1,683,364.00</td>
<td>$319.05</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Universal Remote Controls</td>
<td>$36,037,623.00</td>
<td>$285.21</td>
<td>$27.48</td>
</tr>
<tr>
<td>Camcorder</td>
<td>Handheld</td>
<td>$20,576,916.00</td>
<td>$116.02</td>
<td>$399.05</td>
</tr>
<tr>
<td></td>
<td>Professional</td>
<td>$35,218,308.00</td>
<td>$3,897.56</td>
<td>$285.21</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>$49,071,633.00</td>
<td>$359.54</td>
<td>$116.02</td>
</tr>
<tr>
<td>Computers</td>
<td>Smartphone</td>
<td>$44,035,774.00</td>
<td>$302.01</td>
<td>$3,897.56</td>
</tr>
<tr>
<td></td>
<td>Tablet</td>
<td>$25,771,890.00</td>
<td>$247.89</td>
<td>$359.54</td>
</tr>
<tr>
<td>Media Player</td>
<td>Blu Ray</td>
<td>$181,112,921.00</td>
<td>$376.11</td>
<td>$302.01</td>
</tr>
<tr>
<td></td>
<td>DVD Players</td>
<td>$3,756,254.00</td>
<td>$281.45</td>
<td>$247.89</td>
</tr>
<tr>
<td></td>
<td>DVD Players - Portable</td>
<td>$306,576.00</td>
<td>$77.01</td>
<td>$376.11</td>
</tr>
<tr>
<td></td>
<td>Streaming</td>
<td>$5,064,730.00</td>
<td>$104.99</td>
<td>$281.45</td>
</tr>
<tr>
<td>Stereo Systems</td>
<td>Boom Box</td>
<td>$840,373.00</td>
<td>$125.67</td>
<td>$77.01</td>
</tr>
<tr>
<td></td>
<td>Home Theater Systems</td>
<td>$36,428,589.00</td>
<td>$199.38</td>
<td>$104.99</td>
</tr>
<tr>
<td></td>
<td>Receivers</td>
<td>$40,329,668.00</td>
<td>$377.67</td>
<td>$125.67</td>
</tr>
<tr>
<td></td>
<td>Speaker Kits</td>
<td>$81,396,140.00</td>
<td>$471.02</td>
<td>$199.38</td>
</tr>
<tr>
<td></td>
<td>iPod Docking Station</td>
<td>$26,119,093.00</td>
<td>$118.66</td>
<td>$377.67</td>
</tr>
<tr>
<td>Televisions</td>
<td>CRT TV</td>
<td>$1,928,416.00</td>
<td>$590.09</td>
<td>$471.02</td>
</tr>
<tr>
<td></td>
<td>Flat Panel TV</td>
<td>$39,077,345.00</td>
<td>$900.19</td>
<td>$118.66</td>
</tr>
<tr>
<td></td>
<td>Portable TV</td>
<td>$345,348.00</td>
<td>$95.74</td>
<td>$590.09</td>
</tr>
<tr>
<td>Video Production</td>
<td>Video Editing</td>
<td>$40,105,657.00</td>
<td>$283.23</td>
<td>$900.19</td>
</tr>
</tbody>
</table>

Reference: Usage Notes for PARTITION_REF

- Fields referenced in the PARTITION_REF parameters but not previously mentioned in the request, will not be counted in column notation or propagated to HOLD files.

INCREASE: Calculating the Difference Between the Current and a Prior Value of a Field

Given an aggregated input field and a negative offset, INCREASE calculates the difference between the value in the current row of the report output and one or more prior rows, within a sort break or the entire table. The reset point for the calculation is determined by the value of the PARTITION_ON parameter described in *How to Specify the Partition Size for Simplified Statistical Functions* on page 591.
Note: The values used in the calculations depend on the sort sequence (ascending or descending) specified in the request. Be aware that displaying a date or time dimension in descending order may produce different results than those you may expect.

Syntax: How to Calculate the Difference Between the Current and a Prior Value of a Field

\[
\text{INCREASE}([\text{prefix.}] \text{field}, \text{offset})
\]

where:

\text{prefix}

Is one of the following optional aggregation operators to apply to the field before using it in the calculation:

- **SUM.** which calculates the sum of the field values. SUM is the default value.
- **CNT.** which calculates a count of the field values.
- **AVE.** which calculates the average of the field values.
- **MIN.** which calculates the minimum of the field values.
- **MAX.** which calculates the maximum of the field values.
- **FST.** which retrieves the first value of the field.
- **LST.** which retrieves the last value of the field.

\text{field}

Numeric

Is the field to be used in the calculation.

\text{offset}

Numeric

Is a negative number indicating the number of rows back from the current row to use for the calculation.
Example: Calculating the Increase Between the Current and a Prior Value of a Field

The following request uses the default value of SET PARTITION_ON (PENULTIMATE) to calculate the increase within the PRODUCT_CATEGORY sort field between the current row and the previous row.

```
SET PARTITION_ON=PENULTIMATE
TABLE FILE wf_retail_lite
SUM QUANTITY_SOLD
COMPUTE INC = INCREASE(QUANTITY_SOLD, -1);
BY PRODUCT_CATEGORY
BY PRODUCT_SUBCATEG
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF, $
ENDSTYLE
END
```
The output is shown in the following image. The first value for INC is the value in the Accessories category for Quantity Sold, as there is no prior value. The second value for INC is the difference between the values for Headphones and Charger, the third is the difference between Universal Remote Controls and Headphones. Then, the calculations start over for Camcorder, which is the reset point.

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Product Subcategory</th>
<th>Quantity Sold</th>
<th>INC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories</td>
<td>Charger</td>
<td>105,257</td>
<td>105,257.00</td>
</tr>
<tr>
<td></td>
<td>Headphones</td>
<td>228,349</td>
<td>123,092.00</td>
</tr>
<tr>
<td></td>
<td>Universal Remote Controls</td>
<td>178,061</td>
<td>-50,288.00</td>
</tr>
<tr>
<td>Camcorder</td>
<td>Handheld</td>
<td>250,167</td>
<td>250,167.00</td>
</tr>
<tr>
<td></td>
<td>Professional</td>
<td>12,872</td>
<td>-237,295.00</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>192,205</td>
<td>179,333.00</td>
</tr>
<tr>
<td>Computers</td>
<td>Smartphone</td>
<td>205,049</td>
<td>205,049.00</td>
</tr>
<tr>
<td></td>
<td>Tablet</td>
<td>146,728</td>
<td>-58,321.00</td>
</tr>
<tr>
<td>Media Player</td>
<td>Blu Ray</td>
<td>679,495</td>
<td>679,495.00</td>
</tr>
<tr>
<td></td>
<td>DVD Players</td>
<td>18,835</td>
<td>-660,660.00</td>
</tr>
<tr>
<td></td>
<td>DVD Players - Portable</td>
<td>5,694</td>
<td>-13,141.00</td>
</tr>
<tr>
<td></td>
<td>Streaming</td>
<td>67,910</td>
<td>62,216.00</td>
</tr>
<tr>
<td>Stereo Systems</td>
<td>Boom Box</td>
<td>9,370</td>
<td>9,370.00</td>
</tr>
<tr>
<td></td>
<td>Home Theater Systems</td>
<td>399,092</td>
<td>389,722.00</td>
</tr>
<tr>
<td></td>
<td>Receivers</td>
<td>150,568</td>
<td>-248,524.00</td>
</tr>
<tr>
<td></td>
<td>Speaker Kits</td>
<td>244,199</td>
<td>93,631.00</td>
</tr>
<tr>
<td></td>
<td>iPod Docking Station</td>
<td>311,103</td>
<td>66,904.00</td>
</tr>
<tr>
<td>Televisions</td>
<td>CRT TV</td>
<td>4,638</td>
<td>4,638.00</td>
</tr>
<tr>
<td></td>
<td>Flat Panel TV</td>
<td>92,501</td>
<td>87,863.00</td>
</tr>
<tr>
<td></td>
<td>Portable TV</td>
<td>8,049</td>
<td>-84,452.00</td>
</tr>
<tr>
<td>Video Production</td>
<td>Video Editing</td>
<td>199,749</td>
<td>199,749.00</td>
</tr>
</tbody>
</table>
PCT_INCREASE: Calculating the Percentage Difference Between the Current and a Prior Value of a Field

Given an aggregated input field and a negative offset, PCT_INCREASE calculates the percentage difference between the value in the current row of the report output and one or more prior rows, within a sort break or the entire table. The reset point for the calculation is determined by the value of the PARTITION_ON parameter described in *How to Specify the Partition Size for Simplified Statistical Functions* on page 591.

The percentage increase is calculated using the following formula:

\[
\frac{(\text{current_value} - \text{prior_value})}{\text{prior_value}}
\]

Note: The values used in the calculations depend on the sort sequence (ascending or descending) specified in the request. Be aware that displaying a date or time dimension in descending order may produce different results than those you may expect.

Syntax:

How to Calculate the Percentage Difference Between the Current and a Prior Value of a Field

\[
PCT_INCREASE([prefix.]\text{field}, \text{offset})
\]

where:

- **prefix**

 Is one of the following optional aggregation operators to apply to the field before using it in the calculation:

 - **SUM.** which calculates the sum of the field values. SUM is the default value.
 - **CNT.** which calculates a count of the field values.
 - **AVE.** which calculates the average of the field values.
 - **MIN.** which calculates the minimum of the field values.
 - **MAX.** which calculates the maximum of the field values.
 - **FST.** which retrieves the first value of the field.
 - **LST.** which retrieves the last value of the field.

- **field**

 Numeric

 The field to be used in the calculation.
offset
Numeric

Is a negative number indicating the number of rows back from the current row to use for the calculation.

Example: PCT_INCREASE: Calculating the Percent Increase Between the Current and a Prior Value of a Field

The following request uses the default value of SET PARTITION_ON (PENULTIMATE) to calculate the percent increase within the PRODUCTCATEGORY sort field between the current row and the previous row.

```
SET PARTITION_ON=PENULTIMATE
TABLE FILE wf_retail_lite
SUM QUANTITY_SOLD
COMPUTE PCTINC/D8.2p = PCT_INCREASE(QUANTITY_SOLD, -1);
BY PRODUCTCATEGORY
BY PRODUCT_SUBCATEGORY
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
The output is shown in the following image. The first value for PCTINC is zero percent, as there is no prior value. The second value for PCTINC is the percent difference between the values for Headphones and Charger, the third is the percent difference between Universal Remote Controls and Headphones. Then, the calculations start over for Camcorder, which is the reset point.

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Product Subcategory</th>
<th>Quantity Sold</th>
<th>PCTINC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories</td>
<td>Charger</td>
<td>105,257</td>
<td>.00%</td>
</tr>
<tr>
<td></td>
<td>Headphones</td>
<td>228,349</td>
<td>116.94%</td>
</tr>
<tr>
<td></td>
<td>Universal Remote Controls</td>
<td>178,061</td>
<td>-22.02%</td>
</tr>
<tr>
<td>Camcorder</td>
<td>Handheld</td>
<td>250,167</td>
<td>.00%</td>
</tr>
<tr>
<td></td>
<td>Professional</td>
<td>12,872</td>
<td>-94.85%</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>192,205</td>
<td>1,393.20%</td>
</tr>
<tr>
<td>Computers</td>
<td>Smartphone</td>
<td>205,049</td>
<td>.00%</td>
</tr>
<tr>
<td></td>
<td>Tablet</td>
<td>146,728</td>
<td>-28.44%</td>
</tr>
<tr>
<td>Media Player</td>
<td>Blu Ray</td>
<td>679,495</td>
<td>.00%</td>
</tr>
<tr>
<td></td>
<td>DVD Players</td>
<td>18,835</td>
<td>-97.23%</td>
</tr>
<tr>
<td></td>
<td>DVD Players - Portable</td>
<td>5,694</td>
<td>-69.77%</td>
</tr>
<tr>
<td></td>
<td>Streaming</td>
<td>67,910</td>
<td>1,092.66%</td>
</tr>
<tr>
<td>Stereo Systems</td>
<td>Boom Box</td>
<td>9,370</td>
<td>.00%</td>
</tr>
<tr>
<td></td>
<td>Home Theater Systems</td>
<td>399,092</td>
<td>4,159.25%</td>
</tr>
<tr>
<td></td>
<td>Receivers</td>
<td>150,568</td>
<td>-62.27%</td>
</tr>
<tr>
<td></td>
<td>Speaker Kits</td>
<td>244,199</td>
<td>62.19%</td>
</tr>
<tr>
<td></td>
<td>iPod Docking Station</td>
<td>311,103</td>
<td>27.40%</td>
</tr>
<tr>
<td>Televisions</td>
<td>CRT TV</td>
<td>4,638</td>
<td>.00%</td>
</tr>
<tr>
<td></td>
<td>Flat Panel TV</td>
<td>92,501</td>
<td>1,894.42%</td>
</tr>
<tr>
<td></td>
<td>Portable TV</td>
<td>8,049</td>
<td>-91.30%</td>
</tr>
<tr>
<td>Video Production</td>
<td>Video Editing</td>
<td>199,749</td>
<td>.00%</td>
</tr>
</tbody>
</table>
PREVIOUS: Retrieving a Prior Value of a Field

Given an aggregated input field and a negative offset, PREVIOUS retrieves the value in a prior row, within a sort break or the entire table. The reset point for the calculation is determined by the value of the PARTITION_ON parameter described in How to Specify the Partition Size for Simplified Statistical Functions on page 591.

Note: The values used in the retrieval depend on the sort sequence (ascending or descending) specified in the request. Be aware that displaying a date or time dimension in descending order may produce different results than those you may expect.

Syntax: How to Retrieve a Prior Value of a Field

PREVIOUS([prefix.]field, offset)

where:

prefix
Is one of the following optional aggregation operators to apply to the field before using it in the calculation:

- **SUM.** which calculates the sum of the field values. SUM is the default value.
- **CNT.** which calculates a count of the field values.
- **AVE.** which calculates the average of the field values.
- **MIN.** which calculates the minimum of the field values.
- **MAX.** which calculates the maximum of the field values.
- **FST.** which retrieves the first value of the field.
- **LST.** which retrieves the last value of the field.

field
Numeric or an alphanumeric field that contains all numeric digits.

The field to be used in the calculation.

offset
Numeric

Is a negative number indicating the number of rows back from the current row to use for the retrieval.
Example: Retrieving a Prior Value of a Field

The following request sets the PARTITION_ON parameter to TABLE and retrieves the value of the QUANTITY_SOLD field two rows back from the current row.

```sql
SET PARTITION_ON=TABLE
TABLE FILE wf_retail_lite
SUM QUANTITY_SOLD
COMPUTE PREV = PREVIOUS(QUANTITY_SOLD, -2);
BY PRODUCT_CATEGORY
BY PRODUCT_SUBCATEG
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
The output is shown in the following image. The value of PREV in the first two rows is zero, as there are no prior rows for retrieval. From then on, each value of PREV is from the QUANTITY_SOLD value from two rows prior, with no reset points.

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Product Subcategory</th>
<th>Quantity Sold</th>
<th>PREV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories</td>
<td>Charger</td>
<td>105,257</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>Headphones</td>
<td>228,349</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>Universal Remote Controls</td>
<td>178,061</td>
<td>105,257.00</td>
</tr>
<tr>
<td>Camcorder</td>
<td>Handheld</td>
<td>250,167</td>
<td>228,349.00</td>
</tr>
<tr>
<td></td>
<td>Professional</td>
<td>12,872</td>
<td>178,061.00</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>192,205</td>
<td>250,167.00</td>
</tr>
<tr>
<td>Computers</td>
<td>Smartphone</td>
<td>205,049</td>
<td>12,872.00</td>
</tr>
<tr>
<td></td>
<td>Tablet</td>
<td>146,728</td>
<td>192,205.00</td>
</tr>
<tr>
<td>Media Player</td>
<td>Blu Ray</td>
<td>679,495</td>
<td>205,049.00</td>
</tr>
<tr>
<td></td>
<td>DVD Players</td>
<td>18,835</td>
<td>146,728.00</td>
</tr>
<tr>
<td></td>
<td>DVD Players - Portable</td>
<td>5,694</td>
<td>679,495.00</td>
</tr>
<tr>
<td></td>
<td>Streaming</td>
<td>67,910</td>
<td>18,835.00</td>
</tr>
<tr>
<td>Stereo Systems</td>
<td>Boom Box</td>
<td>9,370</td>
<td>5,694.00</td>
</tr>
<tr>
<td></td>
<td>Home Theater Systems</td>
<td>399,092</td>
<td>67,910.00</td>
</tr>
<tr>
<td></td>
<td>Receivers</td>
<td>150,568</td>
<td>9,370.00</td>
</tr>
<tr>
<td></td>
<td>Speaker Kits</td>
<td>244,199</td>
<td>399,092.00</td>
</tr>
<tr>
<td></td>
<td>iPod Docking Station</td>
<td>311,103</td>
<td>150,568.00</td>
</tr>
<tr>
<td>Televisions</td>
<td>CRT TV</td>
<td>4,638</td>
<td>244,199.00</td>
</tr>
<tr>
<td></td>
<td>Flat Panel TV</td>
<td>92,501</td>
<td>311,103.00</td>
</tr>
<tr>
<td></td>
<td>Portable TV</td>
<td>8,049</td>
<td>4,638.00</td>
</tr>
<tr>
<td>Video Production</td>
<td>Video Editing</td>
<td>199,749</td>
<td>92,501.00</td>
</tr>
</tbody>
</table>

RUNNING_AVE: Calculating an Average Over a Group of Rows

Given an aggregated input field and a negative offset, RUNNING_AVE calculates the average of the values between the current row of the report output and one or more prior rows, within a sort break or the entire table. The reset point for the calculation is determined by the sort field specified, the entire table, or the value of the PARTITION_ON parameter described in *How to Specify the Partition Size for Simplified Statistical Functions* on page 591.
Syntax:

How to Calculate Running Average Between the Current and a Prior Value of a Field

```plaintext
RUNNING_AVE(field, reset_key, lower)
```

where:

- **field**
 - Numeric
 - The field to be used in the calculation.

- **reset_key**
 - Identifies the point at which the running average restarts. Valid values are:
 - The name of a sort field in the request.
 - PRESET, which uses the value of the PARTITION_ON parameter, as described in *How to Specify the Partition Size for Simplified Statistical Functions* on page 591.
 - TABLE, which indicates that there is no break on a sort field.

- **lower**
 - Is the starting point in the partition for the running average. Valid values are:
 - A negative number, which identifies the offset from the current row.
 - B, which specifies the beginning of the sort group.

Note: The values used in the calculations depend on the sort sequence (ascending or descending) specified in the request. Be aware that displaying a date or time dimension in descending order may produce different results than those you may expect.

- **Example:**

 Calculating a Running Average

 The following request calculates a running average of QUANTITY_SOLD within the PRODUCT_CATEGORY sort field, always starting from the beginning of the sort break.

  ```plaintext
  TABLE FILE wf_retail_lite
  SUM QUANTITY_SOLD
  COMPUTE RAVE = RUNNING_AVE(QUANTITY_SOLD, PRODUCT_CATEGORY, B);
  BY PRODUCT_CATEGORY
  BY PRODUCT_SUBCATEG
  ON TABLE SET PAGE NOLEAD
  ON TABLE SET STYLE *
  GRID=OFF, $
  ENDSYLE
  END
  ```
The output is shown in the following image. The first value for RAVE is the value in the Accessories category for Quantity Sold, as there is no prior value. The second value for RAVE is the average of the values for Headphones and Charger, the third is the average of the values for Headphones, Charger, and Universal Remote Controls. Then, the calculations start over for Camcorder, which is the reset point.

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Product Subcategory</th>
<th>Quantity Sold</th>
<th>RAVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories</td>
<td>Charger</td>
<td>105,257</td>
<td>105,257.00</td>
</tr>
<tr>
<td></td>
<td>Headphones</td>
<td>228,349</td>
<td>166,803.00</td>
</tr>
<tr>
<td></td>
<td>Universal Remote Controls</td>
<td>178,061</td>
<td>170,555.00</td>
</tr>
<tr>
<td>Camcorder</td>
<td>Handheld</td>
<td>250,167</td>
<td>250,167.00</td>
</tr>
<tr>
<td></td>
<td>Professional</td>
<td>12,872</td>
<td>131,519.00</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>192,205</td>
<td>151,748.00</td>
</tr>
<tr>
<td>Computers</td>
<td>Smartphone</td>
<td>205,049</td>
<td>205,049.00</td>
</tr>
<tr>
<td></td>
<td>Tablet</td>
<td>146,728</td>
<td>175,888.00</td>
</tr>
<tr>
<td>Media Player</td>
<td>Blu Ray</td>
<td>679,495</td>
<td>679,495.00</td>
</tr>
<tr>
<td></td>
<td>DVD Players</td>
<td>18,835</td>
<td>349,165.00</td>
</tr>
<tr>
<td></td>
<td>DVD Players - Portable</td>
<td>5,694</td>
<td>234,674.00</td>
</tr>
<tr>
<td></td>
<td>Streaming</td>
<td>67,910</td>
<td>192,983.00</td>
</tr>
<tr>
<td>Stereo Systems</td>
<td>Boom Box</td>
<td>9,370</td>
<td>9,370.00</td>
</tr>
<tr>
<td></td>
<td>Home Theater Systems</td>
<td>399,092</td>
<td>204,231.00</td>
</tr>
<tr>
<td></td>
<td>Receivers</td>
<td>150,568</td>
<td>186,343.00</td>
</tr>
<tr>
<td></td>
<td>Speaker Kits</td>
<td>244,199</td>
<td>200,807.00</td>
</tr>
<tr>
<td></td>
<td>iPod Docking Station</td>
<td>311,103</td>
<td>222,866.00</td>
</tr>
<tr>
<td>Televisions</td>
<td>CRT TV</td>
<td>4,638</td>
<td>4,638.00</td>
</tr>
<tr>
<td></td>
<td>Flat Panel TV</td>
<td>92,501</td>
<td>48,569.00</td>
</tr>
<tr>
<td></td>
<td>Portable TV</td>
<td>8,049</td>
<td>35,062.00</td>
</tr>
<tr>
<td>Video Production</td>
<td>Video Editing</td>
<td>199,749</td>
<td>199,749.00</td>
</tr>
</tbody>
</table>
RUNNING_MAX: Calculating a Maximum Over a Group of Rows

Given an aggregated input field and an offset, RUNNING_MAX calculates the maximum of the values between the current row of the report output and one or more prior rows, within a sort break or the entire table. The reset point for the calculation is determined by the sort field specified, the entire table, or the value of the PARTITION_ON parameter described in How to Specify the Partition Size for Simplified Statistical Functions on page 591.

Syntax:

How to Calculate Running Maximum Between the Current and a Prior Value of a Field

\[\text{RUNNING_MAX}(\text{field}, \text{reset_key}, \text{lower}) \]

where:

- **field**
 Numeric or an alphanumeric field that contains all numeric digits.
 The field to be used in the calculation.

- **reset_key**
 Identifies the point at which the running maximum restarts. Valid values are:
 - The name of a sort field in the request.
 - PRESET, which uses the value of the PARTITION_ON parameter, as described in How to Specify the Partition Size for Simplified Statistical Functions on page 591.
 - TABLE, which indicates that there is no break on a sort field.

- **Note:** The values used in the calculations depend on the sort sequence (ascending or descending) specified in the request. Be aware that displaying a date or time dimension in descending order may produce different results than those you may expect.

- **lower**
 Is the starting point in the partition for the running maximum. Valid values are:
 - A negative number, which identifies the offset from the current row.
 - B, which specifies the beginning of the sort group.
Example: Calculating a Running Maximum

The following request calculates a running maximum for the rows from the beginning of the table to the current value of QUANTITY_SOLD, with no reset point.

```plaintext
TABLE FILE wf_retail_lite
SUM QUANTITY_SOLD
COMPUTE RMAX = RUNNING_MAX(QUANTITY_SOLD, TABLE, B);
BY PRODUCT_CATEGORY
BY PRODUCT_SUBCATEG
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
The output is shown in the following image. The first value for RMAX is the value in the Accessories category for Quantity Sold, as there is no prior value. The second value for RMAX is the value for Headphones, as that value is larger. The third value for RMAX is still the value for Headphones, as that value is larger than the Quantity Sold value in the third row. Since the maximum value in the table occurs for Blu Ray, that value is repeated on all future rows, as there is no reset point.

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Product Subcategory</th>
<th>Quantity Sold</th>
<th>RMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories</td>
<td>Charger</td>
<td>105,257</td>
<td>105,257.00</td>
</tr>
<tr>
<td></td>
<td>Headphones</td>
<td>228,349</td>
<td>228,349.00</td>
</tr>
<tr>
<td></td>
<td>Universal Remote Controls</td>
<td>178,061</td>
<td>228,349.00</td>
</tr>
<tr>
<td>Camcorder</td>
<td>Handheld</td>
<td>250,167</td>
<td>250,167.00</td>
</tr>
<tr>
<td></td>
<td>Professional</td>
<td>12,872</td>
<td>250,167.00</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>192,205</td>
<td>250,167.00</td>
</tr>
<tr>
<td>Computers</td>
<td>Smartphone</td>
<td>205,049</td>
<td>250,167.00</td>
</tr>
<tr>
<td></td>
<td>Tablet</td>
<td>146,728</td>
<td>250,167.00</td>
</tr>
<tr>
<td>Media Player</td>
<td>Blu Ray</td>
<td>679,495</td>
<td>679,495.00</td>
</tr>
<tr>
<td></td>
<td>DVD Players</td>
<td>18,835</td>
<td>679,495.00</td>
</tr>
<tr>
<td></td>
<td>DVD Players - Portable</td>
<td>5,694</td>
<td>679,495.00</td>
</tr>
<tr>
<td></td>
<td>Streaming</td>
<td>67,910</td>
<td>679,495.00</td>
</tr>
<tr>
<td>Stereo Systems</td>
<td>Boom Box</td>
<td>9,370</td>
<td>679,495.00</td>
</tr>
<tr>
<td></td>
<td>Home Theater Systems</td>
<td>399,092</td>
<td>679,495.00</td>
</tr>
<tr>
<td></td>
<td>Receivers</td>
<td>150,568</td>
<td>679,495.00</td>
</tr>
<tr>
<td></td>
<td>Speaker Kits</td>
<td>244,199</td>
<td>679,495.00</td>
</tr>
<tr>
<td></td>
<td>iPod Docking Station</td>
<td>311,103</td>
<td>679,495.00</td>
</tr>
<tr>
<td>Televisions</td>
<td>CRT TV</td>
<td>4,638</td>
<td>679,495.00</td>
</tr>
<tr>
<td></td>
<td>Flat Panel TV</td>
<td>92,501</td>
<td>679,495.00</td>
</tr>
<tr>
<td></td>
<td>Portable TV</td>
<td>8,049</td>
<td>679,495.00</td>
</tr>
<tr>
<td>Video Production</td>
<td>Video Editing</td>
<td>199,749</td>
<td>679,495.00</td>
</tr>
</tbody>
</table>
RUNNING_MIN: Calculating a Minimum Over a Group of Rows

Given an aggregated input field and an offset, RUNNING_MIN calculates the minimum of the values between the current row of the report output and one or more prior rows, within a sort break or the entire table. The reset point for the calculation is determined by the sort field specified, the entire table, or the value of the PARTITION_ON parameter described in How to Specify the Partition Size for Simplified Statistical Functions on page 591.

Syntax: How to Calculate Running Minimum Between the Current and a Prior Value of a Field

RUNNING_MIN(field, reset_key, lower)

where:

field
- Numeric or an alphanumerical field that contains all numeric digits.
 - The field to be used in the calculation.

reset_key
- Identifies the point at which the running minimum restarts. Valid values are:
 - The name of a sort field in the request.
 - PRESET, which uses the value of the PARTITION_ON parameter, as described in How to Specify the Partition Size for Simplified Statistical Functions on page 591.
 - TABLE, which indicates that there is no break on a sort field.

Note: The values used in the calculations depend on the sort sequence (ascending or descending) specified in the request. Be aware that displaying a date or time dimension in descending order may produce different results than those you may expect.

lower
- Is the starting point in the partition for the running minimum. Valid values are:
 - A negative number, which identifies the offset from the current row.
 - B, which specifies the beginning of the sort group.

Example: Calculating a Running Minimum

The following request calculates a running minimum of QUANTITY_SOLD within the PRODUCT_CATEGORY sort field (the sort break defined by SET PARTITION_ON = PENULTIMATE), always starting from the beginning of the sort break.
SET PARTITION ON=PENULTIMATE
TABLE FILE wf_retail_lite
SUM QUANTITY_SOLD
COMPUTE RMIN = \texttt{RUNNING_MIN(QUANTITY_SOLD,PRESET,B)};
BY PRODUCT_CATEGORY
BY PRODUCT_SUBCATEG
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
The output is shown in the following image. The first value for RMIN is the value in the Accessories category for Quantity Sold, as there is no prior value. The second value for RMIN is the value from the first row again (Charger), as that is smaller than the value in the second row. The third is the same again, as it is still the smallest. Then, the calculations start over for Camcorder, which is the reset point.

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Product Subcategory</th>
<th>Quantity Sold</th>
<th>RMIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories</td>
<td>Charger</td>
<td>105,257</td>
<td>105,257.00</td>
</tr>
<tr>
<td></td>
<td>Headphones</td>
<td>228,349</td>
<td>105,257.00</td>
</tr>
<tr>
<td></td>
<td>Universal Remote Controls</td>
<td>178,061</td>
<td>105,257.00</td>
</tr>
<tr>
<td>Camcorder</td>
<td>Handheld</td>
<td>250,167</td>
<td>250,167.00</td>
</tr>
<tr>
<td></td>
<td>Professional</td>
<td>12,872</td>
<td>12,872.00</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>192,205</td>
<td>12,872.00</td>
</tr>
<tr>
<td>Computers</td>
<td>Smartphone</td>
<td>205,049</td>
<td>205,049.00</td>
</tr>
<tr>
<td></td>
<td>Tablet</td>
<td>146,728</td>
<td>146,728.00</td>
</tr>
<tr>
<td>Media Player</td>
<td>Blu Ray</td>
<td>679,495</td>
<td>679,495.00</td>
</tr>
<tr>
<td></td>
<td>DVD Players</td>
<td>18,835</td>
<td>18,835.00</td>
</tr>
<tr>
<td></td>
<td>DVD Players - Portable</td>
<td>5,694</td>
<td>5,694.00</td>
</tr>
<tr>
<td></td>
<td>Streaming</td>
<td>67,910</td>
<td>5,694.00</td>
</tr>
<tr>
<td>Stereo Systems</td>
<td>Boom Box</td>
<td>9,370</td>
<td>9,370.00</td>
</tr>
<tr>
<td></td>
<td>Home Theater Systems</td>
<td>399,092</td>
<td>9,370.00</td>
</tr>
<tr>
<td></td>
<td>Receivers</td>
<td>150,568</td>
<td>9,370.00</td>
</tr>
<tr>
<td></td>
<td>Speaker Kits</td>
<td>244,199</td>
<td>9,370.00</td>
</tr>
<tr>
<td></td>
<td>iPod Docking Station</td>
<td>311,103</td>
<td>9,370.00</td>
</tr>
<tr>
<td>Televisions</td>
<td>CRT TV</td>
<td>4,638</td>
<td>4,638.00</td>
</tr>
<tr>
<td></td>
<td>Flat Panel TV</td>
<td>92,501</td>
<td>4,638.00</td>
</tr>
<tr>
<td></td>
<td>Portable TV</td>
<td>8,049</td>
<td>4,638.00</td>
</tr>
<tr>
<td>Video Production</td>
<td>Video Editing</td>
<td>199,749</td>
<td>199,749.00</td>
</tr>
</tbody>
</table>
RUNNING_SUM: Calculating a Sum Over a Group of Rows

Given an aggregated input field and an offset, RUNNING_SUM calculates the sum of the values between the current row of the report output and one or more prior rows, within a sort break or the entire table. The reset point for the calculation is determined by the sort field specified, the entire table, or the value of the PARTITION_ON parameter described in How to Specify the Partition Size for Simplified Statistical Functions on page 591.

Syntax: How to Calculate Running Sum Between the Current and a Prior Value of a Field

RUNNING_SUM(field, reset_key, lower)

where:

field
 Numeric
 The field to be used in the calculation.

reset_key
 Identifies the point at which the running sum restarts. Valid values are:

 ☐ The name of a sort field in the request.

 ☐ PRESET, which uses the value of the PARTITION_ON parameter, as described in How to Specify the Partition Size for Simplified Statistical Functions on page 591.

 ☐ TABLE, which indicates that there is no break on a sort field.

Note: The values used in the calculations depend on the sort sequence (ascending or descending) specified in the request. Be aware that displaying a date or time dimension in descending order may produce different results than those you may expect.

lower
 Is the starting point in the partition for the running sum. Valid values are:

 ☐ A negative number, which identifies the offset from the current row.

 ☐ B, which specifies the beginning of the sort group.
Example: Calculating a Running Sum

The following request calculates a running sum of the current value and previous value of QUANTITY_SOLD within the reset point set by the PARTITION_ON parameter, which is the sort field PRODUCTCATEGORY.

```
SET PARTITION_ON=PENULTIMATE
TABLE FILE wf_retail_lite
SUM QUANTITY_SOLD
COMPUTE RSUM = RUNNING_SUM(QUANTITY_SOLD, PRESET, -1);
BY PRODUCT_CATEGORY
BY PRODUCT_SUBCATEG
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF, $
ENDSTYLE
END
```
The output is shown in the following image. The first value for RSUM is the value in the Accessories category for Quantity Sold, as there is no prior value. The second value for RSUM is the sum of the values for Headphones and Charger, the third is the sum of the values for Headphones and Universal Remote Controls. Then, the calculations start over for Camcorder, which is the reset point.

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Product Subcategory</th>
<th>Quantity Sold</th>
<th>RSUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories</td>
<td>Charger</td>
<td>105,257</td>
<td>105,257.00</td>
</tr>
<tr>
<td></td>
<td>Headphones</td>
<td>228,349</td>
<td>333,606.00</td>
</tr>
<tr>
<td></td>
<td>Universal Remote Controls</td>
<td>178,061</td>
<td>406,410.00</td>
</tr>
<tr>
<td>Camcorder</td>
<td>Handheld</td>
<td>250,167</td>
<td>250,167.00</td>
</tr>
<tr>
<td></td>
<td>Professional</td>
<td>12,872</td>
<td>263,039.00</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>192,205</td>
<td>205,077.00</td>
</tr>
<tr>
<td>Computers</td>
<td>Smartphone</td>
<td>205,049</td>
<td>205,049.00</td>
</tr>
<tr>
<td></td>
<td>Tablet</td>
<td>146,728</td>
<td>351,777.00</td>
</tr>
<tr>
<td>Media Player</td>
<td>Blu Ray</td>
<td>679,495</td>
<td>679,495.00</td>
</tr>
<tr>
<td></td>
<td>DVD Players</td>
<td>18,835</td>
<td>698,330.00</td>
</tr>
<tr>
<td></td>
<td>DVD Players - Portable</td>
<td>5,694</td>
<td>24,529.00</td>
</tr>
<tr>
<td></td>
<td>Streaming</td>
<td>67,910</td>
<td>73,604.00</td>
</tr>
<tr>
<td>Stereo Systems</td>
<td>Boom Box</td>
<td>9,370</td>
<td>9,370.00</td>
</tr>
<tr>
<td></td>
<td>Home Theater Systems</td>
<td>399,092</td>
<td>408,462.00</td>
</tr>
<tr>
<td></td>
<td>Receivers</td>
<td>150,568</td>
<td>549,660.00</td>
</tr>
<tr>
<td></td>
<td>Speaker Kits</td>
<td>244,199</td>
<td>394,767.00</td>
</tr>
<tr>
<td></td>
<td>iPod Docking Station</td>
<td>311,103</td>
<td>555,302.00</td>
</tr>
<tr>
<td>Televisions</td>
<td>CRT TV</td>
<td>4,638</td>
<td>4,638.00</td>
</tr>
<tr>
<td></td>
<td>Flat Panel TV</td>
<td>92,501</td>
<td>97,139.00</td>
</tr>
<tr>
<td></td>
<td>Portable TV</td>
<td>8,049</td>
<td>100,550.00</td>
</tr>
<tr>
<td>Video Production</td>
<td>Video Editing</td>
<td>199,749</td>
<td>199,749.00</td>
</tr>
</tbody>
</table>
Simplified character functions have streamlined parameter lists, similar to those used by SQL functions. In some cases, these simplified functions provide slightly different functionality than previous versions of similar functions.

The simplified functions do not have an output argument. Each function returns a value that has a specific data type.

When used in a request against a relational data source, these functions are optimized (passed to the RDBMS for processing).

Note: The simplified character functions are not supported in Maintain Data.

In this chapter:

- **CHAR_LENGTH**: Returning the Length in Characters of a String
- **CONCAT**: Concatenating Strings
- **DIFFERENCE**: Measuring the Phonetic Similarity Between Character Strings
- **DIGITS**: Converting a Number to a Character String
- **GET_TOKEN**: Extracting a Token Based on a String of Delimiters
- **INITCAP**: Capitalizing the First Letter of Each Word in a String
- **LAST_NONBLANK**: Retrieving the Last Field Value That is Neither Blank nor Missing
- **LEFT**: Returning Characters From the Left of a Character String
- **LOWER**: Returning a String With All Letters Lowercase
- **POSITION**: Returning the First Position of a Substring in a Source String
- **POSITION**: Returning the Position of a Search String in a Source String
- **Regular Expression Functions**
- **REPEAT**: Repeating a String a Given Number of Times
- **REPLACE**: Replacing a String
- **RIGHT**: Returning Characters From the Right of a Character String
- **RPAD**: Right-Padding a Character String
- **RTRIM**: Removing Blanks From the Right End of a String
- **SPACE**: Returning a String With a Given Number of Spaces
- **SPLIT**: Extracting an Element From a String
- **SUBSTRING**:Extracting a Substring From a Source String
CHAR_LENGTH: Returning the Length in Characters of a String

The CHAR_LENGTH function returns the length, in characters, of a string. In Unicode environments, this function uses character semantics, so that the length in characters may not be the same as the length in bytes. If the string includes trailing blanks, these are counted in the returned length. Therefore, if the format source string is type A*n, the returned value will always be n.

Syntax: How to Return the Length of a String in Characters

```
CHAR_LENGTH(string)
```

where:

- `string` Alphanumeric

Is the string whose length is returned.

The data type of the returned length value is Integer.

Example: Returning the Length of a String

The following request against the EMPLOYEE data source creates a virtual field named LASTNAME of type A15V that contains the LAST_NAME with the trailing blanks removed. It then uses CHAR_LENGTH to return the number of characters.
DEFINE FILE EMPLOYEE
LASTNAME/A15V = RTRIM(LAST_NAME);
END
TABLE FILE EMPLOYEE
SUM LAST_NAME NOPRINT AND COMPUTE
NAME_LEN/I3 = CHAR_LENGTH(LASTNAME);
BY LAST_NAME
ON TABLE SET PAGE NOPAGE
END

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>NAME_LEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANNING</td>
<td>7</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>9</td>
</tr>
<tr>
<td>CROSS</td>
<td>5</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>9</td>
</tr>
<tr>
<td>IRVING</td>
<td>6</td>
</tr>
<tr>
<td>JONES</td>
<td>5</td>
</tr>
<tr>
<td>MCCOY</td>
<td>5</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>8</td>
</tr>
<tr>
<td>ROMANS</td>
<td>6</td>
</tr>
<tr>
<td>SMITH</td>
<td>5</td>
</tr>
<tr>
<td>STEVENS</td>
<td>7</td>
</tr>
</tbody>
</table>

CONCAT: Concatenating Strings

CONCAT concatenates two strings. The output is returned as variable length alphanumeric.

Syntax: How to Concatenate Strings

CONCAT(string1, string2)

where:

string2
 Alphanumeric
 Is a string to be concatenated.

string1
 Alphanumeric
 Is a string to be concatenated.
Example: Concatenating Strings

The following request concatenates city names with state names. Note that the city and state names are converted to fixed length alphanumeric fields before concatenation.

```
DEFINE FILE WF_RETAIL_LITE
CITY/A50 = CITY_NAME;
STATE/A50 = STATE_PROV_NAME;
CONCAT_CS/A100 = CONCAT(CITY,STATE);
END

TABLE FILE WF_RETAIL_LITE
SUM CITY AS City STATE AS State CONCAT_CS AS Concatenation
BY STATE_PROV_NAME NOPRINT
WHERE COUNTRY_NAME EQ 'United States'
WHERE STATE LE 'Louisiana'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
The output is shown in the following image.

<table>
<thead>
<tr>
<th>City</th>
<th>State</th>
<th>Concatenation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montgomery</td>
<td>Alabama</td>
<td>Montgomery Alabama</td>
</tr>
<tr>
<td>Anchorage</td>
<td>Alaska</td>
<td>Anchorage Alaska</td>
</tr>
<tr>
<td>Phoenix</td>
<td>Arizona</td>
<td>Phoenix Arizona</td>
</tr>
<tr>
<td>Little Rock</td>
<td>Arkansas</td>
<td>Little Rock Arkansas</td>
</tr>
<tr>
<td>Saratoga</td>
<td>California</td>
<td>Saratoga California</td>
</tr>
<tr>
<td>Colorado Springs</td>
<td>Colorado</td>
<td>Colorado Springs Colorado</td>
</tr>
<tr>
<td>Old Lyme</td>
<td>Connecticut</td>
<td>Old Lyme Connecticut</td>
</tr>
<tr>
<td>Wyoming</td>
<td>Delaware</td>
<td>Wyoming Delaware</td>
</tr>
<tr>
<td>Washington</td>
<td>District of Columbia</td>
<td>Washington District of Columbia</td>
</tr>
<tr>
<td>Orlando</td>
<td>Florida</td>
<td>Orlando Florida</td>
</tr>
<tr>
<td>Atlanta</td>
<td>Georgia</td>
<td>Atlanta Georgia</td>
</tr>
<tr>
<td>Honolulu</td>
<td>Hawaii</td>
<td>Honolulu Hawaii</td>
</tr>
<tr>
<td>Boise</td>
<td>Idaho</td>
<td>Boise Idaho</td>
</tr>
<tr>
<td>Chicago</td>
<td>Illinois</td>
<td>Chicago Illinois</td>
</tr>
<tr>
<td>Indianapolis</td>
<td>Indiana</td>
<td>Indianapolis Indiana</td>
</tr>
<tr>
<td>Dubuque</td>
<td>Iowa</td>
<td>Dubuque Iowa</td>
</tr>
<tr>
<td>Wichita</td>
<td>Kansas</td>
<td>Wichita Kansas</td>
</tr>
<tr>
<td>Lexington</td>
<td>Kentucky</td>
<td>Lexington Kentucky</td>
</tr>
<tr>
<td>New Orleans</td>
<td>Louisiana</td>
<td>New Orleans Louisiana</td>
</tr>
</tbody>
</table>

DIFFERENCE: Measuring the Phonetic Similarity Between Character Strings

DIFFERENCE returns an integer value measuring the difference between the SOUNDEX or METAPHONE values of two character expressions.

Syntax:

How to Measure the Phonetic Similarity Between Character String

\[
\text{DIFFERENCE}(\text{chrexp1, chrexp2})
\]

where:

- \(\text{chrexp1, chrexp2} \)
 - Alphanumeric
 - Are the character strings to be compared.
Zero (0) represents the least similarity. For SOUNDEX, 4 represents the most similarity, and for METAPHONE, 16 represents the most similarity.

The use of SOUNDEX or METAPHONE depends on the PHONETIC_ALGORITHM setting. METAPHONE is the default algorithm.

Example: Measuring the Phonetic Similarity Between Character Strings

The following request uses DIFFERENCE with the default phonetic algorithm (METAPHONE) to compare first names in the data source with the names JOHN and MARY.

```
TABLE FILE VIDEOTRK
PRINT FIRSTNAME
COMPUTE
JOHN_DIFF/I5 = DIFFERENCE(FIRSTNAME, 'JOHN');
MARY_DIFF/I5 = DIFFERENCE(FIRSTNAME, 'MARY');
BY LASTNAME NOPRINT
WHERE RECORDLIMIT EQ 30
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF, $
ENDSTYLE
END
```
The output is shown in the following image. Note that the names JOANN and JOHN have the highest scores for matching with JOHN, and that MARCIA, MICHAEL, and MARTHA have the highest scores for matching with MARY.

<table>
<thead>
<tr>
<th>FIRSTNAME</th>
<th>JOHN_DIFF</th>
<th>MARY_DIFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATALIA</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>MARCIA</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>IVY</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>JASON</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>JANET</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>JOANN</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>JOHN</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>WESTON</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GEORGIA</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>EVAN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>JESSICA</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>MICHAEL</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>JAMES</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>CHERYL</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>DAVID</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>JOSHUA</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>JOHN</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>CATHERINE</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>PATRICK</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DONALD</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>GLENDIA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RICHARD</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>MICHAEL</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>LESLIE</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>TOM</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>MICHAEL</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>PATRICIA</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>KENNETH</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>KELLY</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>MARTHA</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>
DIGITS: Converting a Number to a Character String

Given a number, DIGITS converts it to a character string of the specified length. The format of the field that contains the number must be Integer.

Syntax: How to Convert a Number to a Character String

DIGITS(number, length)

where:

number
 Integer
 Is the number to be converted, stored in a field with data type Integer.

length
 Integer between 1 and 10
 Is the length of the returned character string. If length is longer than the number of digits in the number being converted, the returned value is padded on the left with zeros. If length is shorter than the number of digits in the number being converted, the returned value is truncated on the left.

Example: Converting a Number to a Character String

The following request against the WF_RETAIL_LITE data source converts -123.45 and ID_PRODUCT to character strings:

DEFINE FILE WF_RETAIL_LITE
MEAS1/I8=-123.45;
DIG1/A6=DIGITS(MEAS1,6) ;
DIG2/A6=DIGITS(ID_PRODUCT,6) ;
END
TABLE FILE WF_RETAIL_LITE
PRINT MEAS1 DIG1
ID_PRODUCT DIG2
BY PRODUCT_SUBCATEG
WHERE PRODUCT_SUBCATEG EQ 'Flat Panel TV'
ON TABLE SET PAGE NOPAGE
END
5. Simplified Character Functions

The output is:

<table>
<thead>
<tr>
<th>Product Subcategory</th>
<th>MEAS1</th>
<th>DIG1</th>
<th>ID Product</th>
<th>DIG2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Panel TV</td>
<td>-123</td>
<td>000123</td>
<td>4012</td>
<td>004012</td>
</tr>
<tr>
<td></td>
<td>-123</td>
<td>000123</td>
<td>4017</td>
<td>004017</td>
</tr>
<tr>
<td></td>
<td>-123</td>
<td>000123</td>
<td>4018</td>
<td>004018</td>
</tr>
<tr>
<td></td>
<td>-123</td>
<td>000123</td>
<td>4017</td>
<td>004017</td>
</tr>
<tr>
<td></td>
<td>-123</td>
<td>000123</td>
<td>4018</td>
<td>004018</td>
</tr>
<tr>
<td></td>
<td>-123</td>
<td>000123</td>
<td>4018</td>
<td>004018</td>
</tr>
<tr>
<td></td>
<td>-123</td>
<td>000123</td>
<td>4017</td>
<td>004017</td>
</tr>
<tr>
<td></td>
<td>-123</td>
<td>000123</td>
<td>4018</td>
<td>004018</td>
</tr>
<tr>
<td></td>
<td>-123</td>
<td>000123</td>
<td>4018</td>
<td>004018</td>
</tr>
<tr>
<td></td>
<td>-123</td>
<td>000123</td>
<td>4017</td>
<td>004017</td>
</tr>
<tr>
<td></td>
<td>-123</td>
<td>000123</td>
<td>4018</td>
<td>004018</td>
</tr>
<tr>
<td></td>
<td>-123</td>
<td>000123</td>
<td>4016</td>
<td>004016</td>
</tr>
<tr>
<td></td>
<td>-123</td>
<td>000123</td>
<td>4018</td>
<td>004018</td>
</tr>
<tr>
<td></td>
<td>-123</td>
<td>000123</td>
<td>4017</td>
<td>004017</td>
</tr>
<tr>
<td></td>
<td>-123</td>
<td>000123</td>
<td>4018</td>
<td>004018</td>
</tr>
</tbody>
</table>
Reference: Usage Notes for DIGITS

- Only I format numbers will be converted. D, P, and F formats generate error messages and should be converted to I before using the DIGITS function. The limit for the number that can be converted is 2 GB.
- Negative integers are turned into positive integers.
- Integer formats with decimal places are truncated.
- DIGITS is not supported in Dialogue Manager.

GET_TOKEN: Extracting a Token Based on a String of Delimiters

GET_TOKEN extracts a token (substring) based on a string that can contain multiple characters, each of which represents a single-character delimiter.

Syntax: How to Extract a Token Based on a String of Delimiters

GET_TOKEN(string, delimiter_string, occurrence)

where:

string
 Alphanumeric
 Is the input string from which the token will be extracted. This can be an alphanumerical field or constant.

delimiter_string
 Alphanumeric constant
 Is a string that contains the list of delimiter characters. For example, '; , ' contains three delimiter characters, semi-colon, blank space, and comma.

occurrence
 Integer constant
 Is a positive integer that specifies the token to be extracted. A negative integer will be accepted in the syntax, but will not extract a token. The value zero (0) is not supported.
Example: Extracting a Token Based on a String of Delimiters

The following request defines an input string and two tokens based on a list of delimiters that contains the characters comma (,), semicolon (;), and slash (/).

```plaintext
DEFINE FILE EMPLOYEE
InputString/A20 = 'ABC,DEF;GHI/JKL';
FirstToken/A20 WITH DEPARTMENT = GET_TOKEN(InputString, ',;/', 1);
FourthToken/A20 WITH DEPARTMENT = GET_TOKEN(InputString, ',;/', 4);
END
TABLE FILE EMPLOYEE
PRINT InputString FirstToken FourthToken
WHERE READLIMIT EQ 1
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID = OFF,$
END
```

The output is shown in the following image. The first token was extracted using the comma (,) as the delimiter. The fourth token was extracted using the slash (/) as the delimiter.

<table>
<thead>
<tr>
<th>InputString</th>
<th>FirstToken</th>
<th>FourthToken</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC,DEF;GHI/JKL</td>
<td>ABC</td>
<td>JKL</td>
</tr>
</tbody>
</table>

INITCAP: Capitalizing the First Letter of Each Word in a String

INITCAP capitalizes the first letter of each word in an input string and makes all other letters lowercase. A word starts at the beginning of the string, after a blank space, or after a special character.

Syntax: How to Capitalize the First Letter of Each Word in a String

```plaintext
INITCAP(input_string)
```

where:

- `input_string` Alphanumeric
- Is the string to capitalize.
Example: Capitalizing the First Letter of Each Word in a String

The following request changes the last names in the EMPLOYEE data source to initial caps and capitalizes the first letter after each blank or special character in the NewName field.

```plaintext
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
Caps1/A30 = INITCAP(LAST_NAME);
NewName/A30 = 'abc,def!ghi'jKL MNO';
Caps2/A30 = INITCAP(NewName);
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>Caps1</th>
<th>NewName</th>
<th>Caps2</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEVENS</td>
<td>Stevens</td>
<td>abc,def!ghi'jKL MNO</td>
<td>Abc,Def!Ghi'Jkl Mno</td>
</tr>
<tr>
<td>SMITH</td>
<td>Smith</td>
<td>abc,def!ghi'jKL MNO</td>
<td>Abc,Def!Ghi'Jkl Mno</td>
</tr>
<tr>
<td>JONES</td>
<td>Jones</td>
<td>abc,def!ghi'jKL MNO</td>
<td>Abc,Def!Ghi'Jkl Mno</td>
</tr>
<tr>
<td>SMITH</td>
<td>Smith</td>
<td>abc,def!ghi'jKL MNO</td>
<td>Abc,Def!Ghi'Jkl Mno</td>
</tr>
<tr>
<td>BANNING</td>
<td>Banning</td>
<td>abc,def!ghi'jKL MNO</td>
<td>Abc,Def!Ghi'Jkl Mno</td>
</tr>
<tr>
<td>IRVING</td>
<td>Irving</td>
<td>abc,def!ghi'jKL MNO</td>
<td>Abc,Def!Ghi'Jkl Mno</td>
</tr>
<tr>
<td>ROMANS</td>
<td>Romans</td>
<td>abc,def!ghi'jKL MNO</td>
<td>Abc,Def!Ghi'Jkl Mno</td>
</tr>
<tr>
<td>MCCOY</td>
<td>Mccoy</td>
<td>abc,def!ghi'jKL MNO</td>
<td>Abc,Def!Ghi'Jkl Mno</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>Blackwood</td>
<td>abc,def!ghi'jKL MNO</td>
<td>Abc,Def!Ghi'Jkl Mno</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>Mcknight</td>
<td>abc,def!ghi'jKL MNO</td>
<td>Abc,Def!Ghi'Jkl Mno</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>Greenspan</td>
<td>abc,def!ghi'jKL MNO</td>
<td>Abc,Def!Ghi'Jkl Mno</td>
</tr>
<tr>
<td>CROSS</td>
<td>Cross</td>
<td>abc,def!ghi'jKL MNO</td>
<td>Abc,Def!Ghi'Jkl Mno</td>
</tr>
</tbody>
</table>

LAST_NONBLANK: Retrieving the Last Field Value That is Neither Blank nor Missing

LAST_NONBLANK retrieves the last field value that is neither blank nor missing. If all previous values are either blank or missing, LAST_NONBLANK returns a missing value.

Syntax: How to Return the Last Value That is Neither Blank nor Missing

```
LAST_NONBLANK(field)
```
where:

field

Is the field name whose last non-blank value is to be retrieved. If the current value is not blank or missing, the current value is returned.

Note: LAST_NONBLANK cannot be used in a compound expression, for example, as part of an IF condition.

Example: Retrieving the Last Non-Blank Value

Consider the following delimited file named input1.csv that has two fields named FIELD_1 and FIELD_2.

```
, A, 
, B, 
C,
```

The input1 Master File follows.

```
FILENAME=INPUT1, SUFFIX=DFIX    ,
DATASET=baseapp/input1.csv(LRECL 15 RECFM V, BV_NAMESPACE=OFF, $
SEGMENT=INPUT1, SEGTYPE=S0, $
  FIELDNAME=FIELD_1, ALIAS=E01, USAGE=A1V, ACTUAL=A1V,
    MISSING=ON, $ 
  FIELDNAME=FIELD_2, ALIAS=E02, USAGE=A1V, ACTUAL=A1V,
    MISSING=ON, $
```

The input1 Access File follows.

```
SEGNAME=INPUT1,
  DELIMITER=',' ,
  HEADER=NO,
  PRESERVESPACE=NO,
  CDN=COMMAS_DOT,
  CONNECTION=<local>, $
```

The following request displays the FIELD_1 values and computes the last non-blank value for each FIELD_1 value.

```
TABLE FILE baseapp/INPUT1
PRINT FIELD_1 AS Input
COMPUTE
Last_NonBlank/A1 MISSING ON = LAST_NONBLANK(FIELD_1);
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
LEFT: Returning Characters From the Left of a Character String

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Input</th>
<th>Last</th>
<th>NonBlank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

LEFT: Returning Characters From the Left of a Character String

Given a source character string, or an expression that can be converted to varchar (variable-length alphanumeric), and an integer number, LEFT returns that number of characters from the left end of the string.

Syntax:

How to Return Characters From the Left of a Character String

\[\text{LEFT}(\text{chr}_\text{exp}, \text{int}_\text{exp}) \]

where:

- **chr_exp**
 - Alphanumeric or an expression that can be converted to variable-length alphanumeric.
 - Is the source character string.

- **int_exp**
 - Integer
 - Is the number of characters to be returned.
Example: Returning Characters From the Left of a Character String

The following request computes the length of the first name in the FULLNAME field and returns that number of characters to FIRST.

```
TABLE FILE WF_RETAIL_EMPLOYEE
PRINT FULLNAME AND
COMPUTE LEN/I5 = ARGLEN(54, GET_TOKEN(FULLNAME, ' ', 1), LEN); NOPRINT
COMPUTE FIRST/A20 = LEFT(FULLNAME, LEN);
WHERE RECORDLIMIT EQ 20
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
The output is shown in the following image.

<table>
<thead>
<tr>
<th>Full Name</th>
<th>FIRST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven Wagoner</td>
<td>Steven</td>
</tr>
<tr>
<td>Adan Geoghegan</td>
<td>Adan</td>
</tr>
<tr>
<td>Candace Aguilar</td>
<td>Candace</td>
</tr>
<tr>
<td>Dianna Turpin</td>
<td>Dianna</td>
</tr>
<tr>
<td>John Blankinship</td>
<td>John</td>
</tr>
<tr>
<td>John Chang</td>
<td>John</td>
</tr>
<tr>
<td>John Mackey</td>
<td>John</td>
</tr>
<tr>
<td>Elaine Duran</td>
<td>Elaine</td>
</tr>
<tr>
<td>Douglas Sanders</td>
<td>Douglas</td>
</tr>
<tr>
<td>Linda Whitlow</td>
<td>Linda</td>
</tr>
<tr>
<td>Phyllis Carey</td>
<td>Phyllis</td>
</tr>
<tr>
<td>Alfred Amerson</td>
<td>Alfred</td>
</tr>
<tr>
<td>Jeremy Maness</td>
<td>Jeremy</td>
</tr>
<tr>
<td>David Christopher</td>
<td>David</td>
</tr>
<tr>
<td>Alice Flemming</td>
<td>Alice</td>
</tr>
<tr>
<td>Delia Tennison</td>
<td>Delia</td>
</tr>
<tr>
<td>Diane Eads</td>
<td>Diane</td>
</tr>
<tr>
<td>Wilfredo Delacruz</td>
<td>Wilfredo</td>
</tr>
<tr>
<td>Dorothy Newman</td>
<td>Dorothy</td>
</tr>
<tr>
<td>Delia Tennison</td>
<td>Delia</td>
</tr>
</tbody>
</table>

LOWER: Returning a String With All Letters Lowercase

The LOWER function takes a source string and returns a string of the same data type with all letters translated to lowercase.
Syntax: How to Return a String With All Letters Lowercase

LOWER(string)

where:

string

Alphanumeric

Is the string to convert to lowercase.

The returned string is the same data type and length as the source string.

Example: Converting a String to Lowercase

In the following request against the EMPLOYEE data source, LOWER converts the LAST_NAME field to lowercase and stores the result in LOWER_NAME:

```
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
LOWER_NAME/A15 = LOWER(LAST_NAME);
ON TABLE SET PAGE NOPAGE
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>LOWER_NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEVENS</td>
<td>stevens</td>
</tr>
<tr>
<td>SMITH</td>
<td>smith</td>
</tr>
<tr>
<td>JONES</td>
<td>jones</td>
</tr>
<tr>
<td>SMITH</td>
<td>smith</td>
</tr>
<tr>
<td>BANNING</td>
<td>banning</td>
</tr>
<tr>
<td>IRVING</td>
<td>irving</td>
</tr>
<tr>
<td>ROMANS</td>
<td>romans</td>
</tr>
<tr>
<td>MCCOY</td>
<td>mccoy</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>blackwood</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>mcknight</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>greenspan</td>
</tr>
<tr>
<td>CROSS</td>
<td>cross</td>
</tr>
</tbody>
</table>

LPAD: Left-Padding a Character String

LPAD uses a specified character and output length to return a character string padded on the left with that character.

Syntax: How to Pad a Character String on the Left

LPAD(string, out_length, pad_character)
where:

\textit{string}
Fixed length alphanumeric
Is a string to pad on the left side.

\textit{out_length}
Integer
Is the length of the output string after padding.

\textit{pad_character}
Fixed length alphanumeric
Is a single character to use for padding.

\textbf{Example: Left-Padding a String}

In the following request against the WF_RETAIL data source, LPAD left-pads the \texttt{PRODUCT_CATEGORY} column with @ symbols:

\begin{verbatim}
DEFINE FILE WF_RETAIL
LPAD1/A25 = LPAD(PRODUCT_CATEGORY,25,'@');
DIG1/A4 = DIGITS(ID_PRODUCT,4);
END
TABLE FILE WF_RETAIL
SUM DIG1 LPAD1
BY PRODUCT_CATEGORY
ON TABLE SET PAGE NOPAGE
ON TABLE SET STYLE *
TYPE=DATA, Font=COU_RI_ER, SIZE=11, COLOR=BLUE,$
END
\end{verbatim}
The output is:

<table>
<thead>
<tr>
<th>Product Category</th>
<th>DIG1</th>
<th>LPAD1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories</td>
<td>5005</td>
<td>@@@@@@@@@@@@@@@@@@Accessories</td>
</tr>
<tr>
<td>Camcorder</td>
<td>3006</td>
<td>@@@@@@@@@@@@@@@@@@Camcorder</td>
</tr>
<tr>
<td>Computers</td>
<td>6016</td>
<td>@@@@@@@@@@@@@@@@@@Computers</td>
</tr>
<tr>
<td>Media Player</td>
<td>1003</td>
<td>@@@@@@@@@@@@@@@@@@Media Player</td>
</tr>
<tr>
<td>Stereo Systems</td>
<td>2155</td>
<td>@@@@@@@@@@@@@@@@@@Stereo Systems</td>
</tr>
<tr>
<td>Televisions</td>
<td>4018</td>
<td>@@@@@@@@@@@@@@@@@@Televisions</td>
</tr>
<tr>
<td>Video Production</td>
<td>7005</td>
<td>@@@@@@@@@@@@@@@@@@Video Production</td>
</tr>
</tbody>
</table>

Reference: Usage Notes for LPAD

- To use the single quotation mark ('') as the padding character, you must double it and enclose the two single quotation marks within single quotation marks (LPAD(COUNTRY, 20, '').'). You can use an amper variable in quotation marks for this parameter, but you cannot use a field, virtual or real.

- Input can be fixed or variable length alphanumeric.

- Output, when optimized to SQL, will always be data type VARCHAR.

- If the output is specified as shorter than the original input, the original data will be truncated, leaving only the padding characters. The output length can be specified as a positive integer or an unquoted &variable (indicating a numeric).

LTRIM: Removing Blanks From the Left End of a String

The LTRIM function removes all blanks from the left end of a string.
Syntax: How to Remove Blanks From the Left End of a String

LTRIM(string)

where:

string

Alphanumeric

Is the string to trim on the left.

The data type of the returned string is AnV, with the same maximum length as the source string.

Example: Removing Blanks From the Left End of a String

In the following request against the MOVIES data source, the DIRECTOR field is right-justified and stored in the RDIRECTOR virtual field. Then LTRIM removes leading blanks from the RDIRECTOR field:

DEFINE FILE MOVIES
RDIRECTOR/A17 = RJUST(17, DIRECTOR, 'A17');
END
TABLE FILE MOVIES
PRINT RDIRECTOR AND
COMPUTE
TRIMDIR/A17 = LTRIM(RDIRECTOR);
WHERE DIRECTOR CONTAINS 'BR'
ON TABLE SET PAGE NOPAGE
END

The output is:

<table>
<thead>
<tr>
<th>RDIRECTOR</th>
<th>TRIMDIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABRAHAMS J.</td>
<td>ABRAHAMS J.</td>
</tr>
<tr>
<td>BROOKS R.</td>
<td>BROOKS R.</td>
</tr>
<tr>
<td>BROOKS J.L.</td>
<td>BROOKS J.L.</td>
</tr>
</tbody>
</table>

OVERLAY: Replacing Characters in a String

Given a starting position, length, source string, and insertion string, OVERLAY replaces the number of characters defined by length in the source string with the insertion string, starting from the starting position.

Syntax: How to Replace Characters in a String

OVERLAY(src, ins, start, len)
where:

- **src**
 - Alphanumeric
 - Is the source string whose characters will be replaced.

- **ins**
 - Alphanumeric
 - Is the insertion string with the replacement characters.

- **start**
 - Numeric
 - Is the starting position for the replacement in the source string.

- **len**
 - Numeric
 - Is the number of characters to replace in the source string with the entire insertion string.

Example: Replacing Characters in a String

The following request replaces the first three characters in the last name with the first four characters of the first name.

```
TABLE FILE EMPLOYEE
PRINT
COMPUTE FIRST4/A4 = LEFT(FIRST_NAME, 4);
NEWNAME/A20 = OVERLAY(LAST_NAME, FIRST4, 1, 3);
BY LAST_NAME
BY FIRST_NAME
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF, $
ENDSTYLE
END
```
The output is shown in the following image.

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>FIRST4</th>
<th>NEWNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANNING</td>
<td>JOHN</td>
<td>JOHN</td>
<td>JOHNNING</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
<td>ROSE</td>
<td>ROSECKWOOD</td>
</tr>
<tr>
<td>CROSS</td>
<td>BARBARA</td>
<td>BARB</td>
<td>BARBSS</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>MARY</td>
<td>MARY</td>
<td>MARYENSPAN</td>
</tr>
<tr>
<td>IRVING</td>
<td>JOAN</td>
<td>JOAN</td>
<td>JOANING</td>
</tr>
<tr>
<td>JONES</td>
<td>DIANE</td>
<td>DIAN</td>
<td>DIANES</td>
</tr>
<tr>
<td>MCCOY</td>
<td>JOHN</td>
<td>JOHN</td>
<td>JOHOY</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>ROGER</td>
<td>ROGE</td>
<td>ROGENIGHT</td>
</tr>
<tr>
<td>ROMANS</td>
<td>ANTHONY</td>
<td>ANTH</td>
<td>ANTHANS</td>
</tr>
<tr>
<td>SMITH</td>
<td>MARY</td>
<td>MARY</td>
<td>MARYTH</td>
</tr>
<tr>
<td>STEVENS</td>
<td>ALFRED</td>
<td>ALFR</td>
<td>ALFRVENS</td>
</tr>
</tbody>
</table>

PATTERNS: Returning a Pattern That Represents the Structure of the Input String

PATTERNS returns a string that represents the structure of the input argument. The returned pattern includes the following characters:

- **A** is returned for any position in the input string that has an uppercase letter.
- **a** is returned for any position in the input string that has a lowercase letter.
- **9** is returned for any position in the input string that has a digit.

Note that special characters (for example, +/-=%) are returned exactly as they were in the input string.

The output is returned as variable length alphanumeric.

Syntax:

How to Return a String That Represents the Pattern Profile of the Input Argument

```
PATTERNS(string)
```

where:

```
string
```

Alphanumeric

Is a string whose pattern will be returned.
Example: Returning a Pattern Representing an Input String

The following request returns patterns that represent customer addresses.

```
DEFINE FILE WF_RETAIL_LITE
Address_Pattern/A40V = PATTERNS(ADDRESS_LINE_1);
END

TABLE FILE WF_RETAIL_LITE
PRINT FST.ADDRESS_LINE_1 OVER
Address_Pattern
BY ADDRESS_LINE_1 NOPRINT SKIP-LINE
WHERE COUNTRY_NAME EQ 'United States'
WHERE CITY_NAME EQ 'Houston' OR 'Indianapolis' OR 'Chapel Hill' OR 'Bronx'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
The partial output is shown in the following image. Note that the special characters (#,.) in an address are represented in the pattern as is.

```
FST Customer Address Line 1             1010 Milam St # Ifp-2352
Address_Pattern                       99999 Aaaaa Aa # Aaa-9999

FST Customer Address Line 1             10700 Richmond Ave
Address_Pattern                       999999 Aaaaaaaa Aaa

FST Customer Address Line 1             10777 North Fwy
Address_Pattern                       999999 Aaaaa Aaa

FST Customer Address Line 1             11 E Greenway Plz Ste 100
Address_Pattern                       99 A Aaaaaaaa Aaa Aaa 999

FST Customer Address Line 1             111 Monument Cir
Address_Pattern                       999 Aaaaaaaa Aaa

FST Customer Address Line 1             111 Monument Circle - Ste 2100
Address_Pattern                       999 Aaaaaaaa Aaaaaa - Aaa 9999

FST Customer Address Line 1             1205 Dart St, Rm 219
Address_Pattern                       99999 Aaa Aa, Aa 999
```

POSITION: Returning the First Position of a Substring in a Source String

The POSITION function returns the first position (in characters) of a substring in a source string.
Syntax:
How to Return the First Position of a Substring in a Source String

\[
\text{POSITION}(\text{pattern}, \text{string})
\]

where:

\textit{pattern}

Alphanumeric

Is the substring whose position you want to locate. The string can be as short as a single character, including a single blank.

\textit{string}

Alphanumeric

Is the string in which to find the pattern.

The data type of the returned value is Integer.

Example:
Returning the First Position of a Substring

In the following request against the EMPLOYEE data source, POSITION determines the position of the first capital letter I in LAST_NAME and stores the result in I_IN_NAME:

```
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
I_IN_NAME/I2 = POSITION('I', LAST_NAME);
ON TABLE SET PAGE NOPAGE
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>I_IN_NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEVENS</td>
<td>0</td>
</tr>
<tr>
<td>SMITH</td>
<td>3</td>
</tr>
<tr>
<td>JONES</td>
<td>0</td>
</tr>
<tr>
<td>SMITH</td>
<td>3</td>
</tr>
<tr>
<td>BANNING</td>
<td>5</td>
</tr>
<tr>
<td>IRVING</td>
<td>1</td>
</tr>
<tr>
<td>ROMANS</td>
<td>0</td>
</tr>
<tr>
<td>MCCOY</td>
<td>0</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>0</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>5</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>0</td>
</tr>
<tr>
<td>CROSS</td>
<td>0</td>
</tr>
</tbody>
</table>
POSITION: Returning the Position of a Search String in a Source String

Given a search string, a source string, and a starting position, POSITION returns the position of the search string within the source string. The search starts at the given starting position and searches from left to right. If the string is not found, POSITION returns zero (0). The search is case sensitive.

Syntax:

How to Return the Position of a Search String in a Source String

```plaintext
POSITION(search, source, start)
```

where:

search

Alphanumeric

Is the search string.

source

Alphanumeric

Is the source string.

start

Numeric

Is the starting position in the source string for the search.

Example:

Returning the Position of a Search String in a Source String

The following request uses POSITION twice, once to find the first occurrence of the character A after starting position 3 in FULLNAME, and once to find the first occurrence of the character a after starting position 3 in FULLNAME.

```plaintext
TABLE FILE WF_RETAIL_CUSTOMER
PRINT FULLNAME
COMPUTE POS1/I5 = POSITION('A', FULLNAME, 3) ;
POS2/I5 = POSITION('a', FULLNAME, 3) ;
WHERE RECORDLIMIT EQ 5
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF, $
ENDSTYLE
END
```
Regular Expression Functions

A regular expression is a sequence of special meta-characters and literal characters that you can combine to form a search pattern.

Note: You can search online for information about the symbols used to create a regular expression pattern. For example, Wikipedia has a good introduction at:

https://en.wikipedia.org/wiki/Regular_expression

The following list summarizes common meta-characters used in regular expressions.

- . represents any single character
- * represents zero or more occurrences
- + represents one or more occurrences
- ? represents zero or one occurrence
- ^ represents beginning of line
- $ represents end of line
- [] represents any one character in the set listed within the brackets
- [^] represents any one character not in the set listed within the brackets
- | represents the Or operator
- \ is the Escape Special Character
- () contains a character sequence

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Full Name</th>
<th>POS1</th>
<th>POS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joshua Hines</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Sandra Arzola</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Rebecca Smith</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>John Nichols</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hector Briganti</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>
For example, the regular expression `'^Ste(v|ph)en$'` matches values starting with `Ste` followed by either `ph` or `v`, and ending with `en`.

Using Regular Expressions on z/OS

On z/OS, depending on the code page you are using, some of the meta-characters used to create a regular expression may not be interpreted correctly when inserted directly from a Windows keyboard.

If you are using the Unicode code page 65002, the meta-characters will be interpreted correctly. In this environment, you need to be sure the files you are referencing, such as FOCUS data sources, have been built using this code page.

If you are not using a Unicode code page, you can use the CHAR function to return the correct meta-characters, based on the decimal code for the EBCDIC character. For example, to insert:

- The circumflex (^) meta-character, use CHAR(95).
- The left bracket ([) meta-character, use CHAR(173).
- The right bracket (]) meta-character, use CHAR(189).
- The left brace ({) meta-character, use CHAR(192).
- The right brace (}) meta-character, use CHAR(208).

Create a Dialogue Manager variable that contains the pattern. To insert the meta-characters, use the CHAR function, and then use that variable as the argument in the regular expression function. For example, to generate the regular expression `'[AEIOUaeiou]'`, which matches all uppercase and lowercase vowels, issue a -SET command similar to the following, which creates a variable named `&VCWSTRING`:

```
-SET &VCWSTRING=CHAR(173) || 'AEIOUaeiou' || CHAR(189);
```

Then use the `&VCWSTRING` variable as the regular expression argument in the function call. For example:

```
VowelCnt/I5=REGEXP_COUNT(PRODUCT, ' &VCWSTRING');
```

REGEX: Matching a String to a Regular Expression

The REGEX function matches a string to a regular expression and returns true (1) if it matches and false (0) if it does not match.

A regular expression is a sequence of special characters and literal characters that you can combine to form a search pattern.

Many references for regular expressions exist on the web.
For a basic summary, see the section Summary of Regular Expressions in Chapter 2, Security, of the TIBCO WebFOCUS® Reporting Server Administration manual.

Syntax: How to Match a String to a Regular Expression

REGEX(string, regular_expression)

where:

string
 Alphanumeric
 Is the character string to match.

regular_expression
 Alphanumeric
 Is a regular expression, enclosed in single quotation marks, constructed using literals and meta-characters. The following meta-characters are supported:

- . represents any single character
- * represents zero or more occurrences
- + represents one or more occurrences
- ? represents zero or one occurrence
- ^ represents beginning of line
- $ represents end of line
- [] represents any one character in the set listed within the brackets
- [^] represents any one character not in the set listed within the brackets
- | represents the Or operator
- \ is the Escape Special Character
- () contains a character sequence

For example, the regular expression ‘^Ste(v|ph)en$’ matches values starting with Ste followed by either ph or v, and ending with en.

Note: The output value is numeric.
Example: Matching a String Against a Regular Expression

The following request matches the FIRSTNAME field against the regular expression 'PATRIC[(I?)K]', which matches PATRICIA or PATRICK:

```plaintext
DEFINE FILE VIDEOTRK
PNAME/I5=REGEX(FIRSTNAME,'PATRIC[(I?)K]');
END
TABLE FILE VIDEOTRK
PRINT FIRSTNAME PNAME
BY LASTNAME
WHERE LASTNAME GE 'M'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>LASTNAME</th>
<th>FIRSTNAME</th>
<th>PNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCMAHON</td>
<td>JOHN</td>
<td>0</td>
</tr>
<tr>
<td>MONROE</td>
<td>CATHERINE</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>PATRICK</td>
<td>1</td>
</tr>
<tr>
<td>NON-MEMBER</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>O'BRIEN</td>
<td>DONALD</td>
<td>0</td>
</tr>
<tr>
<td>PARKER</td>
<td>GLENDRA</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>RICHARD</td>
<td>0</td>
</tr>
<tr>
<td>RATHER</td>
<td>MICHAEL</td>
<td>0</td>
</tr>
<tr>
<td>RIESLER</td>
<td>LESLIE</td>
<td>0</td>
</tr>
<tr>
<td>SPIVEY</td>
<td>TOM</td>
<td>0</td>
</tr>
<tr>
<td>STANDLER</td>
<td>MICHAEL</td>
<td>0</td>
</tr>
<tr>
<td>STEWART</td>
<td>MAUDE</td>
<td>0</td>
</tr>
<tr>
<td>WHITE</td>
<td>PATRICIA</td>
<td>1</td>
</tr>
<tr>
<td>WILLIAMS</td>
<td>KENNETH</td>
<td>0</td>
</tr>
<tr>
<td>WILSON</td>
<td>KELLY</td>
<td>0</td>
</tr>
<tr>
<td>WU</td>
<td>MARTHA</td>
<td>0</td>
</tr>
</tbody>
</table>

The following version of the request runs on z/OS. The variable ®1 contains the regular expression string with the circumflex character (^) inserted as CHAR(95), the left bracket character ([) inserted as CHAR(173), and the right bracket character (]) inserted as CHAR(189). The other meta-characters are interpreted correctly.
SET ®1 = CHAR(95) || 'PATRIC' || CHAR(173) || '(I?)K' || CHAR(189);
DEFINE FILE VIDEOTRK
PNAME/I5 = REGEX(FIRSTNAME,'®1') ;
END
TABLE FILE VIDEOTRK
PRINT FIRSTNAME PNAME
BY LASTNAME
WHERE LASTNAME GE 'M'
ON TABLE SET PAGE NOLEAD
END

The output follows.

<table>
<thead>
<tr>
<th>LASTNAME</th>
<th>FIRSTNAME</th>
<th>PNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCMAHON</td>
<td>JOHN</td>
<td>0</td>
</tr>
<tr>
<td>MONROE</td>
<td>CATHERINE</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>PATRICK</td>
<td>1</td>
</tr>
<tr>
<td>NON-MEMBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O'BRIEN</td>
<td>DONALD</td>
<td>0</td>
</tr>
<tr>
<td>PARKER</td>
<td>GLENDA</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>RICHARD</td>
<td>0</td>
</tr>
<tr>
<td>RATHER</td>
<td>MICHAEL</td>
<td>0</td>
</tr>
<tr>
<td>RIESLER</td>
<td>LESLIE</td>
<td>0</td>
</tr>
<tr>
<td>SPIVEY</td>
<td>TOM</td>
<td>0</td>
</tr>
<tr>
<td>STANDLER</td>
<td>MICHAEL</td>
<td>0</td>
</tr>
<tr>
<td>STEWART</td>
<td>MAUDE</td>
<td>0</td>
</tr>
<tr>
<td>WHITE</td>
<td>PATRICIA</td>
<td>1</td>
</tr>
<tr>
<td>WILLIAMS</td>
<td>KENNETH</td>
<td>0</td>
</tr>
<tr>
<td>WILSON</td>
<td>KELLY</td>
<td>0</td>
</tr>
<tr>
<td>WU</td>
<td>MARTHA</td>
<td>0</td>
</tr>
</tbody>
</table>

REGEXP_COUNT: Counting the Number of Matches to a Pattern in a String

REGEXP_COUNT returns the integer count of matches to a specified regular expression pattern within a source string.

Syntax:

How to Count the Number of Matches to a Pattern in a String

REGEXP_COUNT(string, pattern)

where:

- **string**
 - Alphanumeric
 - Is the input string to be searched.

- **pattern**
 - Alphanumeric
Is a regular expression, enclosed in single quotation marks, constructed using literals and meta-characters. The following meta-characters are supported:

- . represents any single character
- * represents zero or more occurrences
- + represents one or more occurrences
- ? represents zero or one occurrence
- ^ represents beginning of line
- $ represents end of line
- [] represents any one character in the set listed within the brackets
- [^] represents any one character not in the set listed within the brackets
- | represents the Or operator
- \ is the Escape Special Character
- () contains a character sequence

Example: Counting the Number of Matches to a Pattern in a String

The following example uses the following Regular Expression symbols.

- $, which searches for a specified expression that occurs at the end of a string.
- ^, which searches for a specified expression that occurs at the beginning of a string.
- \s*, which matches any number of whitespace characters, such as blank characters.
- [T,t], which matches the characters 'T' and 't'.

In the following request, REG1 is the number of occurrences of the expression 'iscotti', with any number of following whitespace characters, that occur the end of the PRODUCT field. REG2 is the number of occurrences of the characters 'T' and 't' in the PRODUCT field.

```
TABLE FILE GGSALES
SUM DOLLARS AND COMPUTE
REG1/I5 = REGEXP_COUNT(PRODUCT, 'iscotti\s*$');
REG2/I5 = REGEXP_COUNT(PRODUCT, '[T,t]');
BY PRODUCT
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
Example: Using REGEXP_COUNT on Windows and z/OS

The following request uses REGEXP_COUNT to return the number of vowels and number of consonants in each product name, on Windows. VowelCnt is the count of vowels, and ConsonantCnt is the count of non-vowels.

```
DEFINE FILE GGSALES
  VowelCnt/I5=REGEXP_COUNT(PRODUCT,'[AEIOUaeiou]');
  ConsonantCnt/I5=REGEXP_COUNT(PRODUCT,'[^AEIOUaeiou]');
END
TABLE FILE GGSALES
  SUM MAX.VowelCnt AS 'Vowels'
    MAX.ConsonantCnt AS 'Consonants'
  BY PRODUCT
END
```

Note:

- Brackets are used to enclose a list of characters that will match the regular expression pattern.
- When the circumflex character (^) prefaces the list of characters within the brackets, the regular expression matches any character not on the list.
The output is shown in the following image.

<table>
<thead>
<tr>
<th>Product</th>
<th>Vowels</th>
<th>Consonants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biscotti</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Capuccino</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Coffee Grinder</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Coffee Pot</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Croissant</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Espresso</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Latte</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Mug</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Scone</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Thermos</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

The following version of the request uses REGEXP_COUNT to return the number of vowels and number of consonants in each product name, on z/OS. The -SET commands create the regular expressions by using the CHAR function to insert the meta-characters into the expressions. VowelCnt is the count of vowels, and ConsonantCnt is the count of non-vowels.

```plaintext
-SET &VCWSTRING=CHAR(173) || 'AEIOUaeiou' || CHAR(189);
-SET &CONSTRING=CHAR(173) || CHAR(95) || 'AEIOU aeiou' || CHAR(189);
DEFINE FILE GGSALES
VowelCnt/I5=REGEXP_COUNT(PRODUCT, '&VCWSTRING');
ConsonantCnt/I5=REGEXP_COUNT(PRODUCT, '&CONSTRING');
END
TABLE FILE GGSALES
SUM MAX.VowelCnt AS 'Vowels'
    MAX.ConsonantCnt AS 'Consonants'
BY PRODUCT
ON TABLE SET PAGE NOLEAD
END
```
<table>
<thead>
<tr>
<th>Product</th>
<th>Vowels</th>
<th>Consonants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biscotti</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Capuccino</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Coffee Grinder</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Coffee Pot</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Croissant</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Espresso</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Latte</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Mug</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Scone</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Thermos</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

REGEXP_INSTR: Returning the First Position of a Pattern in a String

REGEXP_INSTR returns the integer position of the first match to a specified regular expression pattern within a source string. The first character position in a string is indicated by the value 1. If there is no match within the source string, the value 0 is returned.

Syntax:

How to Return the Position of a Pattern in a String

REGEXP_INSTR(string, pattern)

where:

string

Alphanumeric

Is the input string to be searched.

pattern

Alphanumeric

Is a regular expression, enclosed in single quotation marks, constructed using literals and meta-characters. The following meta-characters are supported:

- `.` represents any single character
- `*` represents zero or more occurrences
- `+` represents one or more occurrences
- `?` represents zero or one occurrence
- `^` represents beginning of line
- `$` represents end of line
Example: Finding the Position of a Pattern in a String

The following example uses the following Regular Expression symbols.

- $, which searches for a specified expression that occurs at the end of a string.
- ^, which searches for a specified expression that occurs at the beginning of a string.
- \s*, which matches any number of whitespace characters, such as blank characters.
- [B,C,S], which matches the uppercase letters B, C, and S.

In the following request, REG1 is the position of the expression 'iscotti', with any number of following whitespace characters, that occur the end of the PRODUCT field value. REG2 is the position of the characters 'B', 'C', or 'S' that occur at the beginning of the PRODUCT field value.

```
TABLE FILE GGSALES
SUM DOLLARS AND COMPUTE
REG1/I5 = REGEXP_INSTR(PRODUCT, 'iscotti\s*$');
REG2/I5 = REGEXP_INSTR(PRODUCT, '^[B,C,S]');
BY PRODUCT
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
The output is shown in the following image.

<table>
<thead>
<tr>
<th>Product</th>
<th>Dollar Sales</th>
<th>REG1</th>
<th>REG2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biscotti</td>
<td>5263317</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Capuccino</td>
<td>2381590</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Coffee Grinder</td>
<td>2337567</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Coffee Pot</td>
<td>2449585</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Croissant</td>
<td>7749902</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Espresso</td>
<td>3906243</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Latte</td>
<td>10943622</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mug</td>
<td>4522521</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Scone</td>
<td>4216114</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Thermos</td>
<td>2385829</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The following version of the request runs on z/OS. The first regular expression can be input directly because the characters used are interpreted correctly. For the second regular expression, a variable is created to contain the pattern. This variable is then used in the function call.

```
-SET &REG2STR=CHAR(95) || CHAR(173) || 'B,C,S' || CHAR(189);
TABLE FILE GGSales
SUM DOLLARS AND COMPUTE
REG1/I5 = REGEXP_INSTR(PRODUCT, 'iscotti\s*$');
REG2/I5 = REGEXP_INSTR(PRODUCT, '&REG2STR');
BY PRODUCT
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

The output follows.

<table>
<thead>
<tr>
<th>Product</th>
<th>Dollar Sales</th>
<th>REG1</th>
<th>REG2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biscotti</td>
<td>5263317</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Capuccino</td>
<td>2381590</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Coffee Grinder</td>
<td>2337567</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Coffee Pot</td>
<td>2449585</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Croissant</td>
<td>7749902</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Espresso</td>
<td>3906243</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Latte</td>
<td>10943622</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mug</td>
<td>4522521</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Scone</td>
<td>4216114</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Thermos</td>
<td>2385829</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
REGEXP_REPLACE: Replacing All Matches to a Pattern in a String

REGEXP_REPLACE returns a string generated by replacing all matches to a regular expression pattern in the source string with the given replacement string. The replacement string can be a null string.

Syntax:

How to Replace Matches to a Pattern in a String

REGEXP_REPLACE(string, pattern, replacement)

where:

string

Alphanumeric

Is the input string to be searched.

pattern

Alphanumeric

Is a regular expression, enclosed in single quotation marks, constructed using literals and meta-characters. The following meta-characters are supported

- . represents any single character
- * represents zero or more occurrences
- + represents one or more occurrences
- ? represents zero or one occurrence
- ^ represents beginning of line
- $ represents end of line
- [] represents any one character in the set listed within the brackets
- [^] represents any one character not in the set listed within the brackets
- | represents the Or operator
- \ is the Escape Special Character
- () contains a character sequence

replacement

Alphanumeric

Is the replacement string.
Example: Replacing Matches to a Pattern in a String

The following example uses the following Regular Expression symbol.

- `^`, which searches for a specified expression that occurs at the beginning of a string.

In the following request REG1 replaces the string 'North' at the beginning of the REGION field value with the string 'South', and REG2 replaces the string 'Mid' at the beginning of the REGION field value with a null string.

```
TABLE FILE GGSALES
SUM DOLLARS NOPRINT AND COMPUTE
REG1/A25 = REGEXP_REPLACE(REGION, '^North', 'South');
REG2/A25 = REGEXP_REPLACE(REGION, '^Mid', '');
BY REGION
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Region</th>
<th>REG1</th>
<th>REG2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midwest</td>
<td>Midwest</td>
<td>west</td>
</tr>
<tr>
<td>Northeast</td>
<td>Southeast</td>
<td>Northeast</td>
</tr>
<tr>
<td>Southeast</td>
<td>Southeast</td>
<td>Southeast</td>
</tr>
<tr>
<td>West</td>
<td>West</td>
<td>West</td>
</tr>
</tbody>
</table>

The following version of the request runs on z/OS. The regular expression string is created in a variable using a -SET command. The circumflex meta-character (^) is inserted as CHAR(95).

```
-SET &REGSTRING1= CHAR(95) || 'North' ;
-SET &REGSTRING2= CHAR(95) || 'Mid' ;
TABLE FILE GGSALES
SUM DOLLARS NOPRINT AND COMPUTE
REG1/A25 = REGEXP_REPLACE(REGION, '&REGSTRING1', 'South');
REG2/A25 = REGEXP_REPLACE(REGION, '&REGSTRING2', '');
BY REGION
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
The output follows.

<table>
<thead>
<tr>
<th>Region</th>
<th>REG1</th>
<th>REG2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midwest</td>
<td>Midwest</td>
<td>west</td>
</tr>
<tr>
<td>Northeast</td>
<td>Southeast</td>
<td>Northeast</td>
</tr>
<tr>
<td>Southeast</td>
<td>Southeast</td>
<td>Southeast</td>
</tr>
<tr>
<td>West</td>
<td>West</td>
<td>West</td>
</tr>
</tbody>
</table>

REGEXP_SUBSTR: Returning the First Match to a Pattern in a String

REGEXP_SUBSTR returns a string that contains the first match to a specified regular expression pattern within a source string. If there is no match within the source string, a null string is returned.

Syntax:

How to Returning the First Match to a Pattern in a String

```
REGEXP_SUBSTR(string, pattern)
```

where:

- **string**
 - Alphanumeric
 - Is the input string to be searched.

- **pattern**
 - Alphanumeric
 - Is a regular expression, enclosed in single quotation marks, constructed using literals and meta-characters. The following meta-characters are supported:
 - . represents any single character
 - * represents zero or more occurrences
 - + represents one or more occurrences
 - ? represents zero or one occurrence
 - ^ represents beginning of line
 - $ represents end of line
 - [] represents any one character in the set listed within the brackets
 - [^] represents any one character not in the set listed within the brackets
 - | represents the Or operator
\ is the Escape Special Character
() contains a character sequence

Example: Returning the First Match of a Pattern in a String

The following example uses the following Regular Expression symbols.

- [A-Z], which matches any uppercase letter.
- [a-z], which matches any lowercase letter.

In the following request, REG1 contains the first instance of a string within the REGION field value that starts with an uppercase letter, followed by any number of lowercase letters, followed by the characters 'west'. REG2 contains the first instance of a string within the REGION field value that starts with an uppercase letter, followed by any number of lowercase letters, followed by the characters 'east'.

```
TABLE FILE GGSALES
SUM DOLLARS NOPRINT AND COMPUTE
REG1/A25 = REGEXP_SUBSTR(REGION, '[A-Z][a-z]*west');
REG2/A25 = REGEXP_SUBSTR(REGION, '[A-Z][a-z]*east');
BY REGION
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Region</th>
<th>REG1</th>
<th>REG2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midwest</td>
<td>Midwest</td>
<td>Midwest</td>
</tr>
<tr>
<td>Northeast</td>
<td>Northeast</td>
<td>Northeast</td>
</tr>
<tr>
<td>Southeast</td>
<td>Southeast</td>
<td>Southeast</td>
</tr>
<tr>
<td>West</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following version of the request runs on z/OS, where the regular expression is generated as a variable, using the CHAR function to insert the meta-characters. Note that the asterisk meta-character (*) needs to be represented as CHAR(92).

-SET ®1=CHAR(173) || 'A-Z' || CHAR(189) || CHAR(173) || 'a-z'
- || CHAR(189) || CHAR(92) || 'west' ;
-SET ®2=CHAR(173) || 'A-Z' || CHAR(189) || CHAR(173) || 'a-z'
- || CHAR(189) || '*east';

TABLE FILE GGSALES
SUM DOLLARS NOPRINT AND COMPUTE
REG1/A25 = REEXP_SUBSTR(REGION,'®1');
REG2/A25 = REEXP_SUBSTR(REGION,'®2');
BY REGION
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The output follows.

<table>
<thead>
<tr>
<th>Region</th>
<th>REG1</th>
<th>REG2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midwest</td>
<td>Midwest</td>
<td></td>
</tr>
<tr>
<td>Northeast</td>
<td></td>
<td>Northeast</td>
</tr>
<tr>
<td>Southeast</td>
<td></td>
<td>Southeast</td>
</tr>
<tr>
<td>West</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REPEAT: Repeating a String a Given Number of Times

Given a source string and an integer number, REPEAT returns a string with the source string repeated that number of times. The string containing the repeated strings must be large enough to fit the repetitions or it will contain a truncated value.

Syntax: How to Repeat a Character String a Given Number of Times

REPEAT(source_str, number)

where:

source_str
 Alphanumeric
 Is the source string to be repeated. If source_str is a field, the entire field, including blanks, will be repeated.

number
 Numeric
 Is the number of times to repeat the source string.
Example: Repeating a String a Given Number of Times

The following request returns a string with FIRST_NAME repeated three times.

```plaintext
TABLE FILE EMPLOYEE
PRINT FIRST_NAME
COMPUTE REPEAT3/A25 = REPEAT(FIRST_NAME, 3);
ON TABLE SET PAGE NOLEAD
ON TABLE PCHOLD FORMAT PDF
ON TABLE SET STYLE *
GRID=OFF, $
ENDSTYLE
END
```

The PDF output is shown in the following image.

<table>
<thead>
<tr>
<th>FIRST_NAME</th>
<th>REPEAT3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALFRED</td>
<td>ALFRED ALFRED ALFRE</td>
</tr>
<tr>
<td>MARY</td>
<td>MARY MARY MARY</td>
</tr>
<tr>
<td>DIANE</td>
<td>DIANE DIANE DIANE</td>
</tr>
<tr>
<td>RICHARD</td>
<td>RICHARD RICHARD RICHA</td>
</tr>
<tr>
<td>JOHN</td>
<td>JOHN JOHN JOHN</td>
</tr>
<tr>
<td>JOAN</td>
<td>JOAN JOAN JOAN</td>
</tr>
<tr>
<td>ANTHONY</td>
<td>ANTHONY ANTHONY ANTHO</td>
</tr>
<tr>
<td>JOHN</td>
<td>JOHN JOHN JOHN</td>
</tr>
<tr>
<td>ROSEMARIE</td>
<td>ROSEMARIE ROSEMARIE ROSEM</td>
</tr>
<tr>
<td>ROGER</td>
<td>ROGER ROGER ROGER</td>
</tr>
<tr>
<td>MARY</td>
<td>MARY MARY MARY</td>
</tr>
<tr>
<td>BARBARA</td>
<td>BARBARA BARBARA BARBA</td>
</tr>
</tbody>
</table>

REPLACE: Replacing a String

REPLACE replaces all instances of a search string in an input string with the given replacement string. The output is always variable length alphanumeric with a length determined by the input parameters.

Syntax: How to Replace all Instances of a String

```
REPLACE(input_string, search_string, replacement)
```
where:

input_string
Alphanumeric or text (An, AnV, TX)
Is the input string.

search_string
Alphanumeric or text (An, AnV, TX)
Is the string to search for within the input string.

replacement
Alphanumeric or text (An, AnV, TX)
Is the replacement string to be substituted for the search string. It can be a null string ('').

Example:
Replacing a String

REPLACE replaces the string ‘South’ in the Country Name with the string ‘S.’

```
SET TRACEUSER = ON
SET TRACEMON = STMTRACE//CLIENT
SET TRACESTAMP=OFF
DEFINE FILE WF_RETAIL_LITE
NEWNAME/A20 = REPLACE(COUNTRY_NAME, 'SOUTH', 'S.');
END
TABLE FILE WF_RETAIL_LITE
SUM COUNTRY_NAME
BY NEWNAME AS 'New,Name'
WHERE COUNTRY_NAME LIKE 'S%'
ON TABLE SET PAGE NOLEAD
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>New Name</th>
<th>Customer Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Africa</td>
<td>South Africa</td>
</tr>
<tr>
<td>S. Korea</td>
<td>South Korea</td>
</tr>
<tr>
<td>Singapore</td>
<td>Singapore</td>
</tr>
<tr>
<td>Spain</td>
<td>Spain</td>
</tr>
<tr>
<td>Sweden</td>
<td>Sweden</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Switzerland</td>
</tr>
</tbody>
</table>
Example: Replacing All Instances of a String

In the following request, the virtual field DAYNAME1 is the string DAY1 with all instances of the string 'DAY' replaced with the string 'day'. The virtual field DAYNAME2 has all instances of the string 'DAY' removed.

```plaintext
DEFINE FILE WF_RETAIL
  DAY1/A30 = 'SUNDAY MONDAY TUESDAY';
  DAYNAME1/A30 = REPLACE(DAY1, 'DAY', 'day');
  DAYNAME2/A30 = REPLACE(DAY1, 'DAY', '');
END

TABLE FILE WF_RETAIL
PRINT DAY1 OVER
DAYNAME1 OVER
DAYNAME2
WHERE EMPLOYEE_NUMBER EQ 'AH118'
ON TABLE SET PAGE NOPAGE
END
```

The output is:

```
  DAY1  SUNDAY MONDAY TUESDAY
  DAYNAME1 SUNday MONday TUESday
  DAYNAME2 SUN MON TUES
```

RIGHT: Returning Characters From the Right of a Character String

Given a source character string, or an expression that can be converted to varchar (variable-length alphanumeric), and an integer number, RIGHT returns that number of characters from the right end of the string.

Syntax: How to Return Characters From the Right of a Character String

```plaintext
RIGHT(chr_exp, int_exp)
```

where:

- `chr_exp`
 Alphanumeric or an expression that can be converted to variable-length alphanumeric.
 Is the source character string.

- `int_exp`
 Integer
 Is the number of characters to be returned.
Example: Returning Characters From the Right of a Character String

The following request computes the length of the last name in the FULLNAME field and returns that number of characters to LAST.

```
TABLE FILE WF_RETAIL_EMPLOYEE
PRINT FULLNAME AND
COMPUTE LEN/15 = ARGLEN(54, GET_TOKEN(FULLNAME, ' ', 2), LEN); NOPRINT
COMPUTE LAST/A20 = RIGHT(FULLNAME, LEN);
WHERE RECORDLIMIT EQ 20
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
RPAD: Right-Padding a Character String

RPAD uses a specified character and output length to return a character string padded on the right with that character.

Syntax: How to Pad a Character String on the Right

RPAD(string, out_length, pad_character)
where:

\textit{string} \\
\hspace{1cm} \text{Alphanumeric} \\
\hspace{1cm} \text{Is a string to pad on the right side.}

\textit{out_length} \\
\hspace{1cm} \text{Integer} \\
\hspace{1cm} \text{Is the length of the output string after padding.}

\textit{pad_character} \\
\hspace{1cm} \text{Alphanumeric} \\
\hspace{1cm} \text{Is a single character to use for padding.}

\textbf{Example: Right-Padding a String}

In the following request against the WF_RETAIL data source, \texttt{RPAD} right-pads the PRODUCT_CATEGORY column with @ symbols:

\begin{verbatim}
DEFINE FILE WF_RETAIL
RPAD1/A25 = RPAD(PRODUCT_CATEGORY,25,'@');
DIG1/A4 = DIGITS(ID_PRODUCT,4);
END
TABLE FILE WF_RETAIL
SUM DIG1 RPAD1
BY PRODUCT_CATEGORY
ON TABLE SET PAGE NOPAGE
ON TABLE SET STYLE *
TYPE=DATA, Font=COURIER, SIZE=11, COLOR=BLUE,$
END
\end{verbatim}
Usage Notes for RPAD

- The input string can be data type AnV, VARCHAR, TX, and An.
- Output can only be AnV or An.
- When working with relational VARCHAR columns, there is no need to trim trailing spaces from the field if they are not desired. However, with An and AnV fields derived from An fields, the trailing spaces are part of the data and will be included in the output, with the padding being placed to the right of these positions. You can use TRIM or TRIMV to remove these trailing spaces prior to applying the RPAD function.

RTRIM: Removing Blanks From the Right End of a String

The RTRIM function removes all blanks from the right end of a string.

Syntax: How to Remove Blanks From the Right End of a String

RTRIM(string)

where:

string

Alphanumeric

Is the string to trim on the right.
The data type of the returned string is AnV, with the same maximum length as the source string.

Example: Removing Blanks From the Right End of a String

The following request against the MOVIES data source creates the field DIRSLASH, that contains a slash at the end of the DIRECTOR field. Then it creates the TRIMDIR field, which trims the trailing blanks from the DIRECTOR field and places a slash at the end of that field:

```
TABLE FILE MOVIES
PRINT DIRECTOR NOPRINT AND
COMPUTE
DIRSLASH/A18 = DIRECTOR|'/';
TRIMDIR/A17V = RTRIM(DIRECTOR)|'/';
WHERE DIRECTOR CONTAINS 'BR'
ON TABLE SET PAGE NOPAGE
END
```

On the output, the slashes show that the trailing blanks in the DIRECTOR field were removed in the TRIMDIR field:

```
DIRSLASH       TRIMDIR
---------       -------
ABRAHAMS J.    / ABRAHAMS J./
BROOKS R.      / BROOKS R./
BROOKS J.L.    / BROOKS J.L./
```

SPACE: Returning a String With a Given Number of Spaces

Given an integer count, SPACE returns a string consisting of that number of spaces.

Note: To retain the spaces in HTML report output, the SHOWBLANKS parameter must be set to ON.

Syntax: How to Return a String With a Given Number of Spaces

```
SPACE(count)
```

where:

```
count
    Numeric
    Is the number of spaces to return.
```
Example: Returning a String With a Given Number of Spaces

The following request inserts 20 spaces between the DOLLARS and UNITS values converted to alphanumeric values. The font used is Courier because it is monospaced and shows the 20 blanks without making them proportional.

```
SET SHOWBLANKS = ON
TABLE FILE GGSALES
SUM DOLLARS NOPRINT UNITS NOPRINT AND
COMPUTE ALPHADOLL/A8 = EDIT(DOLLARS); NOPRINT
COMPUTE ALPHAUNIT/A8 = EDIT(UNITS); NOPRINT
COMPUTE Dollars_And_Units_With_Spaces/A60 = ALPHADOLL | SPACE(20) | ALPHAUNIT;
BY CATEGORY
ON TABLE SET PAGE NOLEAD
ON TABLE PCHOLD FORMAT PDF
ON TABLE SET STYLE *
GRID=OFF, FONT=COURIER,$
ENDSTYLE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Category</th>
<th>Dollars_And_Units_With_Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coffee</td>
<td>17231455 01376266</td>
</tr>
<tr>
<td>Food</td>
<td>17229333 01384045</td>
</tr>
<tr>
<td>Gifts</td>
<td>11695502 00927880</td>
</tr>
</tbody>
</table>

SPLIT: Extracting an Element From a String

The SPLIT function returns a specific type of element from a string. The output is returned as variable length alphanumeric.

Syntax: How to Extract an Element From a String

```
SPLIT(element, string)
```

where:

`element`

Can be one of the following keywords:

- **EMAIL_DOMAIN**. Is the domain name portion of an email address in the string.
- **EMAIL_USERID**. Is the user ID portion of an email address in the string.
- **URL_PROTOCOL**. Is the URL protocol for a URL in the string.
SUBSTRING: Extracting a Substring From a Source String

- **URL_HOST.** Is the host name of the URL in the string.
- **URL_PORT.** Is the port number of the URL in the string.
- **URL_PATH.** Is the URL path for a URL in the string.
- **NAME_FIRST.** Is the first token (group of characters) in the string. Tokens are delimited by blanks.
- **NAME_LAST.** Is the last token (group of characters) in the string. Tokens are delimited by blanks.

string

Alphanumeric

Is the string from which the element will be extracted.

Example: Extracting an Element From a String

The following request defines strings and extracts elements from them.

```plaintext
DEFINE FILE WF_RETAIL_LITE
STRING1/A50 WITH COUNTRY_NAME= 'http://www.informationbuilders.com';
STRING2/A20 = 'user1@ibi.com';
STRING3/A20 = 'Louisa May Alcott';
Protocol/A20 = SPLIT(URL_PROTOCOL, STRING1);
Path/A50 = SPLIT(URL_PATH, STRING1);
Domain/A20 = SPLIT(EMAIL_DOMAIN, STRING2);
User/A20 = SPLIT(EMAIL_USERID, STRING2);
First/A10 = SPLIT(NAME_FIRST, STRING3);
Last/A10 = SPLIT(NAME_LAST, STRING3);
END
TABLE FILE WF_RETAIL_LITE
SUM Protocol Path User Domain First Last
ON TABLE SET PAGE NOLEAD
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>http</td>
<td>http://www.informationbuilders.com</td>
</tr>
</tbody>
</table>

First

Last

User

Domain

Example: Substring

The SUBSTRING function extracts a substring from a source string. If the ending position you specify for the substring is past the end of the source string, the position of the last character of the source string becomes the ending position of the substring.
Syntax:

How to Extract a Substring From a Source String

```
SUBSTRING(string, position, length)
```

where:

- **string**
 - Alphanumeric
 - Is the string from which to extract the substring. It can be a field, a literal in single quotation marks (""'), or a variable.

- **position**
 - Positive Integer
 - Is the starting position of the substring in `string`.

- **length**
 - Integer
 - Is the limit for the length of the substring. The ending position of the substring is calculated as `position + length - 1`. If the calculated position beyond the end of the source string, the position of the last character of `string` becomes the ending position.

The data type of the returned substring is AnV.

Example:

Extracting a Substring From a Source String

In the following request, POSITION determines the position of the first letter I in LAST_NAME and stores the result in I_IN_NAME. SUBSTRING, then extracts three characters beginning with the letter I from LAST_NAME and stores the results in I_SUBSTR.

```
TABLE FILE EMPLOYEE
PRINT
COMPUTE I_IN_NAME/I2 = POSITION('I', LAST_NAME); AND
COMPUTE I_SUBSTR/A3 = SUBSTRING(LAST_NAME, I_IN_NAME, I_IN_NAME+2);
BY LAST_NAME
ON TABLE SET PAGE NOPAGE
END
```
TOKEN: Extracting a Token From a String

The token function extracts a token (substring) from a string of characters. The tokens are separated by a delimiter consisting of one or more characters and specified by a token number reflecting the position of the token in the string.

Syntax:

How to Extract a Token From a String

```
TOKEN(string, delimiter, number)
```

where:

- **string**

 Fixed length alphanumeric

 Is the character string from which to extract the token.

- **delimiter**

 Fixed length alphanumeric

 Is a delimiter consisting of one or more characters.

 TOKEN can be optimized if the delimiter consists of a single character.

- **number**

 Integer

 Is the token number to extract.
Example: Extracting a Token From a String

TOKEN extracts the second token from the PRODUCT_SUBCATEG column, where the delimiter is the letter P:

```plaintext
DEFINE FILE WF_RETAIL_LITE
TOK1/A20 = TOKEN(PRODUCT_SUBCATEG,'P',2);
END
TABLE FILE WF_RETAIL_LITE
SUM TOK1 AS Token
BY PRODUCT_SUBCATEG
ON TABLE SET PAGE NOPAGE
END
```
The output is:

<table>
<thead>
<tr>
<th>Product</th>
<th>Token</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blu Ray</td>
<td>layers</td>
</tr>
<tr>
<td>Boom Box</td>
<td>layers -</td>
</tr>
<tr>
<td>CRT TV</td>
<td>anel TV</td>
</tr>
<tr>
<td>Charger</td>
<td></td>
</tr>
<tr>
<td>DVD Players</td>
<td>layers</td>
</tr>
<tr>
<td>DVD Players - Portable</td>
<td>layers -</td>
</tr>
<tr>
<td>Flat Panel TV</td>
<td>anel TV</td>
</tr>
<tr>
<td>Handheld</td>
<td></td>
</tr>
<tr>
<td>Headphones</td>
<td>hones</td>
</tr>
<tr>
<td>Home Theater Systems</td>
<td></td>
</tr>
<tr>
<td>Portable TV</td>
<td>portable TV</td>
</tr>
<tr>
<td>Professional</td>
<td>rofessional</td>
</tr>
<tr>
<td>Receivers</td>
<td></td>
</tr>
<tr>
<td>Smartphone</td>
<td>hone</td>
</tr>
<tr>
<td>Speaker Kits</td>
<td>speaker Kits</td>
</tr>
<tr>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>Streaming</td>
<td></td>
</tr>
<tr>
<td>Tablet</td>
<td></td>
</tr>
<tr>
<td>Universal Remote Controls</td>
<td></td>
</tr>
<tr>
<td>Video Editing</td>
<td></td>
</tr>
<tr>
<td>iPod Docking Station</td>
<td>od Docking Station</td>
</tr>
</tbody>
</table>

TRIM_: Removing a Leading Character, Trailing Character, or Both From a String

The TRIM_ function removes all occurrences of a single character from either the beginning or end of a string, or both.
Note:

- Leading and trailing blanks count as characters. If the character you want to remove is preceded (for leading) or followed (for trailing) by a blank, the character will not be removed. Alphanumeric fields that are longer than the number of characters stored within them are padded with trailing blanks.

- The function will be optimized when run against a relational DBMS that supports trimming the character and location specified.

Syntax:
How to Remove a Leading Character, Trailing Character, or Both From a String

```
TRIM_(where, pattern, string)
```

where:

- **where**
 - Keyword
 - Defines where to trim the source string. Valid values are:
 - **LEADING**, which removes leading occurrences.
 - **TRAILING**, which removes trailing occurrences.
 - **BOTH**, which removes leading and trailing occurrences.

- **pattern**
 - Alphanumeric
 - Is a single character, enclosed in single quotation marks ("), whose occurrences are to be removed from **string**. For example, the character can be a single blank (" ").

- **string**
 - Alphanumeric
 - Is the string to be trimmed.

The data type of the returned string is AnV.
Example: Trimming a Character From a String

In the following request, TRIM_ removes leading occurrences of the character ‘B’ from the DIRECTOR field:

```
TABLE FILE MOVIES
PRINT DIRECTOR AND
COMPUTE
TRIMDIR/A17 = TRIM_(LEADING, 'B', DIRECTOR);
WHERE DIRECTOR CONTAINS 'BR'
ON TABLE SET PAGE NOPAGE
END
```

The output is:

```
DIRECTOR           TRIMDIR
--------           -------
ABRAHAMS J.        ABRAHAMS J.
BROOKS R.          ROOKS R.
BROOKS J.L.        ROOKS J.L.
```

Example: Trimming With Trailing Blanks

The following request trims a trailing period (.) from the director name. The field DIRECTOR has format A17, so there are trailing blanks in most of the instances of the field. To create a field (DIRECTORV) without trailing blanks, SQUEEZ converts the trailing blanks in DIRECTOR to a single blank, then TRIMV removes the remaining trailing blank and stores it with format A17V, so the length of the actual characters is known. Then TRIM_ is called against DIRECTOR and DIRECTORV, creating the fields TRIMDIR (trimmed DIRECTOR) and TRIMDIRV (trimmed DIRECTORV):

```
DEFINE FILE MOVIES
DIRECTORV/A17V = TRIMV('T', SQUEEZ(17, DIRECTOR, 'A17V'), 17, ' ', 1, DIRECTORV) ;
TRIMDIR/A17 = TRIM_(TRAILING, '.', DIRECTOR);
TRIMDIRV/A17V = TRIM_(TRAILING, '.', DIRECTORV);
END
TABLE FILE MOVIES
PRINT DIRECTOR TRIMDIR DIRECTORV TRIMDIRV
ON TABLE SET PAGE NOPAGE
END
```

The partial output shows that the trimmed DIRECTOR field still has the trailing periods because the period is not the last character in the field. In the trimmed DIRECTORV field, the trailing periods have been removed:
UPPER: Returning a String With All Letters Uppercase

The UPPER function takes a source string and returns a string of the same data type with all letters translated to uppercase.

Syntax:

How to Return a String With All Letters Uppercase

```
UPPER(string)
```

where:

string

Alphanumeric

Is the string to convert to uppercase.

The returned string is the same data type and length as the source string.

Example:

Converting Letters to Uppercase

In the following request, LCWORD converts LAST_NAME to mixed case. Then UPPER converts the LAST_NAME_MIXED field to uppercase:

```
DEFINE FILE EMPLOYEE
LAST_NAME_MIXED/A15=LCWORD(15, LAST_NAME, 'A15');
LAST_NAME_UPPER/A15=UPPER(LAST_NAME_MIXED) ;
END
TABLE FILE EMPLOYEE
PRINT LAST_NAME_UPPER AND FIRST_NAME
BY LAST_NAME_MIXED
WHERE CURR_JOBCODE EQ 'B02' OR 'A17' OR 'B04';
ON TABLE SET PAGE NOPAGE
END
```
The output is:

<table>
<thead>
<tr>
<th>LAST_NAME_MIXED</th>
<th>LAST_NAME_UPPER</th>
<th>FIRST_NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banning</td>
<td>BANNING</td>
<td>JOHN</td>
</tr>
<tr>
<td>Blackwood</td>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
</tr>
<tr>
<td>Cross</td>
<td>CROSS</td>
<td>BARBARA</td>
</tr>
<tr>
<td>Mccoy</td>
<td>MCCOY</td>
<td>JOHN</td>
</tr>
<tr>
<td>Mcknight</td>
<td>MCKNIGHT</td>
<td>ROGER</td>
</tr>
<tr>
<td>Romans</td>
<td>ROMANS</td>
<td>ANTHONY</td>
</tr>
</tbody>
</table>
Chapter 6

Character Functions

Character functions manipulate alphanumeric fields and character strings.

In this chapter:

- Character Function Notes
- ARGLEN: Measuring the Length of a String
- ASIS: Distinguishing Between Space and Zero
- BITSON: Determining If a Bit Is On or Off
- BITVAL: Evaluating a Bit String as an Integer
- BYTVAL: Translating a Character to Decimal
- CHKFMT: Checking the Format of a String
- CHKNUM: Checking a String for Numeric Format
- CTRAN: Translating One Character to Another
- CTRFLD: Centering a Character String
- EDIT: Extracting or Adding Characters
- GETTOK: Extracting a Substring (Token)
- LCWORD: Converting a String to Mixed-Case
- LCWORD2: Converting a String to Mixed-Case
- LOCASE: Converting Text to Lowercase
- OVRLAY: Overlaying a Character String
- PARAG: Dividing Text Into Smaller Lines
- PATTERN: Generating a Pattern From a String
- POSIT: Finding the Beginning of a Substring
- REVERSE: Reversing the Characters in a String
- RJUST: Right-Justifying a Character String
- SOUNDEX: Comparing Character Strings Phonetically
- SPELLNM: Spelling Out a Dollar Amount
- SQUEEZ: Reducing Multiple Spaces to a Single Space
- STRIP: Removing a Character From a String
- STRREP: Replacing Character Strings
- SUBSTR: Extracting a Substring
- TRIM: Removing Leading and Trailing Occurrences
- UPCASE: Converting Text to Uppercase
- XMLDECOD: Decoding XML-Encoded Characters
Character Function Notes

In addition to the functions discussed in this topic, there are character functions that are available only in the Maintain language. For information on these functions, see Maintain-specific Character Functions on page 281.

For many functions, the output argument can be supplied either as a field name or as a format enclosed in single quotation marks. However, if a function is called from a Dialogue Manager command, this argument must always be supplied as a format, and if a function is called from a Maintain Data procedure, this argument must always be supplied as a field name. For detailed information about calling a function and supplying arguments, see Accessing and Calling a Function on page 61.

ARGLEN: Measuring the Length of a String

Available Languages: reporting, Maintain

The ARGLEN function measures the length of a character string within a field, excluding trailing spaces. The field format in a Master File specifies the length of a field, including trailing spaces.

In Dialogue Manager, you can measure the length of a supplied character string using the .LENGTH suffix.

Syntax:

How to Measure the Length of a Character String

ARGLEN(length, source_string, output)

where:

length

Integer

Is the length of the field containing the character string, or a field that contains the length.

source_string

Alphanumeric

Is the name of the field containing the character string.
output

Integer

Is the field that contains the result, or the format of the output value enclosed in single quotation marks.

Example: Measuring the Length of a Character String

ARGLEN determines the length of the character string in LAST_NAME and stores the result in NAME_LEN:

```
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
NAME_LEN/I3 = ARGLEN(15, LAST_NAME, NAME_LEN);
WHERE DEPARTMENT EQ 'MIS';
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>NAME_LEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMITH</td>
<td>5</td>
</tr>
<tr>
<td>JONES</td>
<td>5</td>
</tr>
<tr>
<td>MCCOY</td>
<td>5</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>9</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>9</td>
</tr>
<tr>
<td>CROSS</td>
<td>5</td>
</tr>
</tbody>
</table>

ASIS: Distinguishing Between Space and Zero

Available Languages: reporting

The ASIS function distinguishes between a space and a zero in Dialogue Manager. It differentiates between a numeric string, a constant or variable defined as a numeric string (number within single quotation marks), and a field defined simply as numeric. ASIS forces a variable to be evaluated as it is entered rather than be converted to a number. It is used in Dialogue Manager equality expressions only.
Syntax: How to Distinguish Between a Space and a Zero

\[ASIS(argument) \]

where:

\[argument \]
Alphanumeric

Is the value to be evaluated. Supply the actual value, the name of a field that contains the value, or an expression that returns the value. An expression can call a function.

If you specify an alphanumeric literal, enclose it in single quotation marks. If you specify an expression, use parentheses, as needed, to ensure the correct order of evaluation.

Example: Distinguishing Between a Space and a Zero

The first request does not use ASIS. No difference is detected between variables defined as a space and 0.

\[-SET &VAR1 = ' ';\]
\[-SET &VAR2 = 0;\]
\[-IF &VAR2 EQ &VAR1 GOTO ONE;\]
\[-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 NOT TRUE\]
\[-QUIT\]
\[-ONE\]
\[-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 TRUE\]

The output is:

VAR1 EQ VAR2 0 TRUE

The next request uses ASIS to distinguish between the two variables.

\[-SET &VAR1 = ' ';\]
\[-SET &VAR2 = 0;\]
\[-IF &VAR2 EQ ASIS(&VAR1) GOTO ONE;\]
\[-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 NOT TRUE\]
\[-QUIT\]
\[-ONE\]
\[-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 TRUE\]

The output is:

VAR1 EQ VAR2 0 NOT TRUE
Reference: Usage Notes for ASIS

In general, Dialogue Manager variables are treated as alphanumeric values. However, a Dialogue Manager variable with the value of '.' may be treated as an alphanumeric value ('.') or a number (0) depending on the context used.

- If the Dialogue Manager variable '.' is used in a mathematical expression, its value will be treated as a number. For example, in the following request, &DMVAR1 is used in an arithmetic expression and is evaluated as zero (0).

```plaintext
-SET &DMVAR1=.';
-SET &DMVAR2=10 + &DMVAR1;
-TYPE DMVAR2 = &DMVAR2
```

The output is:

```
DMVAR2 = 10
```

- If the Dialogue Manager variable value '.' is used in an IF test and is compared to the values ' ', '0', or '.', the result will be TRUE even if ASIS is used, as shown in the following example. The following IF tests all evaluate to TRUE.

```plaintext
-SET &DMVAR1=.';
-SET &DMVAR2=IF &DMVAR1 EQ ' ' THEN 'TRUE' ELSE 'FALSE';
-SET &DMVAR3=IF &DMVAR1 EQ '0' THEN 'TRUE' ELSE 'FALSE';
-SET &DMVAR4=IF &DMVAR1 EQ '.' THEN 'TRUE' ELSE 'FALSE';
```

- If the Dialogue Manager variable is used with ASIS, the result of the ASIS function will be always be considered alphanumeric and will distinguish between the space (' '), zero ('0'), or period ('.'), as in the following example. The following IF tests all evaluate to TRUE.

```plaintext
-SET &DMVAR2=IF ASIS(.'') EQ ' ' THEN 'TRUE' ELSE 'FALSE';
-SET &DMVAR3=IF ASIS('0') EQ '0' THEN 'TRUE' ELSE 'FALSE';
-SET &DMVAR4=IF ASIS('00') EQ '0' THEN 'TRUE' ELSE 'FALSE';
```

- Comparing ASIS('0') to ' ' and ASIS(' ') to '0' always evaluates to FALSE.

BITSON: Determining If a Bit Is On or Off

Available Languages: reporting, Maintain

The BITSON function evaluates an individual bit within a character string to determine whether it is on or off. If the bit is on, BITSON returns a value of 1. If the bit is off, it returns a value of 0. This function is useful in interpreting multi-punch data, where each punch conveys an item of information.
Syntax: How to Determine If a Bit Is On or Off

BITSON(bitnumber, source_string, output)

where:

bitnumber
 Integer
 Is the number of the bit to be evaluated, counted from the left-most bit in the character string.

source_string
 Alphanumeric
 Is the character string to be evaluated, enclosed in single quotation marks, or a field or variable that contains the character string. The character string is in multiple eight-bit blocks.

output
 Integer
 Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.

Example: Evaluating a Bit in a Field

BITSON evaluates the 24th bit of LAST_NAME and stores the result in BIT_24:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
BIT_24/I1 = BITSON(24, LAST_NAME, BIT_24);
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>BIT_24</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMITH</td>
<td>1</td>
</tr>
<tr>
<td>JONES</td>
<td>1</td>
</tr>
<tr>
<td>MCCOY</td>
<td>1</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>1</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>1</td>
</tr>
<tr>
<td>CROSS</td>
<td>0</td>
</tr>
</tbody>
</table>
BITVAL: Evaluating a Bit String as an Integer

Available Languages: reporting, Maintain

The BITVAL function evaluates a string of bits within a character string. The bit string can be any group of bits within the character string and can cross byte and word boundaries. The function evaluates the subset of bits in the string as an integer value.

If the number of bits is:

- Less than 1, the returned value is 0.
- Between 1 and 31 (the recommended range), the returned value is a zero or positive number representing the bits specified, extended with high-order zeroes for a total of 32 bits.
- Exactly 32, the returned value is the positive, zero, or the complement value of negative two, of the specified 32 bits.
- Greater than 32 (33 or more), the returned value is the positive, zero, or the complement value of negative two, of the rightmost 32 bits specified.

Syntax: How to Evaluate a Bit String

```
BITVAL(source_string, startbit, number, output)
```

where:

- **source_string**

 Alphanumeric

 Is the character string to be evaluated, enclosed in single quotation marks, or a field or variable that contains the character string.

- **startbit**

 Integer

 Is the number of the first bit in the bit string, counting from the left-most bit in the character string. If this argument is less than or equal to 0, the function returns a value of zero.

- **number**

 Integer

 Is the number of bits in the subset of bits. If this argument is less than or equal to 0, the function returns a value of zero.
output

Integer

Is the name of the field that contains the binary integer equivalent, or the format of the output value enclosed in single quotation marks.

Example: Evaluating a Bit String

BITVAL evaluates the bits 12 through 20 of LAST_NAME and stores the result in a field with the format I5:

```plaintext
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
STRING_VAL/I5 = BITVAL(LAST_NAME, 12, 9, 'I5');
WHERE DEPARTMENT EQ 'MIS';
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>STRING_VAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMITH</td>
<td>332</td>
</tr>
<tr>
<td>JONES</td>
<td>365</td>
</tr>
<tr>
<td>MCCOY</td>
<td>60</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>316</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>412</td>
</tr>
<tr>
<td>CROSS</td>
<td>413</td>
</tr>
</tbody>
</table>

BYTVAL: Translating a Character to Decimal

Available Languages: reporting, Maintain

The BYTVAL function translates a character to the ASCII, EBCDIC, or Unicode decimal value that represents it, depending on the operating system.

Syntax: How to Translate a Character

```plaintext
BYTVAL(character, output)
```

where:

character

Alphanumeric

Is the character to be translated. You can specify a field or variable that contains the character, or the character itself enclosed in single quotation marks. If you supply more than one character, the function evaluates the first.
output

Integer

Is the name of the field that contains the corresponding decimal value, or the format of the output value enclosed in single quotation marks.

Example: Translating the First Character of a Field

BYTVAL translates the first character of LAST_NAME into its ASCII or EBCDIC decimal value and stores the result in LAST_INIT_CODE. Since the input string has more than one character, BYTVAL evaluates the first one.

```
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND
COMPUTE LAST_INIT_CODE/I3 = BYTVAL(LAST_NAME, 'I3');
WHERE DEPARTMENT EQ 'MIS';
END
```

The output on an ASCII platform is:

```
LAST_NAME  LAST_INIT_CODE
---------  --------------
SMITH      83
JONES      74
MCCOY      77
BLACKWOOD  66
GREENSPAN  71
CROSS      67
```

The output on an EBCDIC platform is:

```
LAST_NAME  LAST_INIT_CODE
---------  --------------
SMITH      226
JONES      209
MCCOY      212
BLACKWOOD  194
GREENSPAN  199
CROSS      195
```
Example: Returning the EBCDIC Value With Dialogue Manager

This Dialogue Manager request prompts for a character, then returns the corresponding number. The following reflects the results on the Windows platform.

```
-SET &CODE = BYTVAL(&CHAR, 'I3');
-HTMLFORM BEGIN
  <HTML>
  <BODY>
  THE EQUIVALENT VALUE IS &CODE
  </BODY>
  </HTML>
-HTMLFORM END
```

Assume the value entered for &CHAR is an exclamation point (!). The output is:

THE EQUIVALENT VALUE IS 33

CHKFMT: Checking the Format of a String

Available Languages: reporting, Maintain

The CHKFMT function checks a character string for incorrect characters or character types. It compares each character string to a second string, called a mask, by comparing each character in the first string to the corresponding character in the mask. If all characters in the character string match the characters or character types in the mask, CHKFMT returns the value 0. Otherwise, CHKFMT returns a value equal to the position of the first character in the character string not matching the mask.

If the mask is shorter than the character string, the function checks only the portion of the character string corresponding to the mask. For example, if you are using a four-character mask to test a nine-character string, only the first four characters in the string are checked; the rest are returned as a no match with CHKFMT giving the first non-matching position as the result.

Syntax: How to Check the Format of a Character String

`CHKFMT(numchar, source_string, 'mask', output)`

where:

`numchar`

Integer

Is the number of characters being compared to the mask.
string
Alphanumeric

Is the character string to be checked enclosed in single quotation marks, or a field or variable that contains the character string.

'mask'
Alphanumeric

Is the mask, which contains the comparison characters enclosed in single quotation marks.

Some characters in the mask are generic and represent character types. If a character in the string is compared to one of these characters and is the same type, it matches. Generic characters are:

A is any letter between A and Z (uppercase or lowercase).

9 is any digit between 0–9.

X is any letter between A–Z or any digit between 0–9.

$ is any character.

Any other character in the mask represents only that character. For example, if the third character in the mask is B, the third character in the string must be B to match.

output
Integer

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.
Example: Checking the Format of a Field

CHKFMT examines EMP_ID for nine numeric characters starting with 11 and stores the result in CHK_ID:

```
TABLE FILE EMPLOYEE
PRINT EMP_ID AND LAST_NAME AND
COMPUTE CHK_ID/I3 = CHKFMT(9, EMP_ID, '119999999', CHK_ID);
WHERE DEPARTMENT EQ 'PRODUCTION';
END
```

The output is:

```
EMP_ID     LAST_NAME     CHK_ID
------     ---------     -----
071382660  STEVENS            1
119265415  SMITH              0
119329144  BANNING            0
123764317  IRVING             2
126724188  ROMANS             2
451123478  MCKNIGHT           1
```

CHKNUM: Checking a String for Numeric Format

The CHKNUM function checks a character string for numeric format. If the string contains a valid numeric format, CHKNUM returns the value 1. If the string contains characters that are not valid in a number, CHKNUM returns zero (0).

Syntax: How to Check the Format of a Character String

```
CHKNUM(numchar, source_string, output)
```

where:

- **numchar**
 Integer
 Is the number of characters in the string.

- **string**
 Alphanumeric
 Is the character string to be checked enclosed in single quotation marks, or a field or variable that contains the character string.

- **output**
 Numeric
 Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.
Example: Checking a String for Numeric Format

CHKNUM examines the strings STR1, STR2, and STR3 for numeric format.

DEFINE FILE WF_RETAIL_LITE
STR1/A8 = '12345E01';
STR2/A8 = 'ABCDEFG';
STR3/A8 = '1234.567';
CHK1/I1= CHKNUM(8,STR1,CHK1);
CHK2/I1= CHKNUM(8,STR2,CHK2);
CHK3/I1= CHKNUM(8,STR3,CHK3);
END
TABLE FILE WF_RETAIL_LITE
PRINT STR1 IN 20 CHK1 STR2 CHK2 STR3 CHK3
BY PRODUCT_CATEGORY
WHERE PRODUCT_CATEGORY EQ 'Video Production'
ON TABLE SET PAGE NOPAGE
ON TABLE PCHOLD FORMAT WP
END

The output is:

<table>
<thead>
<tr>
<th>Product Category</th>
<th>STR1</th>
<th>CHK1</th>
<th>STR2</th>
<th>CHK2</th>
<th>STR3</th>
<th>CHK3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Production</td>
<td>12345E01</td>
<td>1</td>
<td>ABCDEFG</td>
<td>0</td>
<td>1234.567</td>
<td>1</td>
</tr>
<tr>
<td>12345E01</td>
<td>1</td>
<td>ABCDEFG</td>
<td>0 1234.567</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12345E01</td>
<td>1</td>
<td>ABCDEFG</td>
<td>0 1234.567</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12345E01</td>
<td>1</td>
<td>ABCDEFG</td>
<td>0 1234.567</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12345E01</td>
<td>1</td>
<td>ABCDEFG</td>
<td>0 1234.567</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CTRAN: Translating One Character to Another

Available Languages: reporting, Maintain

The CTRAN function translates a character within a character string to another character based on its decimal value. This function is especially useful for changing replacement characters to unavailable characters, or to characters that are difficult to input or unavailable on your keyboard. It can also be used for inputting characters that are difficult to enter when responding to a Dialogue Manager -PROMPT command, such as a comma or apostrophe. It eliminates the need to enclose entries in single quotation marks (').

To use CTRAN, you must know the decimal equivalent of the characters in internal machine representation. Note that the coding chart for conversion is platform dependent, hence your platform and configuration option determines whether ASCII, EBCDIC, or Unicode coding is used. Printable EBCDIC or ASCII characters and their decimal equivalents are listed in .
In Unicode configurations, this function uses values in the range:

- 0 to 255 for 1-byte characters.
- 256 to 65535 for 2-byte characters.
- 65536 to 16777215 for 3-byte characters.
- 16777216 to 4294967295 for 4-byte characters (primarily for EBCDIC).

Syntax: How to Translate One Character to Another

\[\text{CTRAN}(\text{length}, \text{source_string}, \text{decimal}, \text{decvalue}, \text{output})\]

where:

- **length**

 Integer

 Is the number of characters in the source string, or a field that contains the length.

- **source_string**

 Alphanumeric

 Is the character string to be translated enclosed in single quotation marks ('), or the field or variable that contains the character string.

- **decimal**

 Integer

 Is the ASCII or EBCDIC decimal value of the character to be translated.

- **decvalue**

 Integer

 Is the ASCII or EBCDIC decimal value of the character to be used as a substitute for \text{decimal}.

- **output**

 Alphanumeric

 Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.
Example: Translating Spaces to Underscores on an ASCII Platform

CTRAN translates the spaces in ADDRESS_LN3 (ASCII decimal value 32) to underscores (ASCII decimal value 95), and stores the result in ALT_ADDR:

```
TABLE FILE EMPLOYEE
PRINT ADDRESS_LN3 AND COMPUTE
ALT_ADDR/A20 = CTRAN(20, ADDRESS_LN3, 32, 95, ALT_ADDR);
BY EMP_ID
WHERE TYPE EQ 'HSM';
END
```

The output is:

<table>
<thead>
<tr>
<th>EMP_ID</th>
<th>ADDRESS_LN3</th>
<th>ALT_ADDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>117593129</td>
<td>RUTHERFORD NJ 07073</td>
<td>RUTHERFORD_NJ_07073_</td>
</tr>
<tr>
<td>119265415</td>
<td>NEW YORK NY 10039</td>
<td>NEW_YORK_NY_10039___</td>
</tr>
<tr>
<td>119329144</td>
<td>FREEPORT NY 11520</td>
<td>FREEPORT_NY_11520___</td>
</tr>
<tr>
<td>123764317</td>
<td>NEW YORK NY 10001</td>
<td>NEW_YORK_NY_10001___</td>
</tr>
<tr>
<td>126724188</td>
<td>FREEPORT NY 11520</td>
<td>FREEPORT_NY_11520___</td>
</tr>
<tr>
<td>451123478</td>
<td>ROSELAND NJ 07068</td>
<td>ROSELAND_NJ_07068___</td>
</tr>
<tr>
<td>543729165</td>
<td>JERSEY CITY NJ 07300</td>
<td>JERSEY_CITY_NJ_07300</td>
</tr>
<tr>
<td>818692173</td>
<td>FLUSHING NY 11354</td>
<td>FLUSHING_NY_11354___</td>
</tr>
</tbody>
</table>

Example: Translating Spaces to Underscores on an EBCDIC Platform

CTRAN translates the spaces in ADDRESS_LN3 (EBCDIC decimal value 64) to underscores (EBCDIC decimal value 109) and stores the result in ALT_ADDR:

```
TABLE FILE EMPLOYEE
PRINT ADDRESS_LN3 AND COMPUTE
ALT_ADDR/A20 = CTRAN(20, ADDRESS_LN3, 64, 109, ALT_ADDR);
BY EMP_ID
WHERE TYPE EQ 'HSM';
END
```

The output is:

<table>
<thead>
<tr>
<th>EMP_ID</th>
<th>ADDRESS_LN3</th>
<th>ALT_ADDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>117593129</td>
<td>RUTHERFORD NJ 07073</td>
<td>RUTHERFORD_NJ_07073_</td>
</tr>
<tr>
<td>119265415</td>
<td>NEW YORK NY 10039</td>
<td>NEW_YORK_NY_10039___</td>
</tr>
<tr>
<td>119329144</td>
<td>FREEPORT NY 11520</td>
<td>FREEPORT_NY_11520___</td>
</tr>
<tr>
<td>123764317</td>
<td>NEW YORK NY 10001</td>
<td>NEW_YORK_NY_10001___</td>
</tr>
<tr>
<td>126724188</td>
<td>FREEPORT NY 11520</td>
<td>FREEPORT_NY_11520___</td>
</tr>
<tr>
<td>451123478</td>
<td>ROSELAND NJ 07068</td>
<td>ROSELAND_NJ_07068___</td>
</tr>
<tr>
<td>543729165</td>
<td>JERSEY CITY NJ 07300</td>
<td>JERSEY_CITY_NJ_07300</td>
</tr>
<tr>
<td>818692173</td>
<td>FLUSHING NY 11354</td>
<td>FLUSHING_NY_11354___</td>
</tr>
</tbody>
</table>
CTRFLD: Centering a Character String

Available Languages: reporting, Maintain

The CTRFLD function centers a character string within a field. The number of leading spaces is equal to or one less than the number of trailing spaces.

CTRFLD is useful for centering the contents of a field and its report column, or a heading that consists only of an embedded field. HEADING CENTER centers each field value including trailing spaces. To center the field value without the trailing spaces, first center the value within the field using CTRFLD.

Limit: Using CTRFLD in a styled report (StyleSheets feature) generally negates the effect of CTRFLD unless the item is also styled as a centered element. Also, if you are using CTRFLD on a platform for which the default font is proportional, either use a non-proportional font, or issue SET STYLE=OFF before running the request.

Syntax: How to Center a Character String

CTRFLD(source_string, length, output)

where:

source_string
 Alphanumeric
 Is the character string enclosed in single quotation marks, or a field or variable that contains the character string.

length
 Integer
 Is the number of characters in source_string and output, or a field that contains the length. This argument must be greater than 0. A length less than 0 can cause unpredictable results.

output
 Alphanumeric
 Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.
Example: Centering a Field

CTRFLD centers LAST_NAME and stores the result in CENTER_NAME:

```plaintext
SET STYLE=OFF
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
CENTER_NAME/A12 = CTRFLD(LAST_NAME, 12, 'A12');
WHERE DEPARTMENT EQ 'MIS'
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>CENTER_NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMITH</td>
<td>SMITH</td>
</tr>
<tr>
<td>JONES</td>
<td>JONES</td>
</tr>
<tr>
<td>MCCOY</td>
<td>MCCOY</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>BLACKWOOD</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>GREENSPAN</td>
</tr>
<tr>
<td>CROSS</td>
<td>CROSS</td>
</tr>
</tbody>
</table>

EDIT: Extracting or Adding Characters

Available Languages: reporting

The EDIT function extracts characters from the source string and adds characters to the output string, according to the mask. It can extract a substring from different parts of the source string. It can also insert characters from the source string into an output string. For example, it can extract the first two characters and the last two characters of a string to form a single output string.

EDIT compares the characters in a mask to the characters in a source string. When it encounters a nine (9) in the mask, EDIT copies the corresponding character from the source field to the output string. When it encounters a dollar sign ($) in the mask, EDIT ignores the corresponding character in the source string. When it encounters any other character in the mask, EDIT copies that character to the corresponding position in the output string. This process ends when the mask is exhausted.

Note:

- EDIT does not require an output argument because the result is alphanumeric and its size is determined from the mask value.

- EDIT can also convert the format of a field.
EDIT: Extracting or Adding Characters

Syntax: How to Extract or Add Characters

EDIT(source_string, 'mask');

where:

source_string
Alphanumeric

Is a character string from which to pick characters. Each 9 in the mask represents one digit, so the size of source_string must be at least as large as the number of 9's in the mask.

mask
Alphanumeric

Is a string of mask characters enclosed in single quotation marks or a field containing the character string enclosed in single quotation marks. The length of the mask, excluding characters other than 9 and $, determines the length of the output field.

Example: Extracting and Adding Characters

EDIT extracts the first initial from the FIRST_NAME field and stores the result in FIRST_INIT. EDIT also adds dashes to the EMP_ID field and stores the result in EMPIDEDIT. The mask used to extract the first initial is stored in the virtual field named MASK1:

DEFINE FILE EMPLOYEE
MASK1/A10 = '9$5$5$5$5$5$5$5$
END
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
FIRST_INIT/A1 = EDIT(FIRST_NAME, MASK1);
EMPIDEDIT/A11 = EDIT(EMP_ID, '999-99-9999');
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_INIT</th>
<th>EMPIDEDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMITH</td>
<td>M</td>
<td>112-84-7612</td>
</tr>
<tr>
<td>JONES</td>
<td>D</td>
<td>117-59-3129</td>
</tr>
<tr>
<td>MCCOY</td>
<td>J</td>
<td>219-98-4371</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>R</td>
<td>326-17-9357</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>M</td>
<td>543-72-9165</td>
</tr>
<tr>
<td>CROSS</td>
<td>B</td>
<td>818-69-2173</td>
</tr>
</tbody>
</table>
GETTOK: Extracting a Substring (Token)

Available Languages: reporting, Maintain

The GETTOK function divides a character string into substrings, called tokens. The data must have a specific character, called a delimiter, that occurs in the string and separates the string into tokens. GETTOK returns the token specified by the token_number argument. GETTOK ignores leading and trailing blanks in the source character string.

For example, suppose you want to extract the fourth word from a sentence. In this case, use the space character for a delimiter and the number 4 for token_number. GETTOK divides the sentence into words using this delimiter, then extracts the fourth word. If the string is not divided by the delimiter, use the PARAG function for this purpose.

Syntax: How to Extract a Substring (Token)

GETTOK(source_string, inlen, token_number, 'delim', outlen, output)

where:

source_string
Alphanumeric
Is the source string from which to extract the token.

inlen
Integer
Is the number of characters in source_string. If this argument is less than or equal to 0, the function returns spaces.

token_number
Integer
Is the number of the token to extract. If this argument is positive, the tokens are counted from left to right. If this argument is negative, the tokens are counted from right to left. For example, -2 extracts the second token from the right. If this argument is 0, the function returns spaces. Leading and trailing null tokens are ignored.
`delim`
Alphanumeric

Is the delimiter in the source string enclosed in single quotation marks. If you specify more than one character, only the first character is used.

Note: In Dialogue Manager, to prevent the conversion of a delimiter space character (` `) to a double precision zero, include a non-numeric character after the space (for example, `%`). GETTOK uses only the first character (the space) as a delimiter, while the extra character (%) prevents conversion to double precision.

`outlen`
Integer

Is the size of the token extracted. If this argument is less than or equal to 0, the function returns spaces. If the token is longer than this argument, it is truncated; if it is shorter, it is padded with trailing spaces.

`output`
Alphanumeric

Is the name of the field that contains the token, or the format of the output value enclosed in single quotation marks. The delimiter is not included in the token.

Note that the delimiter is not included in the extracted token.
Example: Extracting a Token

GETTOK extracts the last token from ADDRESS_LN3 and stores the result in LAST_TOKEN.

The delimiter is a space:

```
TABLE FILE EMPLOYEE
PRINT ADDRESS_LN3 AND COMPUTE
LAST_TOKEN/A10 = GETTOK(ADDRESS_LN3, 20, -1, ' ', 10, LAST_TOKEN);
AS 'LAST TOKEN,(ZIP CODE)'
WHERE TYPE EQ 'HSM';
END
```

The output is:

<table>
<thead>
<tr>
<th>ADDRESS_LN3</th>
<th>(ZIP CODE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUTHERFORD NJ 07073</td>
<td>07073</td>
</tr>
<tr>
<td>NEW YORK NY 10039</td>
<td>10039</td>
</tr>
<tr>
<td>FREEPORT NY 11520</td>
<td>11520</td>
</tr>
<tr>
<td>NEW YORK NY 10001</td>
<td>10001</td>
</tr>
<tr>
<td>FREEPORT NY 11520</td>
<td>11520</td>
</tr>
<tr>
<td>ROSELAND NJ 07068</td>
<td>07068</td>
</tr>
<tr>
<td>JERSEY CITY NJ 07300</td>
<td>07300</td>
</tr>
<tr>
<td>FLUSHING NY 11354</td>
<td>11354</td>
</tr>
</tbody>
</table>

LCWORD: Converting a String to Mixed-Case

Available Languages: reporting, Maintain

The LCWORD function converts the letters in a character string to mixed-case. It converts every alphanumeric character to lowercase except the first letter of each new word and the first letter after a single or double quotation mark, which it converts to uppercase. For example, O'CONNOR is converted to O'Connor and JACK'S to Jack'S.

LCWORD skips numeric and special characters in the source string and continues to convert the following alphabetic characters. The result of LCWORD is a string in which the initial uppercase characters of all words are followed by lowercase characters.

Syntax: How to Convert a Character String to Mixed-Case

```
LCWORD(length, source_string, output)
```

where:

- `length`
 - Integer
 - Is the number of characters in `source_string` and `output`.

Using Functions
Example: Converting a Character String to Mixed-Case

LCWORD converts the LAST_NAME field to mixed-case and stores the result in MIXED_CASE.

```
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
MIXED_CASE/A15 = LCWORD(15, LAST_NAME, MIXED_CASE);
WHERE DEPARTMENT EQ 'PRODUCTION'
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>MIXED_CASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEVENS</td>
<td>Stevens</td>
</tr>
<tr>
<td>SMITH</td>
<td>Smith</td>
</tr>
<tr>
<td>BANNING</td>
<td>Banning</td>
</tr>
<tr>
<td>IRVING</td>
<td>Irving</td>
</tr>
<tr>
<td>ROMANS</td>
<td>Romans</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>Mcknight</td>
</tr>
</tbody>
</table>

LCWORD2: Converting a String to Mixed-Case

Available Languages: reporting, Maintain

The LCWORD2 function converts the letters in a character string to mixed-case by converting the first letter of each word to uppercase and converting every other letter to lowercase. In addition, a double quotation mark or a space indicates that the next letter should be converted to uppercase.

For example, "SMITH" would be changed to "Smith" and "JACK S" would be changed to "Jack S".
Syntax: How to Convert a Character String to Mixed-Case

\[
\text{LCWORD2}(\text{length}, \text{string}, \text{output})
\]

where:

- **length**
 - Integer
 - Is the length, in characters, of the character string or field to be converted, or a field that contains the length.

- **string**
 - Alphanumeric
 - Is the character string to be converted, or a temporary field that contains the string.

- **output**
 - Alphanumeric
 - Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks. The length must be greater than or equal to \(\text{length} \).

Example: Converting a Character String to Mixed-Case

LCWORD2 converts the string O’CONNOR’s to mixed-case:

```
DEFINE FILE EMPLOYEE
MYVAL1/A10=’O’CONNOR’S’;
LC2/A10 = LCWORD2(10, MYVAL1, ’A10’);
END
TABLE FILE EMPLOYEE
SUM LAST_NAME NOPRINT MYVAL1 LC2
END
```

The output is:

<table>
<thead>
<tr>
<th>MYVAL1</th>
<th>LC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>O’CONNOR’S</td>
<td>O’Connor’s</td>
</tr>
</tbody>
</table>

LCWORD3: Converting a String to Mixed-Case

The LCWORD3 function converts the letters in a character string to mixed-case by converting the first letter of each word to uppercase and converting every other letter to lowercase. In addition, a single quotation mark indicates that the next letter should be converted to uppercase, as long as it is neither followed by a blank nor the last character in the input string.

For example, 'SMITH' would be changed to 'Smith' and JACK’S would be changed to Jack’s.
Syntax: How to Convert a Character String to Mixed-Case Using LCWORD3

LCWORD3(length, string, output)

where:

length
 Integer
 Is the length, in characters, of the character string or field to be converted, or a field that
 contains the length.

string
 Alphanumeric
 Is the character string to be converted, or a field that contains the string.

output
 Alphanumeric
 Is the name of the field that contains the result, or the format of the output value enclosed
 in single quotation marks. The length must be greater than or equal to length.

Example: Converting a Character String to Mixed-Case Using LCWORD3

LCWORD3 converts the strings O'CONNOR's and o'connor's to mixed-case:

DEFINE FILE EMPLOYEE
MYVAL1/A10='O'CONNOR'S';
MYVAL2/A10='o'connor's';
LC1/A10 = LCWORD3(10, MYVAL1, 'A10');
LC2/A10 = LCWORD3(10, MYVAL2, 'A10');
END
TABLE FILE EMPLOYEE
SUM LAST_NAME NOPRINT MYVAL1 LC1 MYVAL2 LC2
END

On the output, the letter C after the first single quotation mark is in uppercase because it is
not followed by a blank and is not the final letter in the input string. The letter s after the
second single quotation mark (') is in lowercase because it is the last character in the input
string:

MYVAL1 LC1 MYVAL2 LC2
------ --- ------ ---
O'CONNOR'S O'CONNor's o'connor's O'Connor's

LJUST: Left-Justifying a String

Available Languages: reporting

LJUST left-justifies a character string within a field. All leading spaces become trailing spaces.
LJUST will not have any visible effect in a report that uses StyleSheets (SET STYLE=ON) unless you center the item.

There is a version of the LJUST function that is available only in the Maintain language. For information on this function, see LJUST: Left-Justifying a Character String (Maintain) on page 285.

Syntax:

How to Left-Justify a Character String

\[
\text{LJUST(length, source_string, output)}
\]

where:

- **length**
 - Integer
 - Is the number of characters in `source_string` and `output`, or a field that contains the length.

- **source_string**
 - Alphanumeric
 - Is the character string to be justified, or a field or variable that contains the string.

- **output**
 - Alphanumeric
 - Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.

Example:

Left-Justifying a String

The following request creates the XNAME field in which the last names are not left-justified. Then, LJUST left-justifies the XNAME field and stores the result in YNAME.

```
SET STYLE=OFF
DEFINE FILE EMPLOYEE
XNAME/A25=IF LAST_NAME EQ 'BLACKWOOD' THEN ' ' | LAST_NAME ELSE ' ' | LAST_NAME;
YNAME/A25=LJUST(15, XNAME, 'A25');
END
```

```
TABLE FILE EMPLOYEE
PRINT LAST_NAME XNAME YNAME
END
```
The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>XNAME</th>
<th>YNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEVENS</td>
<td>STEVENS</td>
<td>STEVENS</td>
</tr>
<tr>
<td>SMITH</td>
<td>SMITH</td>
<td>SMITH</td>
</tr>
<tr>
<td>JONES</td>
<td>JONES</td>
<td>JONES</td>
</tr>
<tr>
<td>SMITH</td>
<td>SMITH</td>
<td>SMITH</td>
</tr>
<tr>
<td>BANNING</td>
<td>BANNING</td>
<td>BANNING</td>
</tr>
<tr>
<td>IRVING</td>
<td>IRVING</td>
<td>IRVING</td>
</tr>
<tr>
<td>ROMANS</td>
<td>ROMANS</td>
<td>ROMANS</td>
</tr>
<tr>
<td>MCCOY</td>
<td>MCCOY</td>
<td>MCCOY</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>BLACKWOOD</td>
<td>BLACKWOOD</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>MCKNIGHT</td>
<td>MCKNIGHT</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>GREENSPAN</td>
<td>GREENSPAN</td>
</tr>
<tr>
<td>CROSS</td>
<td>CROSS</td>
<td>CROSS</td>
</tr>
</tbody>
</table>

LOCASE: Converting Text to Lowercase

Available Languages: reporting, Maintain

The LOCASE function converts alphanumeric text to lowercase.

Syntax:

How to Convert Text to Lowercase

LOCASE(length, source_string, output)

where:

- **length**
 - Integer

 Is the number of characters in source_string and output, or a field that contains the length. The length must be greater than 0 and the same for both arguments; otherwise, an error occurs.

- **source_string**
 - Alphanumeric

 Is the character string to convert in single quotation marks, or a field or variable that contains the string.

- **output**
 - Alphanumeric

 Is the name of the field in which to store the result, or the format of the output value enclosed in single quotation marks. The field name can be the same as source_string.
Example: Converting a String to Lowercase

LOCASE converts the LAST_NAME field to lowercase and stores the result in LOWER_NAME:

```
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
LOWER_NAME/A15 = LOCASE(15, LAST_NAME, LOWER_NAME);
WHERE DEPARTMENT EQ 'MIS';
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>LOWER_NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMITH</td>
<td>smith</td>
</tr>
<tr>
<td>JONES</td>
<td>jones</td>
</tr>
<tr>
<td>MCCOY</td>
<td>mccoy</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>blackwood</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>greenspan</td>
</tr>
<tr>
<td>CROSS</td>
<td>cross</td>
</tr>
</tbody>
</table>

OVRLAY: Overlaying a Character String

Available Languages: reporting

The OVRLAY function overlays a base character string with a substring. The function enables you to edit part of an alphanumeric field without replacing the entire field.

There is a version of the OVRLAY function that is available only in the Maintain language. For information on this function, see **OVRLAY: Overlaying a Character String (Maintain)** on page 291.

Syntax: How to Overlay a Character String

```
OVRLAY(source_string, length, substring, sublen, position, output)
```

where:

- **source_string**
 - Alphanumeric
 - Is the base character string.

- **stringlen**
 - Integer
 - Is the number of characters in source_string and output, or a field that contains the length.
 - If this argument is less than or equal to 0, unpredictable results occur.
OVRLAY: Overlaying a Character String

substring

Alphanumeric

Is the substring that will overlay `source_string`.

sublen

Integer

Is the number of characters in `substring`, or a field that contains the length. If this argument is less than or equal to 0, the function returns spaces.

position

Integer

Is the position in `source_string` at which the overlay begins. If this argument is less than or equal to 0, the function returns spaces. If this argument is larger than `strlen`, the function returns the source string.

output

Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks. If the overlaid string is longer than the output field, the string is truncated to fit the field.

Note that if the overlaid string is longer than the output field, the string is truncated to fit the field.

Example: Replacing Characters in a Character String

OVRLAY replaces the last three characters of `EMP_ID` with `CURR_JOBCODE` to create a new security identification code and stores the result in `NEW_ID`:

```plaintext
TABLE FILE EMPLOYEE
PRINT EMP_ID AND CURR_JOBCODE AND COMPUTE
NEW_ID/A9 = OVRLAY(EMP_ID, 9, CURR_JOBCODE, 3, 7, NEW_ID);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS';
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>EMP_ID</th>
<th>CURR_JOBCODE</th>
<th>NEW_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
<td>326179357</td>
<td>B04</td>
<td>326179B04</td>
</tr>
<tr>
<td>CROSS</td>
<td>BARBARA</td>
<td>818692173</td>
<td>A17</td>
<td>818692A17</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>MARY</td>
<td>543729165</td>
<td>A07</td>
<td>543729A07</td>
</tr>
<tr>
<td>JONES</td>
<td>DIANE</td>
<td>117593129</td>
<td>B03</td>
<td>117593B03</td>
</tr>
<tr>
<td>MCCOY</td>
<td>JOHN</td>
<td>219984371</td>
<td>B02</td>
<td>219984B02</td>
</tr>
<tr>
<td>SMITH</td>
<td>MARY</td>
<td>112847612</td>
<td>B14</td>
<td>112847B14</td>
</tr>
</tbody>
</table>
PARAG: Dividing Text Into Smaller Lines

Available Languages: reporting, Maintain

The PARAG function divides a character string into substrings by marking them with a delimiter. It scans a specific number of characters from the beginning of the string and replaces the last space in the group scanned with the delimiter, thus creating a first substring, also known as a token. It then scans the next group of characters in the line, starting from the delimiter, and replaces its last space with a second delimiter, creating a second token. It repeats this process until it reaches the end of the line.

Once each token is marked off by the delimiter, you can use the function GETTOK to place the tokens into different fields. If PARAG does not find any spaces in the group it scans, it replaces the first character after the group with the delimiter. Therefore, make sure that any group of characters has at least one space. The number of characters scanned is provided as the maximum token size.

For example, if you have a field called 'subtitle' which contains a large amount of text consisting of words separated by spaces, you can cut the field into roughly equal substrings by specifying a maximum token size to divide the field. If the field is 350 characters long, divide it into three substrings by specifying a maximum token size of 120 characters. This technique enables you to print lines of text in paragraph form.

Tip: If you divide the lines evenly, you may create more sub-lines than you intend. For example, suppose you divide 120-character text lines into two lines of 60 characters maximum, but one line is divided so that the first sub-line is 50 characters and the second is 55. This leaves room for a third sub-line of 15 characters. To correct this, insert a space (using weak concatenation) at the beginning of the extra sub-line, then append this sub-line (using strong concatenation) to the end of the one before it. Note that the sub-line will be longer than 60 characters.

Syntax: How to Divide Text Into Smaller Lines

PARAG(length, source_string, 'delimiter', max_token_size, output)

where:

length

Integer

Is the number of characters in source_string and output, or a field that contains the length.
source_string
 Alphanumeric

 Is a string to divide into tokens enclosed in single quotation marks, or a field or variable
 that contains the text.

delimiter
 Alphanumeric

 Is the delimiter enclosed in single quotation marks. Choose a character that does not
 appear in the text.

max_token_size
 Integer

 Is the upper limit for the size of each token.

output
 Alphanumeric

 Is the name of the field that contains the result, or the format of the output value enclosed
 in single quotation marks.

Example: Dividing Text Into Smaller Lines

PARAG divides ADDRESS_LN2 into smaller lines of not more than ten characters using a
comma as the delimiter. It then stores the result in PARA_ADDR:

TABLE FILE EMPLOYEE
PRINT ADDRESS_LN2 AND COMPUTE
PARA_ADDR/A20 = PARAG(20, ADDRESS_LN2, ',', 10, PARA_ADDR);
BY LAST_NAME
WHERE TYPE EQ 'HSM';
END

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>ADDRESS_LN2</th>
<th>PARA_ADDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANNING</td>
<td>APT 4C</td>
<td>APT 4C</td>
</tr>
<tr>
<td>CROSS</td>
<td>147-15 NORTHERN BLD</td>
<td>147-15,NORTHERN,BLD</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>13 LINDEN AVE.</td>
<td>13 LINDEN,AVE.</td>
</tr>
<tr>
<td>IRVING</td>
<td>123 E 32 ST.</td>
<td>123 E 32,ST.</td>
</tr>
<tr>
<td>JONES</td>
<td>235 MURRAY HIL PKWY</td>
<td>235 MURRAY,HIL PKWY</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>117 HARRISON AVE.</td>
<td>117,HARRISON,AVE.</td>
</tr>
<tr>
<td>ROMANS</td>
<td>271 PRESIDENT ST.</td>
<td>271,PRESIDENT,ST.</td>
</tr>
<tr>
<td>SMITH</td>
<td>136 E 161 ST.</td>
<td>136 E 161,ST.</td>
</tr>
</tbody>
</table>
PATTERN: Generating a Pattern From a String

The PATTERN function examines a source string and produces a pattern that indicates the sequence of numbers, uppercase letters, and lowercase letters in the source string. This function is useful for examining data to make sure that it follows a standard pattern.

In the output pattern:

- Any character from the input that represents a single-byte digit becomes the character 9.
- Any character that represents an uppercase letter becomes A, and any character that represents a lowercase letter becomes a. For European NLS mode (Western Europe, Central Europe), A and a are extended to apply to accented alphabets.
- For Japanese, double-byte characters and Hankaku-katakana become C (uppercase). Note that double-byte includes Hiragana, Katakana, Kanji, full-width alphabets, full-width numbers, and full-width symbols. This means that all double-byte letters such as Chinese and Korean are also represented as C.
- Special characters remain unchanged.
- An unprintable character becomes the character X.

Syntax: How to Generate a Pattern From an Input String

PATTERN (length, source_string, output)

where:

length
 Numeric
 Is the length of source_string.

source_string
 Alphanumeric
 Is the source string enclosed in single quotation marks, or a field containing the source string.

output
 Alphanumeric
 Is the name of the field to contain the result or the format of the field enclosed in single quotation marks.
Example: Producing a Pattern From Alphanumeric Data

The following 19 records are stored in a fixed format sequential file (with LRECL 14) named TESTFILE:

212-736-6250
212 736 4433
123-45-6789
800-969-INFO
10121-2898
10121
2 Penn Plaza
917-339-6380
917-339-4350
(212) 736-6250
(212) 736-4433
212-736-6250
212-736-6250
(212) 736 5533
(212) 736 5533
(212) 736 5533
10121 æ
800-969-INFO

The Master File is:

FILENAME=TESTFILE, SUFFIX=FIX ,

SEGMENT=TESTFILE, SEGTYPE=S0, $

FIELDNAME=TESTFLD, USAGE=A14, ACTUAL=A14, $

The following request generates a pattern for each instance of TESTFLD and displays them by the pattern that was generated. It shows the count of each pattern and its percentage of the total count. The PRINT command shows which values of TESTFLD generated each pattern.

FILEDEF TESTFILE DISK testfile.ftm
DEFINE FILE TESTFILE
PATTERN/A14 = PATTERN (14, TESTFLD, ©A14©) ;
END
TABLE FILE TESTFILE
SUM CNT.PATTERN AS ©COUNT© PCT.CNT.PATTERN AS ©PERCENT©
BY PATTERN
PRINT TESTFLD
BY PATTERN
ON TABLE COLUMN-TOTAL
END

Note that the next to last line produced a pattern from an input string that contained an unprintable character, so that character was changed to X. Otherwise, each numeric digit generated a 9 in the output string, each uppercase letter generated the character ‘A’, and each lowercase letter generated the character ‘a’. The output is:
POSIT: Finding the Beginning of a Substring

Available Languages: reporting

The POSIT function finds the starting position of a substring within a source string. For example, the starting position of the substring DUCT in the string PRODUCTION is 4. If the substring is not in the parent string, the function returns the value 0.

There is a version of the POSIT function that is available only in the Maintain language. For information on this function, see POSIT: Finding the Beginning of a Substring (Maintain) on page 292.

Syntax: How to Find the Beginning of a Substring

POSIT(source_string, length, substring, sublength, output)

where:

source_string

Alphanumeric

Is the string to parse enclosed in single quotation marks, or a field or variable that contains the source character string.
length
Integer
Is the number of characters in the source string, or a field that contains the length. If this argument is less than or equal to 0, the function returns a 0.

substring
Alphanumeric
Is the substring whose position you want to find. This can be the substring enclosed in single quotation marks, or the field that contains the string.

sublength
Integer
Is the number of characters in substring. If this argument is less than or equal to 0, or if it is greater than length, the function returns a 0.

output
Integer
Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.

Example: Finding the Position of a Letter
POSIT determines the position of the first capital letter I in LAST_NAME and stores the result in I_IN_NAME:

```
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
I_IN_NAME/I2 = POSIT(LAST_NAME, 15, 'I', 1, 'I2');
WHERE DEPARTMENT EQ 'PRODUCTION'
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>I_IN_NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEVENS</td>
<td>0</td>
</tr>
<tr>
<td>SMITH</td>
<td>3</td>
</tr>
<tr>
<td>BANNING</td>
<td>5</td>
</tr>
<tr>
<td>IRVING</td>
<td>1</td>
</tr>
<tr>
<td>ROMANS</td>
<td>0</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>5</td>
</tr>
</tbody>
</table>
REVERSE: Reversing the Characters in a String

The REVERSE function reverses the characters in a string. This reversal includes all trailing blanks, which then become leading blanks. However, in an HTML report with SET SHOWBLANKS=OFF (the default value), the leading blanks are not visible.

Syntax:

How to Reverse the Characters in a String

REVERSE(length, source_string, output)

where:

length

Integer

Is the number of characters in source_string and output, or a field that contains the length.

source_string

Alphanumeric

Is the character string to reverse enclosed in single quotation marks, or a field that contains the character string.

output

Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.

Example:

Reversing the Characters in a String

In the following request against the EMPLOYEE data source, the REVERSE function is used to reverse the characters in the LAST_NAME field to produce the field named REVERSE_LAST. In this field, the trailing blanks from LAST_NAME have become leading blanks. The TRIM function is used to strip the leading blanks from REVERSE_LAST to produce the field named TRIM_REVERSE:

DEFINE FILE EMPLOYEE
REVERSE_LAST/A15 = REVERSE(15, LAST_NAME, REVERSE_LAST);
TRIM_REVERSE/A15 = TRIM(' ', REVERSE_LAST, 15, ' ', 1, 'A15');
END
TABLE FILE EMPLOYEE
PRINT REVERSE_LAST TRIM_REVERSE
BY LAST_NAME
END
The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>REVERSE_LAST</th>
<th>TRIM_REVERSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANNING</td>
<td>GNINNAB</td>
<td>GNINNAB</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>DOOWKCALB</td>
<td>DOOWKCALB</td>
</tr>
<tr>
<td>CROSS</td>
<td>SSORC</td>
<td>SSORC</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>NAPSNEERG</td>
<td>NAPSNEERG</td>
</tr>
<tr>
<td>IRVING</td>
<td>GNVIRI</td>
<td>GNVIRI</td>
</tr>
<tr>
<td>JONES</td>
<td>SENOJ</td>
<td>SENOJ</td>
</tr>
<tr>
<td>MCCOY</td>
<td>YOCMC</td>
<td>YOCMC</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>THGINKCM</td>
<td>THGINKCM</td>
</tr>
<tr>
<td>ROMANS</td>
<td>SNAMOR</td>
<td>SNAMOR</td>
</tr>
<tr>
<td>SMITH</td>
<td>HTIMS</td>
<td>HTIMS</td>
</tr>
<tr>
<td>STEVENS</td>
<td>SNEVETS</td>
<td>SNEVETS</td>
</tr>
</tbody>
</table>

RJUST: Right-Justifying a Character String

Available Languages: reporting

The RJUST function right-justifies a character string. All trailing blanks become leading blanks. This is useful when you display alphanumeric fields containing numbers.

RJUST does not have any visible effect in a report that uses StyleSheets (SET STYLE=ON) unless you center the item. Also, if you use RJUST on a platform on which StyleSheets are turned on by default, issue SET STYLE=OFF before running the request.

There is a version of the RJUST function that is available only in the Maintain language. For information on this function, see *RJUST: Right-Justifying a Character String (Maintain)* on page 293.

Syntax:

How to Right-Justify a Character String

RJUST(length, source_string, output)

where:

- **length**
 - Integer
 - Is the number of characters in source_string and output, or a field that contains the length. Their lengths must be the same to avoid justification problems.

- **source_string**
 - Alphanumeric
 - Is the character string to right justify, or a field or variable that contains the character string enclosed in single quotation marks.
output

Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.

Example: Right-Justifying a String

RJUST right-justifies the LAST_NAME field and stores the result in RIGHT_NAME:

```
SET STYLE=OFF
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
RIGHT_NAME/A15 = RJUST(15, LAST_NAME, RIGHT_NAME);
WHERE DEPARTMENT EQ 'MIS';
END
```

The output is:

```
LAST_NAME       RIGHT_NAME
---------        ----------
SMITH            SMITH
JONES            JONES
MCCOY            MCCOY
BLACKWOOD        BLACKWOOD
GREENSPAN        GREENSPAN
CROSS            CROSS
```

SOUNDEX: Comparing Character Strings Phonetically

Available Languages: reporting, Maintain

The SOUNDEX function analyzes a character string phonetically, without regard to spelling. It converts character strings to four character codes. The first character must be the first character in the string. The last three characters represent the next three significant sounds in the source string.

To conduct a phonetic search, do the following:

1. Use SOUNDEX to translate data values from the field you are searching for to the phonetic codes.

2. Use SOUNDEX to translate your best guess target string to a phonetic code. Remember that the spelling of your target string need be only approximate. However, the first letter must be correct.

3. Use WHERE or IF criteria to compare the temporary fields created in Step 1 to the temporary field created in Step 2.
Syntax:

How to Compare Character Strings Phonetically

```
SOUNDEX(length, source_string, output)
```

where:

length

Alphanumeric

Is the number of characters in `source_string`, or a field that contains the length. It can be a number enclosed in single quotation marks, or a field containing the number. The number must be from 01 to 99, expressed with two digits (for example '01'); a number larger than 99 causes the function to return asterisks (*) as output.

source_string

Alphanumeric

Is the string to analyze enclosed in single quotation marks, or a field or variable that contains the character string.

output

Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.

Example:

Comparing Character Strings Phonetically

The following request creates three fields:

- PHON_NAME contains the phonetic code of employee last names.
- PHON_COY contains the phonetic code of your guess, MICOY.
- PHON_MATCH contains YES if the phonetic codes match, NO if they do not.

The WHERE criteria selects the last name that matches your best guess.

```plaintext
DEFINE FILE EMPLOYEE
PHON_NAME/A4 = SOUNDEX('15', LAST_NAME, PHON_NAME);
PHON_COY/A4 WITH LAST_NAME = SOUNDEX('15', 'MICOY', PHON_COY);
PHON_MATCH/A3 = IF PHON_NAME IS PHON_COY THEN 'YES' ELSE 'NO';
END

TABLE FILE EMPLOYEE
PRINT LAST_NAME
IF PHON_MATCH IS 'YES'
END
```
SPELLNM: Spelling Out a Dollar Amount

Available Languages: reporting, Maintain

The SPELLNM function spells out an alphanumeric string or numeric value containing two decimal places as dollars and cents. For example, the value 32.50 is THIRTY TWO DOLLARS AND FIFTY CENTS.

Syntax: How to Spell Out a Dollar Amount

SPELLNM(outlength, number, output)

where:

outlength
Integer
Is the number of characters in output, or a field that contains the length.

If you know the maximum value of number, use the following table to determine the value of outlength:

<table>
<thead>
<tr>
<th>If number is less than...</th>
<th>...outlength should be</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10</td>
<td>37</td>
</tr>
<tr>
<td>$100</td>
<td>45</td>
</tr>
<tr>
<td>$1,000</td>
<td>59</td>
</tr>
<tr>
<td>$10,000</td>
<td>74</td>
</tr>
<tr>
<td>$100,000</td>
<td>82</td>
</tr>
<tr>
<td>$1,000,000</td>
<td>96</td>
</tr>
</tbody>
</table>

number
Alphanumeric or Numeric (9.2)
Is the number to be spelled out. This value must contain two decimal places.
Example: Spelling Out a Dollar Amount

SPELLNM spells out the values in CURR_SAL and stores the result in AMT_IN_WORDS:

```plaintext
TABLE FILE EMPLOYEE
PRINT CURR_SAL AND COMPUTE
AMT_IN_WORDS/A82 = SPELLNM(82, CURR_SAL, AMT_IN_WORDS);
WHERE DEPARTMENT EQ 'MIS'
END
```

The output is:

<table>
<thead>
<tr>
<th>CURR_SAL</th>
<th>AMT_IN_WORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$13,200.00</td>
<td>THIRTEEN THOUSAND TWO HUNDRED DOLLARS AND NO CENTS</td>
</tr>
<tr>
<td>$18,480.00</td>
<td>EIGHTEEN THOUSAND FOUR HUNDRED EIGHTY DOLLARS AND NO CENTS</td>
</tr>
<tr>
<td>$18,480.00</td>
<td>EIGHTEEN THOUSAND FOUR HUNDRED EIGHTY DOLLARS AND NO CENTS</td>
</tr>
<tr>
<td>$21,780.00</td>
<td>TWENTY-ONE THOUSAND SEVEN HUNDRED EIGHTY DOLLARS AND NO CENTS</td>
</tr>
<tr>
<td>$9,000.00</td>
<td>NINE THOUSAND DOLLARS AND NO CENTS</td>
</tr>
<tr>
<td>$27,062.00</td>
<td>TWENTY-SEVEN THOUSAND SIXTY-TWO DOLLARS AND NO CENTS</td>
</tr>
</tbody>
</table>

SQUEEZ: Reducing Multiple Spaces to a Single Space

Available Languages:

reporting, Maintain

The SQUEEZ function reduces multiple contiguous spaces within a character string to a single space. The resulting character string has the same length as the original string but is padded on the right with spaces.

Syntax:

How to Reduce Multiple Spaces to a Single Space

```
SQUEEZ(length, source_string, output)
```

where:

- **length**
 - Integer
 - Is the number of characters in `source_string` and `output`, or a field that contains the length.

- **source_string**
 - Alphanumeric
 - Is the character string to squeeze enclosed in single quotation marks, or the field that contains the character string.
output

Alphanumeric

Is the field that contains the result, or the format of the output value enclosed in single quotation marks.

Example: Reducing Multiple Spaces to a Single Space

SQUEEZ reduces multiple spaces in the NAME field to a single blank and stores the result in a field with the format A30:

```
DEFINE FILE EMPLOYEE
NAME/A30 = FIRST_NAME | LAST_NAME;
END
TABLE FILE EMPLOYEE
PRINT NAME AND COMPUTE
SQNAME/A30 = SQUEEZ(30, NAME, 'A30');
WHERE DEPARTMENT EQ 'MIS';
END
```

The output is:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SQNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARY</td>
<td>SMITH</td>
</tr>
<tr>
<td>DIANE</td>
<td>JONES</td>
</tr>
<tr>
<td>JOHN</td>
<td>MCCOY</td>
</tr>
<tr>
<td>ROSEMARIE</td>
<td>BLACKWOOD</td>
</tr>
<tr>
<td>MARY</td>
<td>GREENSPAN</td>
</tr>
<tr>
<td>BARBARA</td>
<td>CROSS</td>
</tr>
</tbody>
</table>

STRIP: Removing a Character From a String

Available Languages: reporting, Maintain

The STRIP function removes all occurrences of a specific character from a string. The resulting character string has the same length as the original string but is padded on the right with spaces.

Syntax: How to Remove a Character From a String

```
STRIP(length, source_string, char, output)
```

where:

- `length`

 Integer

 Is the number of characters in `source_string` and `output`, or a field that contains the number.
STRIP: Removing a Character From a String

source_string
Alphanumeric

Is the string from which the character will be removed, or a field containing the string.

char
Alphanumeric

Is the character to be removed from the string. This can be an alphanumeric literal enclosed in single quotation marks, or a field that contains the character. If more than one character is provided, the left-most character will be used as the strip character.

Note: To remove single quotation marks, use two consecutive quotation marks. You must then enclose this character combination in single quotation marks.

output
Alphanumeric

Is the field that contains the result, or the format of the output value enclosed in single quotation marks.

Example: Removing Occurrences of a Character From a String

STRIP removes all occurrences of a period (.) from the DIRECTOR field and stores the result in a field with the format A17:

```
TABLE FILE MOVIES
PRINT DIRECTOR AND COMPUTE
SDIR/A17 = STRIP(17, DIRECTOR, '.', 'A17');
WHERE CATEGORY EQ 'COMEDY'
END
```

The output is:

<table>
<thead>
<tr>
<th>DIRECTORS</th>
<th>SDIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMECKIS R</td>
<td>ZEMECKIS R</td>
</tr>
<tr>
<td>ABRAHAMS J</td>
<td>ABRAHAMS J</td>
</tr>
<tr>
<td>ALLEN W.</td>
<td>ALLEN W</td>
</tr>
<tr>
<td>HALLSTROM L</td>
<td>HALLSTROM L</td>
</tr>
<tr>
<td>MARSHALL P</td>
<td>MARSHALL P</td>
</tr>
<tr>
<td>BROOKS J.L.</td>
<td>BROOKS JL</td>
</tr>
</tbody>
</table>
Example: Removing Single Quotation Marks From a String

STRIP removes all occurrences of a single quotation mark (') from the TITLE field and stores the result in a field with the format A39:

```
TABLE FILE MOVIES
PRINT TITLE AND COMPUTE
STITLE/A39 = STRIP(39, TITLE, '''', 'A39');
WHERE TITLE CONTAINS '''
END
```

The output is:

<table>
<thead>
<tr>
<th>TITLE</th>
<th>STITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BABETTE'S FEAST</td>
<td>BABETTES FEAST</td>
</tr>
<tr>
<td>JANE FONDA'S COMPLETE WORKOUT</td>
<td>JANE FONDAS COMPLETE WORKOUT</td>
</tr>
<tr>
<td>JANE FONDA'S NEW WORKOUT</td>
<td>JANE FONDAS NEW WORKOUT</td>
</tr>
<tr>
<td>MICKEY MANTLE'S BASEBALLTIPS</td>
<td>MICKEY MANTLES BASEBALL TIPS</td>
</tr>
</tbody>
</table>

Example: Removing Commas From a String (Maintain)

STRIP removes all occurrences of a comma from the TITLE field:

```
MAINTAIN FILE MOVIES
FOR 10 NEXT MOVIECODE INTO MOVSTK
  WHERE TITLE CONTAINS ',',
  COMPUTE I/I2=1;
REPEAT MOVSTK.FOCINDEX
  TYPE "TITLE IS: <MOVSTK(I).TITLE"
  COMPUTE NOCOMMA/A39=STRIP(39,MOVSTK().TITLE, ',',NOCOMMA);
  TYPE "NEW TITLE IS: <NOCOMMA";
  COMPUTE I=I+1
ENDREPEAT
END
```

The output is:

```
TITLE IS: SMURFS, THE
NEW TITLE IS: SMURFS THE
```

STRREP: Replacing Character Strings

The STRREP replaces all instances of a specified string within a source string. It also supports replacement by null strings.
Syntax: How to Replace Character Strings

```
STRREP (inlength, instring, searchlength, searchstring, replength, repstring, outlength, output)
```

where:

- `inlength` Numeric
 - Is the number of characters in the source string.

- `instring` Alphanumeric
 - Is the source string.

- `searchlength` Numeric
 - Is the number of characters in the (shorter length) string to be replaced.

- `searchstring` Alphanumeric
 - Is the character string to be replaced.

- `replength` Numeric
 - Is the number of characters in the replacement string. Must be zero (0) or greater.

- `repstring` Alphanumeric
 - Is the replacement string (alphanumeric). Ignored if replength is zero (0).

- `outlength` Numeric
 - Is the number of characters in the resulting output string. Must be 1 or greater.

- `output` Alphanumeric
 - Is the resulting output string after all replacements and padding.

Reference: Usage Note for STRREP Function

The maximum string length is 4095.
Example: Replacing Commas and Dollar Signs

In the following example, STRREP finds and replaces commas and dollar signs that appear in
the CS_ALPHA field, first replacing commas with null strings to produce CS_NOCOMMAS
(removing the commas) and then replacing the dollar signs ($) with (USD) in the right-most
CURR_SAL column:

```
TABLE FILE EMPLOYEE
SUM CURR_SAL NOPRINT
COMPUTE CS_ALPHA/A15=FTOA(CURR_SAL,'(D12.2M)' ,CS_ALPHA);
    CS_NOCOMMAS/A14=STRREP(15,CS_ALPHA,1,'',0,'X',14,CS_NOCOMMAS);
    CS_USD/A17=STRREP(14,CS_NOCOMMAS,1,'$',4,'USD ',17,CS_USD);
    NOPRINT
    CS_USD/R AS CURR_SAL
BY LAST_NAME
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>CS_ALPHA</th>
<th>CS_NOCOMMAS</th>
<th>CURR_SAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANNING</td>
<td>$29,700.00</td>
<td>$29700.00</td>
<td>USD 29700.00</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>$21,780.00</td>
<td>$21780.00</td>
<td>USD 21780.00</td>
</tr>
<tr>
<td>CROSS</td>
<td>$27,062.00</td>
<td>$27062.00</td>
<td>USD 27062.00</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>$9,000.00</td>
<td>$9000.00</td>
<td>USD 9000.00</td>
</tr>
<tr>
<td>IRVING</td>
<td>$26,862.00</td>
<td>$26862.00</td>
<td>USD 26862.00</td>
</tr>
<tr>
<td>JONES</td>
<td>$18,480.00</td>
<td>$18480.00</td>
<td>USD 18480.00</td>
</tr>
<tr>
<td>MCCOY</td>
<td>$18,480.00</td>
<td>$18480.00</td>
<td>USD 18480.00</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>$16,100.00</td>
<td>$16100.00</td>
<td>USD 16100.00</td>
</tr>
<tr>
<td>ROMANS</td>
<td>$21,120.00</td>
<td>$21120.00</td>
<td>USD 21120.00</td>
</tr>
<tr>
<td>SMITH</td>
<td>$22,700.00</td>
<td>$22700.00</td>
<td>USD 22700.00</td>
</tr>
<tr>
<td>STEVENS</td>
<td>$11,000.00</td>
<td>$11000.00</td>
<td>USD 11000.00</td>
</tr>
</tbody>
</table>

SUBSTR: Extracting a Substring

Available Languages: reporting

The SUBSTR function extracts a substring based on where it begins and its length in the
source string. SUBSTR can vary the position of the substring depending on the values of other
fields.

There is a version of the SUBSTR function that is available only in the Maintain language. For
information on this function, see SUBSTR: Extracting a Substring (Maintain) on page 301.
Syntax:

How to Extract a Substring

\[
\text{SUBSTR}(\text{length}, \text{source_string}, \text{start}, \text{end}, \text{sublength}, \text{output})
\]

where:

- **length**

 Integer

 Is the number of characters in `source_string`, or a field that contains the length.

- **source_string**

 Alphanumeric

 Is the string from which to extract a substring enclosed in single quotation marks, or the field containing the parent string.

- **start**

 Integer

 Is the starting position of the substring in the source string. If `start` is less than one or greater than `length`, the function returns spaces.

- **end**

 Integer

 Is the ending position of the substring. If this argument is less than `start` or greater than `length`, the function returns spaces.

- **sublength**

 Integer

 Is the number of characters in the substring (normally `end - start + 1`). If `sublength` is longer than `end - start + 1`, the substring is padded with trailing spaces. If it is shorter, the substring is truncated. This value should be the declared length of `output`. Only `sublength` characters will be processed.

- **output**

 Alphanumeric

 Is the field to which the result is returned, or the format of the output value enclosed in single quotation marks.
Example: Extracting a String

POSIT determines the position of the first letter I in LAST_NAME and stores the result in I_IN_NAME. SUBSTR then extracts three characters beginning with the letter I from LAST_NAME, and stores the results in I_SUBSTR.

```sql
TABLE FILE EMPLOYEE
PRINT
COMPUTE
  I_IN_NAME/I2 = POSIT(LAST_NAME, 15, 'I', 1, 'I2'); AND
COMPUTE
  I_SUBSTR/A3 = SUBSTR(15, LAST_NAME, I_IN_NAME, I_IN_NAME+2, 3, I_SUBSTR);
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>I_IN_NAME</th>
<th>I_SUBSTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANNING</td>
<td>5</td>
<td>ING</td>
</tr>
<tr>
<td>IRVING</td>
<td>1</td>
<td>IRV</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>5</td>
<td>IGH</td>
</tr>
<tr>
<td>ROMANS</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SMITH</td>
<td>3</td>
<td>ITH</td>
</tr>
<tr>
<td>STEVENS</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Since Romans and Stevens have no I in their names, SUBSTR extracts a blank string.

TRIM: Removing Leading and Trailing Occurrences

Available Languages: reporting

The TRIM function removes leading and/or trailing occurrences of a pattern within a character string.

There is a version of the TRIM function that is available only in the Maintain language. For information on this function, see *TRIM: Removing Trailing Occurrences (Maintain)* on page 302.
Syntax: How to Remove Leading and Trailing Occurrences

\[
\text{TRIM}(\text{trim_where}, \text{source_string}, \text{length}, \text{pattern}, \text{sublength}, \text{output})
\]

where:

- **trim_where**

 Alphanumeric

 Is one of the following, which indicates where to remove the pattern:

 - 'L' removes leading occurrences.
 - 'T' removes trailing occurrences.
 - 'B' removes both leading and trailing occurrences.

- **source_string**

 Alphanumeric

 Is the string to trim enclosed in single quotation marks, or the field containing the string.

- **string_length**

 Integer

 Is the number of characters in the source string.

- **pattern**

 Alphanumeric

 Is the character string pattern to remove enclosed in single quotation marks.

- **sublength**

 Integer

 Is the number of characters in the pattern.

- **output**

 Alphanumeric

 Is the field to which the result is returned, or the format of the output value enclosed in single quotation marks.
Example: **Removing Leading Occurrences**

TRIM removes leading occurrences of the characters BR from the DIRECTOR field and stores the result in a field with the format A17:

```
TABLE FILE MOVIES
PRINT DIRECTOR AND
COMPUTE
   TRIMDIR/A17 = TRIM('L', DIRECTOR, 17, 'BR', 2, 'A17');
   WHERE DIRECTOR CONTAINS 'BR'
END
```

The output is:

<table>
<thead>
<tr>
<th>DIRECTOR</th>
<th>TRIMDIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABRAHAMS J.</td>
<td>ABRAHAMS J.</td>
</tr>
<tr>
<td>BROOKS R.</td>
<td>OOKS R.</td>
</tr>
<tr>
<td>BROOKS J.L.</td>
<td>OOKS J.L.</td>
</tr>
</tbody>
</table>

Example: **Removing Trailing Occurrences**

TRIM removes trailing occurrences of the characters ER from the TITLE. In order to remove trailing non-blank characters, trailing spaces must be removed first. The TITLE field has trailing spaces. Therefore, TRIM does not remove the characters ER when creating field TRIMT. The SHORT field does not have trailing spaces. Therefore, TRIM removes the trailing ER characters when creating field TRIMS:

```
DEFINE FILE MOVIES
SHORT/A19 = SUBSTR(19, TITLE, 1, 19, 19, SHORT);
END
TABLE FILE MOVIES
PRINT TITLE IN 1 AS 'TITLE: '
   SHORT IN 40 AS 'SHORT: ' OVER
COMPUTE
   TRIMT/A39 = TRIM('T', TITLE, 39, 'ER', 2, 'A39'); IN 1 AS 'TRIMT: '
   COMPUTE
   TRIMS/A19 = TRIM('T', SHORT, 19, 'ER', 2, 'A19'); IN 40 AS 'TRIMS: '
   WHERE TITLE LIKE '%ER'
END
```

The output is:

<table>
<thead>
<tr>
<th>TITLE:</th>
<th>TRIMT:</th>
<th>TRIMS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEARN TO SKI BETTER</td>
<td>LEARN TO SKI BETTER</td>
<td>LEARN TO SKI BETTER</td>
</tr>
<tr>
<td>FANNY AND ALEXANDER</td>
<td>FANNY AND ALEXANDER</td>
<td>FANNY AND ALEXANDER</td>
</tr>
</tbody>
</table>
UPCASE: Converting Text to Uppercase

Available Languages: reporting

The UPCASE function converts a character string to uppercase. It is useful for sorting on a field that contains both mixed-case and uppercase values. Sorting on a mixed-case field produces incorrect results because the sorting sequence in EBCDIC always places lowercase letters before uppercase letters, while the ASCII sorting sequence always places uppercase letters before lowercase. To obtain correct results, define a new field with all of the values in uppercase, and sort on that field.

There is a version of the UPCASE function that is available only in the Maintain language. For information on this function, see UPCASE: Converting Text to Uppercase (Maintain) on page 303.

Syntax: How to Convert Text to Uppercase

UPCASE(length, source_string, output)

where:

length
 Integer
 Is the number of characters in source_string and output.

input
 Alphanumeric
 Is the string to convert enclosed in single quotation marks, or the field containing the character string.

output
 Alphanumeric of type AnV or An
 Is the field to which the result is returned, or the format of the output value enclosed in single quotation marks.

Example: Converting a Mixed-Case String to Uppercase

UPCASE converts the LAST_NAME_MIXED field to uppercase:

DEFINE FILE EMPLOYEE
LAST_NAME_MIXED/A15=IF DEPARTMENT EQ 'MIS' THEN LAST_NAME ELSE LCWORD(15, LAST_NAME, 'A15');
LAST_NAME_UPPER/A15=UPCASE(15, LAST_NAME_MIXED, 'A15');
END
TABLE FILE EMPLOYEE
PRINT LAST_NAME_MIXED AND FIRST_NAME BY LAST_NAME_UPPER
WHERE CURR_JOBCODE EQ 'B02' OR 'A17' OR 'B04';
END

Now, when you execute the request, the names are sorted correctly.

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME_UPPER</th>
<th>LAST_NAME_MIXED</th>
<th>FIRST_NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANNING</td>
<td>Banning</td>
<td>JOHN</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
</tr>
<tr>
<td>CROSS</td>
<td>CROSS</td>
<td>BARBARA</td>
</tr>
<tr>
<td>MCCOY</td>
<td>MCCOY</td>
<td>JOHN</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>Mcknight</td>
<td>ROGER</td>
</tr>
<tr>
<td>ROMANS</td>
<td>Romans</td>
<td>ANTHONY</td>
</tr>
</tbody>
</table>

If you do not want to see the field with all uppercase values, you can NOPRINT it.

XMLDECOD: Decoding XML-Encoded Characters

The XMLDECOD function decodes the following five standard XML-encoded characters when they are encountered in a string:

<table>
<thead>
<tr>
<th>Character Name</th>
<th>Character</th>
<th>XML-Encoded Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ampersand</td>
<td>&</td>
<td>&</td>
</tr>
<tr>
<td>greater than symbol</td>
<td>></td>
<td>></td>
</tr>
<tr>
<td>less than symbol</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>double quotation mark</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>single quotation mark (apostrophe)</td>
<td>'</td>
<td>'</td>
</tr>
</tbody>
</table>

Syntax:

How to Decode XML-Encoded Characters

XMLDECOD(inlength, source_string, outlength, output)

where:

- `inlength`
 Integer
 Is the length of the field containing the source character string, or a field that contains the length.
source_string
Alphanumeric

Is the name of the field containing the source character string or the string enclosed in single quotation marks (').

outlength
Integer

Is the length of the output character string, or a field that contains the length.

output
Integer

Is the field that contains the result, or the format of the output value enclosed in single quotation marks.

Example: Decoding XML-Encoded Characters

The file XMLFUNCS is a .csv file that contains some unencoded characters and some XML-encoded characters. The Master File is:

```plaintext
FILE = XMLFUNCS, SUFFIX=COM,$
SEGNAME = SEG01, SEGTYPE=S1,$
FIELD=INSTRING, ALIAS=CHARS, USAGE=A30,ACTUAL=A30,$
```

The contents of the file follow:

```plaintext
CHARS: & < > ,$
ENCODED: &amp; &gt; ,$
ENCODED: &quot; &apos; ,$
MIXED: &amp; &lt; &gt; ,$
```
XMLDECOD decodes any of the supported XML-encoded characters. Note that some viewers automatically decode the encoded values for display, so the output is produced in a plain text format (FORMAT WP):

```
FILEDEF XMLFUNCS DISK xmlfuncs.csv
DEFINE FILE XMLFUNCS
OUTSTRING/A30=XMLDECOD(30,INSTRING,30,'A30');
END
TABLE FILE XMLFUNCS
PRINT INSTRING OUTSTRING
ON TABLE PCHOLD FORMAT WP
ON TABLE SET PAGE NOPAGE
```

In the output string, XML-encoded characters have been decoded, and characters that were not encoded have been left as they were in the input string:

<table>
<thead>
<tr>
<th>INSTRING</th>
<th>OUTSTRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARS: & < ></td>
<td>CHARS: & < ></td>
</tr>
<tr>
<td>ENCODED: & ></td>
<td>ENCODED: & ></td>
</tr>
<tr>
<td>ENCODED: " '</td>
<td>ENCODED: " '</td>
</tr>
<tr>
<td>MIXED: & < ></td>
<td>MIXED: & < ></td>
</tr>
</tbody>
</table>

XMLENCOD: XML-Encoding Characters

The XMLENCOD function encodes the following five standard characters when they are encountered in a string:

<table>
<thead>
<tr>
<th>Character Name</th>
<th>Character</th>
<th>Encoded Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ampersand</td>
<td>&</td>
<td>&</td>
</tr>
<tr>
<td>greater than symbol</td>
<td>></td>
<td>></td>
</tr>
<tr>
<td>less than symbol</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>double quotation mark</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>single quotation mark (apostrophe)</td>
<td>'</td>
<td>'</td>
</tr>
</tbody>
</table>
Syntax: How to XML-Encode Characters

```
XMLENCOD(inlength, source_string, option, outlength, output)
```

where:

- **inlength**
 - Integer
 - Is the length of the field containing the source character string, or a field that contains the length.

- **source_string**
 - Alphanumeric
 - Is the name of the field containing the source character string or a string enclosed in single quotation marks (').

- **option**
 - Integer
 - Is a code that specifies whether to process a string that already contains XML-encoded characters. Valid values are:
 - 0, the default, which cancels processing of a string that already contains at least one XML-encoded character.
 - 1, which processes a string that contains XML-encoded characters.

- **outlength**
 - Integer
 - Is the length of the output character string, or a field that contains the length.

Note: The output length, in the worst case, could be six times the length of the input.

- **output**
 - Integer
 - Is the field that contains the result, or the format of the output value enclosed in single quotation marks.

Example: XML-Encoding Characters

The file XMLFUNCS is a .csv file that contains some unencoded characters and some XML-encoded characters. The Master File is:

```
FILE = XMLFUNCS, SUFFIX=COM, $
SEGNAME = SEG01, SECTYPE=S1, $
FIELD=INSTRING, ALIAS=CHARS, USAGE=A30, ACTUAL=A30, $
```
The contents of the file follow:

CHARS: & < > ,$
ENCODED: & > ,$
ENCODED: " ' ,$
MIXED: & < > ,$

XMLENCODED XML-encodes any of the supported characters to produce OUTSTRING1, and processes every input string regardless of whether it already contains XML-encoded characters. For OUTSTRING2, it only encodes those strings that do not contain any XML-encoded characters. Note that some viewers automatically decode the encoded values for display, so the output is produced in plain text format (FORMAT WP):

FILEDEF XMLFUNCS DISK xmlfuncs.csv
DEFINE FILE XMLFUNCS
OUTSTRING1/A30=XMLENCODED(30,INSTRING,1,30,'A30');
OUTSTRING2/A30=XMLENCODED(30,INSTRING,0,30,'A30');
END
TABLE FILE XMLFUNCS
PRINT INSTRING OUTSTRING1 IN 24 OUTSTRING2 IN 48
ON TABLE SET PAGE NOPAGE
ON TABLE PCHOLD FORMAT WP
END

In OUTSTRING1, the supported characters have been XML-encoded, and output is produced even if the input string contains encoded characters. OUTSTRING2 is only produced when no XML-encoded characters exist in the input string:

<table>
<thead>
<tr>
<th>INSTRING</th>
<th>OUTSTRING1</th>
<th>OUTSTRING2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARS: & < ></td>
<td>CHARS: & < ></td>
<td>CHARS: & < ></td>
</tr>
</tbody>
</table>
| ENCODED: & > | ENCODED: & > | ENCODED: " '
| ENCODED: " ' | ENCODED: " ' | ENCODED: " '
| MIXED: & < > | MIXED: & < > | MIXED: & < > |
Variable Length Character Functions

The character format AnV is supported in synonyms for FOCUS, XFOCUS, and relational data sources. This format is used to represent the VARCHAR (variable length character) data types supported by relational database management systems.

In this chapter:

- Overview
- LENV: Returning the Length of an Alphanumeric Field
- LOCASV: Creating a Variable Length Lowercase String
- POSITV: Finding the Beginning of a Variable Length Substring
- SUBSTV: Extracting a Variable Length Substring
- TRIMV: Removing Characters From a String
- UPCASV: Creating a Variable Length Uppercase String

Overview

For relational data sources, AnV keeps track of the actual length of a VARCHAR column. This information is especially valuable when the value is used to populate a VARCHAR column in a different RDBMS. It affects whether trailing blanks are retained in string concatenation and, for Oracle, string comparisons (the other relational engines ignore trailing blanks in string comparisons).

In a TIBCO FOCUS® or XFOCUS data source, AnV does not provide true variable length character support. It is a fixed-length character field with an extra two leading bytes to contain the actual length of the data stored in the field. This length is stored as a short integer value occupying two bytes. Because of the two bytes of overhead and the additional processing required to strip them, AnV format is not recommended for use with non-relational data sources.

AnV fields can be used as arguments to all supplied functions that expect alphanumerical arguments. An AnV input parameter is treated as an An parameter and is padded with blanks to its declared size (n). If the last parameter specifies an AnV format, the function result is converted to type AnV with actual length set equal to its size.
The functions described in this topic are designed to work specifically with the AnV data type parameters.

Reference: **Usage Notes for Using an AnV Field in a Function**

The following affect the use of an AnV field in a function:

- When using an AnV argument in a function, the input parameter is treated as an An parameter and is padded with blanks to its declared size \((n)\). If the last parameter specifies an AnV format, the function result is converted to type AnV with actual length set equal to its size.

- Many functions require both an alphanumeric string and its length as input arguments. If the supplied string is stored in an AnV field, you still must supply a length argument to satisfy the requirements of the function. However, the length that will be used in the function's calculations is the actual length stored as the first two bytes of the AnV field.

- In general, any input argument can be a field or a literal. In most cases, numeric input arguments are supplied to these functions as literals, and there is no reason not to supply an integer value. However, if the value is not an integer, it is truncated to an integer value regardless of whether it was supplied as a field or a literal.

LENV: Returning the Length of an Alphanumeric Field

Available Languages: reporting

LENV returns the actual length of an AnV field or the size of an An field.

Syntax: **How to Find the Length of an Alphanumeric Field**

\[
\text{LENV}(\text{source_string}, \text{output})
\]

where:

\[
\text{source_string}
\]

Alphanumeric of type An or AnV

Is the source string or field. If it is an An format field, the function returns its size, \(n\). For a character string enclosed in quotation marks or a variable, the size of the string or variable is returned. For a field of AnV format, its length, taken from the length-in-bytes of the field, is returned.
output

Integer

Is the field to which the result is returned, or the format of the output value enclosed in single quotation marks (').

Example: Finding the Length of an AnV Field

TRIMV creates an AnV field named TITLEV by removing trailing blanks from the TITLE value. Then LENV returns the actual length of each instance of TITLEV to the ALEN field:

```
TABLE FILE MOVIES
PRINT
COMPUTE TITLEV/A39V = TRIMV('T', TITLE, 39, ' ', 1, TITLEV);
       ALEN/I2 = LENV(TITLEV, ALEN);
BY CATEGORY NOPRINT
WHERE CATEGORY EQ 'CHILDREN'
END
```

The output is:

<table>
<thead>
<tr>
<th>TITLEV</th>
<th>ALEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMURFS, THE</td>
<td>11</td>
</tr>
<tr>
<td>SHAGGY DOG, THE</td>
<td>15</td>
</tr>
<tr>
<td>SCOOBY-DOO-A DOG IN THE RUFF</td>
<td>28</td>
</tr>
<tr>
<td>ALICE IN WONDERLAND</td>
<td>19</td>
</tr>
<tr>
<td>SESAME STREET-BEDTIME STORIES AND SONGS</td>
<td>39</td>
</tr>
<tr>
<td>ROMPER ROOM-ASK MISS MOLLY</td>
<td>26</td>
</tr>
<tr>
<td>SLEEPING BEAUTY</td>
<td>15</td>
</tr>
<tr>
<td>BAMBI</td>
<td>5</td>
</tr>
</tbody>
</table>

LOCASV: Creating a Variable Length Lowercase String

Available Languages: reporting

The LOCASV function converts alphabetic characters in the source string to lowercase and is similar to LOCASE. LOCASV returns AnV output whose actual length is the lesser of the actual length of the AnV source string and the value of the input parameter upper_limit.

Syntax: How to Create a Variable Length Lowercase String

```
LOCASV(upper_limit, source_string, output)
```

where:

- **upper_limit**

 Integer

 Is the limit for the length of the source string.
source_string
Alphanumeric of type An or AnV

Is the string to be converted to lowercase in single quotation marks, or a field or variable that contains the string. If it is a field, it can have An or AnV format. If it is a field of type AnV, its length is taken from the length in bytes stored in the field. If upper_limit is smaller than the actual length, the source string is truncated to this upper limit.

output
Alphanumeric of type An or AnV

Is the name of the field in which to store the result, or the format of the output value enclosed in single quotation marks ('). This value can be for a field that is AnV or An format.

If the output format is AnV, the actual length returned is equal to the smaller of the source string length and the upper limit.

Example: Creating a Variable Length Lowercase String

In this example, LOCASV converts the LAST_NAME field to lowercase and specifies a length limit of five characters. The results are stored in the LOWCV_NAME field:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
LOWCV_NAME/A15V = LOCASV(5, LAST_NAME, LOWCV_NAME);
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>LOWCV_NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMITH</td>
<td>smith</td>
</tr>
<tr>
<td>JONES</td>
<td>jones</td>
</tr>
<tr>
<td>MCCOY</td>
<td>mccoy</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>black</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>green</td>
</tr>
<tr>
<td>CROSS</td>
<td>cross</td>
</tr>
</tbody>
</table>

POSITV: Finding the Beginning of a Variable Length Substring

Available Languages: reporting

The POSITV function finds the starting position of a substring within a larger string. For example, the starting position of the substring DUCT in the string PRODUCTION is 4. If the substring is not in the parent string, the function returns the value 0. This is similar to POSIT; however, the lengths of its AnV parameters are based on the actual lengths of those parameters in comparison with two other parameters that specify their sizes.
Syntax:

How to Find the Beginning of a Variable Length Substring

\[
\text{POSITV}(\text{source} _\text{string}, \text{upper} _\text{limit}, \text{substring}, \text{sub} _\text{limit}, \text{output})
\]

where:

\textit{source} _\textit{string} \\
Alphanumeric of type An or AnV \\
Is the source string that contains the substring whose position you want to find. It can be the string enclosed in single quotation marks ('), or a field or variable that contains the source string. If it is a field of AnV format, its length is taken from the length bytes stored in the field. If \textit{upper} _\textit{limit} is smaller than the actual length, the source string is truncated to this upper limit.

\textit{upper} _\textit{limit} \\
Integer \\
Is a limit for the length of the source string.

\textit{substring} \\
Alphanumeric of type An or AnV \\
Is the substring whose position you want to find. This can be the substring enclosed in single quotation marks ('), or the field that contains the string. If it is a field, it can have An or AnV format. If it is a field of type AnV, its length is taken from the length bytes stored in the field. If \textit{sub} _\textit{limit} is smaller than the actual length, the source string is truncated to this limit.

\textit{sub} _\textit{limit} \\
Integer \\
Is the limit for the length of the substring.

\textit{output} \\
Integer \\
Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks (').
Example: Finding the Starting Position of a Variable Length Pattern

POSITV finds the starting position of a trailing definite or indefinite article in a movie title (such as ", THE" in SMURFS, THE). First TRIMV removes the trailing blanks from the title so that the article will be the trailing pattern:

```
DEFINE FILE MOVIES
   TITLEV/A39V = TRIMV(TITLE, 39, ', 1, TITLEV);
   PSTART/I4 = POSITV(TITLEV, LENV(TITLEV, 'I4'), ', 1, 'I4');
   PLEN/I4 = IF PSTART NE 0 THEN LENV(TITLEV, 'I4') - PSTART +1 ELSE 0;
END
```

```
TABLE FILE MOVIES
   PRINT TITLE
   PSTART AS 'Pattern,Start' IN 25
   PLEN AS 'Pattern,Length'
   BY CATEGORY NOPRINT
   WHERE PLEN NE 0
END
```

The output is:

<table>
<thead>
<tr>
<th>TITLE</th>
<th>Pattern</th>
<th>Start</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMURFS, THE</td>
<td></td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>SHAGGY DOG, THE</td>
<td></td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>MALTESE FALCON, THE</td>
<td></td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>PHILADELPHIA STORY, THE</td>
<td></td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>TIN DRUM, THE</td>
<td></td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>FAMILY, THE</td>
<td></td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>CHORUS LINE, A</td>
<td></td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>MORNING AFTER, THE</td>
<td></td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>BIRDS, THE</td>
<td></td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>BOY AND HIS DOG, A</td>
<td></td>
<td>16</td>
<td>3</td>
</tr>
</tbody>
</table>

SUBSTV: Extracting a Variable Length Substring

Available Languages: reporting

The SUBSTV function extracts a substring from a string and is similar to SUBSTR. However, the end position for the string is calculated from the starting position and the substring length. Therefore, it has fewer parameters than SUBSTR. Also, the actual length of the output field, if it is an ArIV field, is determined based on the substring length.
Syntax:

How to Extract a Variable Length Substring

`SUBSTV(upper_limit, source_string, start, sub_limit, output)`

where:

`upper_limit`

Integer

Is the limit for the length of the source string.

`source_string`

Alphanumeric of type An or AnV

Is the character string that contains the substring you want to extract. It can be the string enclosed in single quotation marks ('), or the field containing the string. If it is a field, it can have An or AnV format. If it is a field of type AnV, its length is taken from the length bytes stored in the field. If `upper_limit` is smaller than the actual length, the source string is truncated to the upper limit. The final length value determined by this comparison is referred to as `p_length` (see the description of the `output` parameter for related information).

`start`

Integer

Is the starting position of the substring in the source string. The starting position can exceed the source string length, which results in spaces being returned.

`sub_limit`

Integer

Is the length, in characters, of the substring. Note that the ending position can exceed the input string length depending on the provided values for `start` and `sub_limit`.

`output`

Alphanumeric of type An or AnV

Is the field to which the result is returned, or the format of the output value enclosed in single quotation marks ('). This field can be in An or AnV format.

If the format of `output` is AnV, and assuming `end` is the ending position of the substring, the actual length, `outlen`, is computed as follows from the values for `end`, `start`, and `p_length` (see the `source_string` parameter for related information):

If `end > p_length` or `end < start`, then `outlen = 0`. Otherwise, `outlen = end - start + 1`.
Example: Extracting a Variable Length Substring

The following request extracts a trailing definite or indefinite article from a movie title (such as "THE" in "SMURFS, THE"). First it trims the trailing blanks so that the article is the trailing pattern. Next it finds the starting position and length of the pattern. Then SUBSTV extracts the pattern and TRIMV trims the pattern from the title:

```plaintext
DEFINE FILE MOVIES
  TITLEV/A39V = TRIMV('T', TITLE, 39, ' ', 1, TITLEV);
  PSTART/I4 = POSITV(TITLEV, LENV(TITLEV, 'I4'), ' ', 1, 'I4');
  PLEN/I4 = IF PSTART NE 0 THEN LENV(TITLEV, 'I4') - PSTART + 1
            ELSE 0;
  PATTERN/A20V = SUBSTV(39, TITLEV, PSTART, PLEN, PATTERN);
  NEWTIT/A39V = TRIMV('T', TITLEV, 39, PATTERN, LENV(PATTERN, 'I4'), NEWTIT);
END

TABLE FILE MOVIES
  PRINT TITLE
    PSTART AS 'Pattern,Start' IN 25
    PLEN AS 'Pattern,Length'
    NEWTIT AS 'Trimmed,Title' IN 55
  BY CATEGORY NOPRINT
  WHERE PLEN NE 0
END
```

The output is:

<table>
<thead>
<tr>
<th>TITLE</th>
<th>Pattern Start</th>
<th>Pattern Length</th>
<th>Trimmed Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMURFS, THE</td>
<td>7</td>
<td>5</td>
<td>SMURFS</td>
</tr>
<tr>
<td>SHAGGY DOG, THE</td>
<td>11</td>
<td>5</td>
<td>SHAGGY DOG</td>
</tr>
<tr>
<td>MALTESE FALCON, THE</td>
<td>15</td>
<td>5</td>
<td>MALTESE FALCON</td>
</tr>
<tr>
<td>PHILADELPHIA STORY, THE</td>
<td>19</td>
<td>5</td>
<td>PHILADELPHIA STORY</td>
</tr>
<tr>
<td>TIN DRUM, THE</td>
<td>9</td>
<td>5</td>
<td>TIN DRUM</td>
</tr>
<tr>
<td>FAMILY, THE</td>
<td>7</td>
<td>5</td>
<td>FAMILY</td>
</tr>
<tr>
<td>CHORUS LINE, A</td>
<td>12</td>
<td>3</td>
<td>CHORUS LINE</td>
</tr>
<tr>
<td>MORNING AFTER, THE</td>
<td>14</td>
<td>5</td>
<td>MORNING AFTER</td>
</tr>
<tr>
<td>BIRDS, THE</td>
<td>6</td>
<td>5</td>
<td>BIRDS</td>
</tr>
<tr>
<td>BOY AND HIS DOG, A</td>
<td>16</td>
<td>3</td>
<td>BOY AND HIS DOG</td>
</tr>
</tbody>
</table>

TRIMV: Removing Characters From a String

Available Languages: reporting

The TRIMV function removes leading and/or trailing occurrences of a pattern within a character string. TRIMV is similar to TRIM. However, TRIMV allows the source string and the pattern to be removed to have AnV format.

TRIMV is useful for converting an An field to an AnV field (with the length in bytes containing the actual length of the data up to the last non-blank character).
Syntax: How to Remove Characters From a String

\[\text{TRIMV}(\text{trim_where}, \text{source_string}, \text{upper_limit}, \text{pattern}, \text{pattern_limit}, \text{output}) \]

where:

\textit{trim_where}

Alphanumeric

Is one of the following, which indicates where to remove the pattern:

'L' removes leading occurrences.

'T' removes trailing occurrences.

'B' removes both leading and trailing occurrences.

\textit{source_string}

Alphanumeric of type An or AnV

Is the source string to be trimmed. It can be the string enclosed in single quotation marks ('), or the field containing the string. If it is a field, it can have An or AnV format. If it is a field of type AnV, its length is taken from the length in bytes stored in the field. If \textit{upper_limit} is smaller than the actual length, the source string is truncated to this upper limit.

\textit{upper_limit}

Integer

Is the upper limit for the length of the source string.

\textit{pattern}

Alphanumeric of type An or AnV

Is the pattern to remove from the string, enclosed in single quotation marks ('). If it is a field, it can have An or AnV format. If it is a field of type AnV, its length is taken from the length in bytes stored in the field. If \textit{pattern_limit} is smaller than the actual length, the pattern is truncated to this limit.

\textit{pattern_limit}

Integer

Is the limit for the length of the pattern.

\textit{output}

Alphanumeric of type An or AnV

Is the field to which the result is returned, or the format of the output value enclosed in single quotation marks ('). The field can be in AnV or An format.
If the output format is AnV, the length is set to the number of characters left after trimming.

Example: Creating an AnV Field by Removing Trailing Blanks

TRIMV creates an AnV field named TITLEV by removing trailing blanks from the TITLE value:

```
TABLE FILE MOVIES
PRINT DIRECTOR
COMPUTE TITLEV/A39V = TRIMV('T', TITLE, 39, ' ', 1, TITLEV);
BY CATEGORY
END
```

Here are the first 10 lines of the output:

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>DIRECTOR</th>
<th>TITLEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTION</td>
<td>SPIELBERG S.</td>
<td>JAWS</td>
</tr>
<tr>
<td>VERHOVEN P.</td>
<td>ROBOCOP</td>
<td></td>
</tr>
<tr>
<td>VERHOVEN P.</td>
<td>TOTAL RECALL</td>
<td></td>
</tr>
<tr>
<td>SCOTT T.</td>
<td>TOP GUN</td>
<td></td>
</tr>
<tr>
<td>MCDONALD P.</td>
<td>RAMBO III</td>
<td></td>
</tr>
<tr>
<td>CHILDREN</td>
<td>SMURFS, THE</td>
<td></td>
</tr>
<tr>
<td>BARTON C.</td>
<td>SHAGGY DOG, THE</td>
<td></td>
</tr>
<tr>
<td>GEROMINI</td>
<td>ALICE IN WONDERLAND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SESAME STREET-BEDTIME STORIES AND SONGS</td>
<td></td>
</tr>
</tbody>
</table>

UPCASV: Creating a Variable Length Uppercase String

Available Languages: reporting

UPCASV converts alphabetic characters to uppercase, and is similar to UPCASE. However, UPCASV can return AnV output whose actual length is the lesser of the actual length of the AnV source string and an input parameter that specifies the upper limit.

Syntax: How to Create a Variable Length Uppercase String

```
UPCASV(upper_limit, source_string, output)
```

where:

- **upper_limit**
 - Integer

 Is the limit for the length of the source string. It can be a positive constant or a field whose integer portion represents the upper limit.
source_string
Alphanumeric of type An or AnV

is the string to convert to uppercase. It can be the character string enclosed in single
quotation marks (‘), or the field containing the character string. If it is a field, it can have
An or AnV format. If it is a field of type AnV, its length is taken from the length in bytes
stored in the field. If upper_limit is smaller than the actual length, the source string is
truncated to the upper limit.

output
Alphanumeric of type An or AnV

Is the field to which the result is returned, or the format of the output value enclosed in
single quotation marks (‘). This can be a field with AnV or An format.

If the output format is AnV, the length returned is equal to the smaller of the source string
length and upper_limit.

Example: Creating a Variable Length Uppercase String

Suppose you are sorting on a field that contains both uppercase and mixed-case values. The
following request defines a field called LAST_NAME_MIXED that contains both uppercase and
mixed-case values:

DEFINE FILE EMPLOYEE
LAST_NAME_MIXED/A15=IF DEPARTMENT EQ 'MIS' THEN LAST_NAME ELSE
LCWORD(15, LAST_NAME, 'A15');
LAST_NAME_UPCASV/A15V=UPCASV(5, LAST_NAME_MIXED, 'A15');
END

Suppose you execute a request that sorts by this field:

TABLE FILE EMPLOYEE
PRINT LAST_NAME_MIXED AND FIRST_NAME BY LAST_NAME_UPCASV
WHERE CURR_JOBCODE EQ 'B02' OR 'A17' OR 'B04';
END

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME_UPCASV</th>
<th>LAST_NAME_MIXED</th>
<th>FIRST_NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANNI</td>
<td>Banning</td>
<td>JOHN</td>
</tr>
<tr>
<td>BLACK</td>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
</tr>
<tr>
<td>CROSS</td>
<td>CROSS</td>
<td>BARBARA</td>
</tr>
<tr>
<td>MCCOY</td>
<td>MCCOY</td>
<td>JOHN</td>
</tr>
<tr>
<td>MCKNI</td>
<td>Mcknight</td>
<td>ROGER</td>
</tr>
<tr>
<td>ROMAN</td>
<td>Romans</td>
<td>ANTHONY</td>
</tr>
</tbody>
</table>
The functions in this topic manipulate strings of DBCS and SBCS characters when your configuration uses a DBCS code page.

In this chapter:

- **DCTRAN: Translating A Single-Byte or Double-Byte Character to Another**
- **DEDIT: Extracting or Adding Characters**
- **DSTRIP: Removing a Single-Byte or Double-Byte Character From a String**
- **DSUBSTR: Extracting a Substring**
- **JPTRANS: Converting Japanese Specific Characters**
- **KKFCUT: Truncating a String**
- **SFTDEL: Deleting the Shift Code From DBCS Data**
- **SFTINS: Inserting the Shift Code Into DBCS Data**

DCTRAN: Translating A Single-Byte or Double-Byte Character to Another

The DCTRAN function translates a single-byte or double-byte character within a character string to another character based on its decimal value. To use DCTRAN, you need to know the decimal equivalent of the characters in internal machine representation.

The DCTRAN function can translate single-byte to double-byte characters and double-byte to single-byte characters, as well as single-byte to single-byte characters and double-byte to double-byte characters.

Syntax:

- **How to Translate a Single-Byte or Double-Byte Character to Another**

 \[\text{DCTRAN}(\text{length, source_string, indecimal, outdecimal, output}) \]

 where:

 - \(\text{length} \)
 - Double
Is the number of characters in source_string.

source_string
 Alphanumeric
 Is the character string to be translated.

indecimal
 Double
 Is the ASCII or EBCDIC decimal value of the character to be translated.

outdecimal
 Double
 Is the ASCII or EBCDIC decimal value of the character to be used as a substitute for indecimal.

output
 Alphanumeric
 Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks (').

Example: Using DCTRAN to Translate Double-Byte Characters

In the following:

DCTRAN(8, 'ＡＢ', 177, 70, A8)

For ＡＢ, the result is ＡＢ.

DEDIT: Extracting or Adding Characters

If your configuration uses a DBCS code page, you can use the DEDIT function to extract characters from or add characters to a string.

DEDIT works by comparing the characters in a mask to the characters in a source field. When it encounters a nine (9) in the mask, DEDIT copies the corresponding character from the source field to the new field. When it encounters a dollar sign ($) in the mask, DEDIT ignores the corresponding character in the source field. When it encounters any other character in the mask, DEDIT copies that character to the corresponding position in the new field.
Syntax:

How to Extract or Add DBCS or SBCS Characters

\[
\text{DEDIT}(\text{inlength, source_string, mask_length, mask, output})
\]

where:

* **inlength**
 - Integer
 - Is the number of bytes in *source_string*. The string can have a mixture of DBCS and SBCS characters. Therefore, the number of bytes represents the maximum number of characters possible in the source string.

* **source_string**
 - Alphanumeric
 - Is the string to edit enclosed in single quotation marks ('), or the field containing the string.

* **mask_length**
 - Integer
 - Is the number of characters in mask.

* **mask**
 - Alphanumeric
 - Is the string of mask characters.
 - Each nine (9) in the mask causes the corresponding character from the source field to be copied to the new field.
 - Each dollar sign ($) in the mask causes the corresponding character in the source field to be ignored.
 - Any other character in the mask is copied to the new field.

* **output**
 - Alphanumeric
 - Is the field to which the result is returned, or the format of the output value enclosed in single quotation marks (').
Example: Adding and Extracting DBCS Characters

The following example copies alternate characters from the source string to the new field, starting with the first character in the source string, and then adds several new characters at the end of the extracted string:

\[
\text{DEDIT}(15, 'あいうえお', 16, '9$9$9$9$-かきくけこ', 'A30')
\]

The result is あいうえお-かきくけこ.

The following example copies alternate characters from the source string to the new field, starting with the second character in the source string, and then adds several new characters at the end of the extracted string:

\[
\text{DEDIT}(15, 'あいうえお', 16, '9$9$9$9$-ABCDE', 'A20')
\]

The result is aiiueo-ABCDE.

DSTRIP: Removing a Single-Byte or Double-Byte Character From a String

The DSTRIP function removes all occurrences of a specific single-byte or double-byte character from a string. The resulting character string has the same length as the original string, but is padded on the right with spaces.

Syntax: How to Remove a Single-Byte or Double-Byte Character From a String

\[
\text{DSTRIP}(\text{length}, \text{source_string}, \text{char}, \text{output})
\]

where:

\[
\text{length}
\]

Double

Is the number of characters in \text{source_string} and \text{output}.

\[
\text{source_string}
\]

Alphanumeric

Is the string from which the character will be removed.
char
Alphanumeric

Is the character to be removed from the string. If more than one character is provided, the left-most character will be used as the strip character.

Note: To remove single quotation marks, use two consecutive quotation marks. You must then enclose this character combination in single quotation marks.

output
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks (').

Example: Removing a Double-Byte Character From a String
In the following:

DSTRIP(9, 'Ａ日Ａ本Ｂ語', '日', A9)

For Ａ日Ａ本Ｂ語, the result is ＡＡ本Ｂ語.

DSUBSTR: Extracting a Substring
If your configuration uses a DBCS code page, you can use the DSUBSTR function to extract a substring based on its length and position in the source string.

Syntax: How to Extract a Substring

DSUBSTR(inlength, source_string, start, end, sublength, output)

where:

inlength
Integer

Is the length of the source string in bytes, or a field that contains the length. The string can have a mixture of DBCS and SBCS characters. Therefore, the number of bytes represents the maximum number of characters possible in the source string.

source_string
Alphanumeric

Is the string from which the substring will be extracted enclosed in single quotation marks ('), or the field containing the parent string.
start
Integer

Is the starting position (in number of characters) of the substring in the source string. If this argument is less than one or greater than **end**, the function returns spaces.

end
Integer

Is the ending position (in number of characters) of the substring. If this argument is less than **start** or greater than **inlength**, the function returns spaces.

sublength
Integer

Is the length of the substring, in characters (normally **end** - **start** + 1). If **sublength** is longer than **end** - **start** + 1, the substring is padded with trailing spaces. If it is shorter, the substring is truncated. This value should be the declared length of **output**. Only **sublength** characters will be processed.

output
Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed in single quotation marks (').

Example: Extracting a Substring

The following example extracts the 3-character substring in positions 4 through 6 from a 15-byte string of characters:

\[
\text{DSUBSTR}(15, 'あいうえお', 4, 6, 3, 'A10')
\]

The result is いう

JPTRANS: Converting Japanese Specific Characters

The JPTRANS function converts Japanese specific characters.
Syntax: How to Convert Japanese Specific Characters

```plaintext
JPTRANS ('type_of_conversion', length, source_string, 'output_format')
```

where:

- **type_of_conversion**
 Is one of the following options indicating the type of conversion you want to apply to Japanese specific characters. The following table shows the single component input types:

<table>
<thead>
<tr>
<th>Conversion Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'UPCASE'</td>
<td>Converts Zenkaku (Fullwidth) alphabets to Zenkaku uppercase.</td>
</tr>
<tr>
<td>'LOCASE'</td>
<td>Converts Zenkaku alphabets to Zenkaku lowercase.</td>
</tr>
<tr>
<td>'HNZNALPHA'</td>
<td>Converts alphanumerics from Hankaku (Halfwidth) to Zenkaku.</td>
</tr>
<tr>
<td>'HNZNSIGN'</td>
<td>Converts ASCII symbols from Hankaku to Zenkaku.</td>
</tr>
<tr>
<td>'HNZNKANA'</td>
<td>Converts Katakana from Hankaku to Zenkaku.</td>
</tr>
<tr>
<td>'HNZNSPACE'</td>
<td>Converts space (blank) from Hankaku to Zenkaku.</td>
</tr>
<tr>
<td>'ZNHNALPHA'</td>
<td>Converts alphanumerics from Zenkaku to Hankaku.</td>
</tr>
<tr>
<td>'ZNHNSIGN'</td>
<td>Converts ASCII symbols from Zenkaku to Hankaku.</td>
</tr>
<tr>
<td>'ZNHNKANA'</td>
<td>Converts Katakana from Zenkaku to Hankaku.</td>
</tr>
<tr>
<td>'ZNHNSPACE'</td>
<td>Converts space from Zenkaku to Hankaku.</td>
</tr>
<tr>
<td>'HIRAKATA'</td>
<td>Converts Hiragana to Zenkaku Katakana.</td>
</tr>
<tr>
<td>'KATAHIRA'</td>
<td>Converts Zenkaku Katakana to Hiragana.</td>
</tr>
<tr>
<td>'930TO939'</td>
<td>Converts codepage from 930 to 939.</td>
</tr>
<tr>
<td>'939TO930'</td>
<td>Converts codepage from 939 to 930.</td>
</tr>
</tbody>
</table>
length
Integer
Is the number of characters in the source_string.

source_string
Alphanumeric
Is the string to convert.

output_format
Alphanumeric
Is the name of the field that contains the output, or the format enclosed in single quotation marks (').

Example: Using the JPTRANS Function

JPTRANS('UPCASE', 20, Alpha_DBCS_Field, 'A20')

For a b c, the result is A B C.

JPTRANS('LOWCASE', 20, Alpha_DBCS_Field, 'A20')

For A B C, the result is a b c.

JPTRANS('HNZNALPHA', 20, Alpha_SBCS_Field, 'A20')

For AaBbCc123, the result is A a B b C c 1 2 3.

JPTRANS('HNZNSIGN', 20, Symbol_SBCS_Field, 'A20')

For !@#$%,.,?, the result is ! @ $ % 、．？

JPTRANS('HNZNKANA', 20, Hankaku_Katakana_Field, 'A20')

For 「ぁ・ぇ・ぉ・ゎ・ヵ・ヶ」, the result is 「ベースボール。」

JPTRANS('HNZNSPACE', 20, Hankaku_Katakana_Field, 'A20')

For アイウ, the result is ア イ ウ

JPTRANS('ZNHNALPHA', 20, Alpha_DBCS_Field, 'A20')

For A a B b C c 1 2 3, the result is AaBbCc123.
In the following, codepoints 0x62 0x63 0x64 are converted to 0x81 0x82 0x83, respectively:

```
JPTRANS('930TO939', 20, CP930_Field, 'A20')
```

In the following, codepoints 0x59 0x62 0x63 are converted to 0x81 0x82 0x83, respectively:

```
JPTRANS('939TO930', 20, CP939_Field, 'A20')
```

Reference: Usage Notes for the JPTRANS Function

- **HNZNSIGN** and **ZNHNSIGN** focus on the conversion of symbols.

 Many symbols have a one-to-one relation between Japanese Fullwidth characters and ASCII symbols, whereas some characters have one-to-many relations. For example, the Japanese punctuation character (U+3001) and Fullwidth comma _[(U+FF0C)]_ will be converted to the same comma _[(U+002C)]_. The following EXTRA rule for those special cases is shown below:

 HNZNSIGN:
 - Double Quote " (U+0022) -> Fullwidth Right Double Quote " (U+201D)
 - Single Quote ’ (U+0027) -> Fullwidth Right Single Quote ’ (U+2019)
 - Comma , (U+002C) -> Fullwidth Ideographic Comma (U+3001)
Full Stop . (U+002E) -> Fullwidth Ideographic Full Stop ? (U+3002)
Backslash \ (U+005C) -> Fullwidth Backslash \ (U+FF3C)
Halfwidth Left Corner Bracket (U+FF62) -> Fullwidth Left Corner Bracket (U+300C)
Halfwidth Right Corner Bracket (U+FF63) -> Fullwidth Right Corner Bracket (U+300D)
Halfwidth Katakana Middle Dot ? (U+FF65) -> Fullwidth Middle Dot · (U+30FB)

ZNHNSIGN:
Fullwidth Right Double Quote " (U+201D) -> Double Quote " (U+0022)
Fullwidth Left Double Quote “ (U+201C) -> Double Quote ” (U+0022)
Fullwidth Quotation " (U+FF02) -> Double Quote " (U+0022)
Fullwidth Right Single Quote ' (U+2019) -> Single Quote ' (U+0027)
Fullwidth Left Single Quote ' (U+2018) -> Single Quote ' (U+0027)
Fullwidth Single Quote ' (U+FF07) -> Single Quote ' (U+0027)
Fullwidth Ideographic Comma (U+3001) -> Comma , (U+002C)
Fullwidth Comma , (U+FF0C) -> Comma , (U+002C)
Fullwidth Ideographic Full Stop ? (U+3002) -> Full Stop . (U+002E)
Fullwidth Full Stop . (U+FF0E) -> Full Stop . (U+002E)
Fullwidth Yen Sign ¥ (U+FFE5) -> Yen Sign ¥ (U+00A5)
Backslash \ (U+FF3C) -> Backslash \ (U+005C)
Fullwidth Left Corner Bracket (U+300C) -> Halfwidth Left Corner Bracket (U+FF62)
Fullwidth Right Corner Bracket (U+300D) -> Halfwidth Right Corner Bracket (U+FF63)
Fullwidth Middle Dot · (U+30FB) -> Halfwidth Katakana Middle Dot · (U+FF65)

HNZNKANA and ZNHNKANA focus on the conversion of Katakana
They convert not only letters, but also punctuation symbols on the following list:
Fullwidth Ideographic Comma (U+3001) <-> Halfwidth Ideographic Comma (U+FF64)
Fullwidth Ideographic Full Stop (U+3002) <-> Halfwidth Ideographic Full Stop (U+FF61)
Fullwidth Left Corner Bracket (U+300C) <-> Halfwidth Left Corner Bracket (U+FF62)
Fullwidth Right Corner Bracket (U+300D) <-> Halfwidth Right Corner Bracket (U+FF63)
Fullwidth Middle Dot · (U+30FB) <-> Halfwidth Katakana Middle Dot · (U+FF65)
Fullwidth Prolonged Sound (U+30FC) <-> Halfwidth Prolonged Sound (U+FF70)

JPTRANS can be nested for multiple conversions.
For example, text data may contain fullwidth numbers and fullwidth symbols. In some situations, they should be cleaned up for ASCII numbers and symbols.

For バンゴウ # 1 2 3 , the result is バンゴウ#123

JPTRANS('ZNHNALPHA', 20, JPTRANS('ZNHNSIGN', 20, Symbol_DBCS_Field, 'A20'), 'A20')

HNZNSPACE and ZNHNSPACE focus on the conversion of a space (blank character).
Currently only conversion between U+0020 and U+3000 is supported.

KKFCUT: Truncating a String

If your configuration uses a DBCS code page, you can use the KKFCUT function to truncate a string.

Syntax: How to Truncate a String

\[
\text{KKFCUT}(\text{length}, \text{source_string}, \text{output})
\]

where:

- **length**
 Integer
 Is the length of the source string in bytes, or a field that contains the length. The string can have a mixture of DBCS and SBCS characters. Therefore, the number of bytes represents the maximum number of characters possible in the source string.

- **source_string**
 Alphanumeric
 Is the string that will be truncated enclosed in single quotation marks ('), or the field containing the string.
output

Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed in single quotation marks ('').

The string will be truncated to the number of bytes in the output field.

Example: Truncating a String

In the following, KKFCUT truncates the COUNTRY field (up to 10 bytes long) to A4 format:

```
COUNTRY_CUT/A4 = KKFCUT(10, COUNTRY, 'A4');
```

The output in ASCII environments is shown in the following image:

<table>
<thead>
<tr>
<th>国名</th>
<th>COUNTRY_CUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>イギリス</td>
<td>イギ</td>
</tr>
<tr>
<td>日本</td>
<td>日本</td>
</tr>
<tr>
<td>イタリア</td>
<td>イタ</td>
</tr>
<tr>
<td>ドイツ</td>
<td>ドイ</td>
</tr>
<tr>
<td>フランス</td>
<td>フラ</td>
</tr>
</tbody>
</table>

The output in EBCDIC environments is shown in the following image:

<table>
<thead>
<tr>
<th>国名</th>
<th>COUNTRY_CUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>イギリス</td>
<td>イ</td>
</tr>
<tr>
<td>日本</td>
<td>日</td>
</tr>
<tr>
<td>イタリア</td>
<td>イ</td>
</tr>
<tr>
<td>ドイツ</td>
<td>ド</td>
</tr>
<tr>
<td>フランス</td>
<td>フ</td>
</tr>
</tbody>
</table>

SFTDEL: Deleting the Shift Code From DBCS Data

If your configuration uses a DBCS code page, you can use the SFTDEL function to delete the shift code from DBCS data.
Syntax: How to Delete the Shift Code From DBCS Data

\[\text{SFTDEL}(\text{source_string}, \text{length}, \text{output}) \]

where:

source_string
Alphanumeric

Is the string from which the shift code will be deleted enclosed in single quotation marks ('), or the field containing the string.

length
Integer

Is the length of the source string in bytes, or a field that contains the length. The string can have a mixture of DBCS and SBCS characters. Therefore, the number of bytes represents the maximum number of characters possible in the source string.

output
Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed in single quotation marks (').

Example: Deleting the Shift Code From a String

In the following, SFTDEL deleted the shift code from the COUNTRY field (up to 10 bytes long):

\[\text{COUNTRY_DEL/A10} = \text{SFTDEL}(\text{COUNTRY, 10, 'A10'}); \]

The output in ASCII environments is shown in the following image:

<table>
<thead>
<tr>
<th>国名</th>
<th>COUNTRY_DEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>イギリス</td>
<td>イギリス</td>
</tr>
<tr>
<td>日本</td>
<td>日本</td>
</tr>
<tr>
<td>イタリア</td>
<td>イタリア</td>
</tr>
<tr>
<td>ドイツ</td>
<td>ドイツ</td>
</tr>
<tr>
<td>フランス</td>
<td>フランス</td>
</tr>
</tbody>
</table>
The output in EBCDIC environments is shown in the following image:

![Example of output](image)

SFTINS: Inserting the Shift Code Into DBCS Data

If your configuration uses a DBCS code page, you can use the SFTINS function to insert the shift code into DBCS data.

Syntax: How to Insert the Shift Code Into DBCS Data

```plaintext
SFTINS(source_string, length, output)
```

where:

- **source_string**
 - Alphanumeric
 - Is the string into which the shift code will be inserted enclosed in single quotation marks ('), or the field containing the string.

- **length**
 - Integer
 - Is the length of the source string in bytes, or a field that contains the length. The string can have a mixture of DBCS and SBCS characters. Therefore, the number of bytes represents the maximum number of characters possible in the source string.

- **output**
 - Alphanumeric
 - Is the field to which the result is returned, or the format of the output value enclosed in single quotation marks (').

Example: SFTINS: Inserting the Shift Code Into a String

In the following example, SFTINS inserts the shift code into the COUNTRY_DEL field (which is the COUNTRY field with the shift code deleted):

```plaintext
COUNTRY_INS/A10 = SFTINS(COUNTRY_DEL, 10, 'A10');
```
The output displays the original COUNTRY field, the COUNTRY_DEL field with the shift code deleted, and the COUNTRY_INS field with the shift code re-inserted.

The output in ASCII environments, is shown in the following image:

<table>
<thead>
<tr>
<th>国名</th>
<th>COUNTRY_DEL</th>
<th>COUNTRY_INS</th>
</tr>
</thead>
<tbody>
<tr>
<td>イギリス</td>
<td>イギリス</td>
<td>イギリス</td>
</tr>
<tr>
<td>日本</td>
<td>日本</td>
<td>日本</td>
</tr>
<tr>
<td>イタリア</td>
<td>イタリア</td>
<td>イタリア</td>
</tr>
<tr>
<td>ドイツ</td>
<td>ドイツ</td>
<td>ドイツ</td>
</tr>
<tr>
<td>フランス</td>
<td>フランス</td>
<td>フランス</td>
</tr>
</tbody>
</table>

The output in EBCDIC environments is shown in the following image:

<table>
<thead>
<tr>
<th>国名</th>
<th>COUNTRY_DEL</th>
<th>COUNTRY_INS</th>
</tr>
</thead>
<tbody>
<tr>
<td>イギリス</td>
<td>イギリス</td>
<td>イギリス</td>
</tr>
<tr>
<td>日本</td>
<td>日本</td>
<td>日本</td>
</tr>
<tr>
<td>イタリア</td>
<td>イタリア</td>
<td>イタリア</td>
</tr>
<tr>
<td>ドイツ</td>
<td>ドイツ</td>
<td>ドイツ</td>
</tr>
<tr>
<td>フランス</td>
<td>フランス</td>
<td>フランス</td>
</tr>
</tbody>
</table>
Maintain-specific Character Functions

Character functions manipulate alphanumeric fields or character strings. The functions in this topic are available only in the WebFOCUS Maintain language. There are additional character functions that are available in both the reporting and Maintain languages. For information on these functions, see Character Functions on page 197.

In this chapter:

- **CHAR2INT**: Translating a Character Into an Integer Value
- **INT2CHAR**: Translating an Integer Value Into a Character
- **LCWORD and LCWORD2**: Converting a Character String to Mixed-Case
- **LENGTH**: Determining the Length of a Character String
- **LJUST**: Left-Justifying a Character String (Maintain)
- **LOWER**: Converting a Character String to Lowercase
- **MASK**: Extracting or Adding Characters
- **MNTGETTOK**: Extracting Tokens From a String Function
- **NLSCHR**: Converting Characters From the Native English Code Page
- **OVRLAY**: Overlaying a Character String (Maintain)
- **POSIT**: Finding the Beginning of a Substring (Maintain)
- **RJUST**: Right-Justifying a Character String (Maintain)
- **SELECTS**: Decoding a Value From a Stack
- **STRAN**: Substituting One Substring for Another
- **STRCMP**: Comparing Character Strings
- **STRICMP**: Comparing Character Strings and Ignoring Case
- **STRNCMP**: Comparing Character Substrings
- **STRTOKEN**: Extracting a Substring Based on Delimiters
- **SUBSTR**: Extracting a Substring (Maintain)
- **TRIM**: Removing Trailing Occurrences (Maintain)
- **TRIMLEN**: Determining the Length of a String Excluding Trailing Spaces
- **UPCASE**: Converting Text to Uppercase (Maintain)
CHAR2INT: Translating a Character Into an Integer Value

The CHAR2INT function translates an ASCII or EBCDIC character to the integer value it represents, depending on the operating system.

Syntax: How to Translate a Character Into an Integer Value

```sql
CHAR2INT("character")
```

where:

`character`

Is the ASCII or EBCDIC character to translate into its integer value.

Example: Translating a Character Into an Integer Value

CHAR2INT translates the character X into its integer equivalent.

```sql
MAINTAIN
INT/I3=CHAR2INT("X");
type "INT IS <INT”;
END
```

On an ASCII platform, the integer value would be 120.
On an EBCDIC platform, the integer value would be 231.

INT2CHAR: Translating an Integer Value Into a Character

The INT2CHAR function translates an integer into the equivalent ASCII or EBCDIC character, depending on the operating system.

Syntax: How to Translate an Integer Value Into a Character

```sql
INT2CHAR(value)
```

where:

`value`

Is the integer to translate into its equivalent ASCII or EBCDIC character.

Example: Translating an Integer Value Into a Character

INT2CHAR translates the integer value 93 into its character equivalent.

```sql
MAINTAIN
CHAR/A1=INT2CHAR(93);
TYPE "CHAR IS <CHAR”;
END
```
On an ASCII platform, the result would be a right bracket (]). On an EBCDIC platform, the result would be a right parenthesis.

LCWORD and LCWORD2: Converting a Character String to Mixed-Case

The LCWORD and LCWORD2 functions convert the letters in a character string to mixed-case. These functions convert character strings in the following way:

- **LCWORD.** Converts every alphanumeric character to lowercase except the first letter of each new word and the first letter after a single or double quotation mark. For example, O'CONNOR is converted to O'Connor and JACK'S to Jack'S.

 If LCWORD encounters a number in the character string, it treats it as an uppercase character and continues to convert the following alphabetic characters to lowercase.

- **LCWORD2.** Converts every alphanumeric character to lowercase except the first letter of each new word. LCWORD2 leaves any character after a single quotation mark as uppercase, except that when there is at least one non-blank character before the quote and just one character followed by either the end of the string or a space immediately after the quote, the next letter is converted to lowercase. For example, 'O'CONNOR' would be changed to 'O'Connor,' and JACK'S would be changed to Jack's.

To use these functions, you must import the function library MNTUWS. For information on importing this library, see *Accessing and Calling a Function* on page 61.

There is also an LCWORD function available for both the reporting and Maintain languages. For information on this function, see *Character Functions* on page 197.

Syntax:

How to Convert a Character String to Mixed-Case

\{LCWORD|LCWORD2\}(string)

where:

string

 Alphanumeric

 Is the character string to be converted, or a temporary field that contains the string.
Example: Converting a Character String to Mixed-Case

LCWORD and LCWORD2 convert the string O'CONNOR to mixed-case:

```plaintext
MAINTAIN FILE CAR
MODULE IMPORT (MNTUWS)
COMPUTE MYVAL1/A10 = "O'CONNOR";
    COMPUTE LC1/A10 = LCWORD(MYVAL1);
    COMPUTE LC2/A10 = LCWORD2(MYVAL1);
    TYPE "<<MYVAL1  <<LC1  <<LC2"
END
```

The output is:

<table>
<thead>
<tr>
<th>MYVAL1</th>
<th>LC1</th>
<th>LC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>O'CONNOR</td>
<td>O'Connor</td>
<td>O'connor</td>
</tr>
</tbody>
</table>

LENGTH: Determining the Length of a Character String

The LENGTH function determines the length of a character string, including trailing spaces.

Syntax: How to Determine the Length of a Character String

```plaintext
LENGTH(string)
```

where:

- **string**

 Alphanumeric

 Is the character string whose length is to be found, or a temporary field that contains the string.

Example: Determining the Length of a Character String

LENGTH determines the length of a variable in COUNTRY:

```plaintext
MAINTAIN FILE CAR
MODULE IMPORT (MNTUWS)
NEXT COUNTRY INTO STK1
COMPUTE LEN/I3 = LENGTH(STK1(1).COUNTRY);
TYPE "<STK1(1).COUNTRY HAS A LENGTH OF <<LEN"
END
```

The result is:

ENGLAND HAS A LENGTH OF 10
LJUST: Left-Justifying a Character String (Maintain)

The LJUST function left-justifies a character string within a field. All leading spaces are removed.

LJUST will not have any visible effect in a report that uses StyleSheets (SET STYLE=ON) unless you center the item.

To use this function, you must import the function library MNTUWS. For information on importing this library see Accessing and Calling a Function on page 61.

There is also an LJUST function available for the reporting language. For information on this function, see Character Functions on page 197.

Syntax: How to Left-Justify a Character String

LJUST(string)

where:

string

 Alphanumeric

 Is the character string to be justified, or a temporary field that contains the string.

LOWER: Converting a Character String to Lowercase

The LOWER function converts a character string to lowercase.

To use this function, you must import the function library MNTUWS. For more information on importing this library see Accessing and Calling a Function on page 61.

Syntax: How to Convert a Character String to Lowercase

LOWER(string)

where:

string

 Alphanumeric

 Is the character string to be converted, or a temporary field that contains the string.
The MASK function extracts characters from or adds characters to an alphanumeric string. It can extract a substring from different parts of the parent string, and can insert characters from a parent string into another substring. For example, it can extract the first two characters and the last two characters of a string to form a single substring.

MASK works by comparing the characters in a mask to the characters in a source field. When it encounters a 9 in the mask, MASK copies the corresponding character from the source field to the new field. When it encounters a dollar sign in the mask, MASK ignores the corresponding character in the source field. When it encounters any other character in the mask, MASK copies that character to the corresponding position in the new field.

MASK replaces the masking functionality of the EDIT function that is available in the reporting language.

Syntax:

How to Extract or Add Characters

\[\text{MASK}(\text{fieldname}, \text{'mask'}) \]

where:

- **fieldname**

 Is the source field.

- **mask**

 Is a character string enclosed in single quotation marks, or a temporary field that contains the string.

Example:

Extracting a Character From a Field

MASK extracts the first initial from the FIRST_NAME field:

\[\text{MASK}('FIRST_NAME', \text{'9$9$9$9$9$9$9'}) \]

The following are sample values for FIRST_NAME and the values for the result of the MASK function:

<table>
<thead>
<tr>
<th>FIRST_NAME</th>
<th>MASK_FIRST_NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARY</td>
<td>M</td>
</tr>
<tr>
<td>DIANE</td>
<td>D</td>
</tr>
<tr>
<td>JOHN</td>
<td>J</td>
</tr>
<tr>
<td>ROSEMARIE</td>
<td>R</td>
</tr>
<tr>
<td>MARY</td>
<td>M</td>
</tr>
<tr>
<td>BARBARA</td>
<td>B</td>
</tr>
</tbody>
</table>
Example: Adding Dashes to a Field

MASK adds dashes to the EMP_ID field:

```
MASK(EMP_ID, '999-99-9999')
```

The following are sample values for EMP_ID and the values for the result of the MASK function:

<table>
<thead>
<tr>
<th>EMP_ID</th>
<th>MASK_EMP_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>112847612</td>
<td>112-84-7612</td>
</tr>
<tr>
<td>117593129</td>
<td>117-59-3129</td>
</tr>
<tr>
<td>219984371</td>
<td>219-98-4371</td>
</tr>
<tr>
<td>326179357</td>
<td>326-17-9357</td>
</tr>
<tr>
<td>543729165</td>
<td>543-72-9165</td>
</tr>
<tr>
<td>818692173</td>
<td>818-69-2173</td>
</tr>
</tbody>
</table>

MNTGETTOK: Extracting Tokens From a String Function

The Maintain function MNTGETTOK divides a character string into substrings, called tokens. In order to use MNTGETTOK, the data must have a specific character called a delimiter that occurs in the string and separates the string into tokens. MNTGETTOK returns the token specified by the token_number argument.

For example, you can use MNTGETTOK to extract individual values from a list separated by semi-colons, by designating the semi-colon as the delimiter.

To use this function, you must import the function library MNTUWS.

Note:

- The Maintain function called strtoken() returns only the first token from a string.
- MNTGETTOK can work with variable length character strings (format A0).

Syntax: How to Extract a Substring (Token)

```
Module Import(mntuws)
MNTGETTOK(infield, "delim", token_number)
```

where:

- **infield**
 - Alphanumeric
 - Is the field containing the original character string or a character string enclosed in single or double quotation marks.

- **delim**
 - Alphanumeric
Is the delimiter in the parent string enclosed in single or double quotation marks. If you specify more than one character, only the first character is used. The delimiter is not included in the token.

token_number

Integer

Is the number of the token to extract. If this argument is positive, the tokens are counted from left to right. If this argument is negative, the tokens are counted from right to left. For example, -2 extracts the second token from the right. If this argument is 0, the function returns spaces.

Example: Extracting Tokens From a String

MNTGETTOK extracts tokens from the variable length character string SKILLSTRING and stores the result in the variable length character string TOKENX. The delimiter is a blank space. The token number is based on the value of the counter variable i, which increments with each pass through the Repeat loop:

```
MAINTAIN
MODULE IMPORT(MNTUWS)
SKILLSTRING/A0="Typing Steno Filing Bkkping";
COMPUTE i/i2 = 1;
TYPE "Job skills required are:
REPEAT 6
COMPUTE TOKENX/A0=MNTGETTOK(SKILLSTRING, ' ', i );
TYPE "<<TOKENX";
COMPUTE i = i+1;
ENDREPEAT
END
```

The output is:

```
Job skills required are:
Typing
Steno
Filing
Bkkping
```
Example: Extracting the Zip Code From an Address

The following procedure against the EMPLOYEE data source retrieves the EMPINFO segment and the first instance of ADDRESS_LN3 for each employee, then extracts the last token (zip code) from ADDRESS_LN3:

```
MAINTAIN FILE EMPLOYEE
MODULE IMPORT(MNTUWS)
REPEAT ALL;
NEXT EMP_ID INTO ESTACK
IF FOCFETCH NE 0 THEN GOTO EXITREPEAT;
NEXT ADDRESS_LN3 INTO ASTACK
TYPE "<<ESTACK.FIRST_NAME  <<ESTACK.LAST_NAME";
TYPE "<<ASTACK.ADDRESS_LN3";
COMPUTE ZIP/A0=MNTGETTOK(ASTACK.ADDRESS_LN3, " ", -1 );
TYPE "ZIP CODE IS: <<ZIP";
TYPE " ";
ENDREPEAT
END
```
The output is:

ALFRED STEVENS
NEW YORK NY 10001
ZIP CODE IS: 10001

MARY SMITH
NEW YORK NY 10001
ZIP CODE IS: 10001

DIANE JONES
NEW YORK NY 10001
ZIP CODE IS: 10001

RICHARD SMITH
NEW YORK NY 10001
ZIP CODE IS: 10001

JOHN BANNING
FREEPORT NY 11520
ZIP CODE IS: 11520

JOAN IRVING
NEW YORK NY 10001
ZIP CODE IS: 10001

ANTHONY ROMANS
NEW YORK NY 10001
ZIP CODE IS: 10001

JOHN MCCOY
NEW YORK NY 10001
ZIP CODE IS: 10001

ROSEMARIE BLACKWOOD
NEW YORK NY 10001
ZIP CODE IS: 10001

ROGER MCKNIGHT
NEW YORK NY 10001
ZIP CODE IS: 10001

MARY GREENSPAN
NEW YORK NY 10001
ZIP CODE IS: 10001

BARBARA CROSS
NEW YORK NY 10001
ZIP CODE IS: 10001

NLSCHR: Converting Characters From the Native English Code Page

NLSCHR converts a character from the native English code page to the running code page. This is useful when hosting Web applications on an EBCDIC host with non-English code pages.
Syntax: How to Convert Characters From the Native English Code Page

\[
\text{NLSCHR}(\text{"character"})
\]

where:

\[
\text{character}
\]

Is the character being converted from the native English code page.

Example: Converting Characters From the Native English Code Page

NLSCHR forces the dollar sign to appear whenever the variable ADOLLAR is used, regardless of the code page being run.

```maintain
MAINTAIN
ADOLLAR/A1=NLSCHR("\$");
.
.
END
```

OVRLAY: Overlaying a Character String (Maintain)

The OVRLAY function overlays a base character string with a substring.

To use this function, you must import the function library MNTUWS. For information on importing this library, see *Accessing and Calling a Function* on page 61.

There is also an OVRLAY function available for the reporting language. For information on this function, see *Character Functions* on page 197.

Syntax: How to Overlay a Character String

\[
\text{OVRLAY}(\text{string1}, \text{string2}, \text{position})
\]

where:

\[
\text{string1}
\]

Alphanumeric

Is the base character string.

\[
\text{string2}
\]

Alphanumeric

Is the substring that will overlay string1.
POSIT: Finding the Beginning of a Substring (Maintain)

The POSIT function finds the starting position of a substring within a larger string. For example, the starting position of the substring DUCT in the string PRODUCTION is 4. If the substring is not in the parent string, the function returns the value 0.

To use this function, you must import the function library MNTUWS. For information on importing this library see *Accessing and Calling a Function* on page 61.

There is also a POSIT function available for the reporting language. For information on this function, see *POSIT: Finding the Beginning of a Substring* on page 229.

Example:
Overlaying a Character String

OVRLAY replaces the letters MCA in the MOVIECODE field with MHD:

```plaintext
MAINTAIN FILE movies
Module Import (mntuws);
Case Top
Infer moviecode into MCASTK
Compute MCASTK.NEWCODE/A6;
For all next Moviecode into stk1
  Stack copy from stk1 into MCASTK
  where moviecode contains 'MCA';
  Compute i/i2=1;
  Type "Original Code   New Code"
repeat mcastk.Foccount
  Compute MCASTK(i).Newcode = OVRLAY(MCASTK(I).MOVIECODE, 'MHD', 4);
  Type " <<MCASTK(i).moviecode          <<MCASTK(I).NEWCODE"
  Compute i=i+1;
endrepeat
EndCase
END
```

The following are sample values for MOVIECODE and the values for the result of the OVRLAY function:

<table>
<thead>
<tr>
<th>Original Code</th>
<th>New Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>001MCA</td>
<td>001MHD</td>
</tr>
<tr>
<td>081MCA</td>
<td>081MHD</td>
</tr>
<tr>
<td>082MCA</td>
<td>082MHD</td>
</tr>
<tr>
<td>161MCA</td>
<td>161MHD</td>
</tr>
<tr>
<td>196MCA</td>
<td>196MHD</td>
</tr>
<tr>
<td>530MCA</td>
<td>530MHD</td>
</tr>
<tr>
<td>550MCA</td>
<td>550MHD</td>
</tr>
<tr>
<td>883MCA</td>
<td>883MHD</td>
</tr>
</tbody>
</table>

POSIT: Finding the Beginning of a Substring (Maintain)

`position`

Integer

Is the position in the base string at which the overlay begins.

Example:
Overlaying a Character String

OVRLAY replaces the letters MCA in the MOVIECODE field with MHD:

```plaintext
MAINTAIN FILE movies
Module Import (mntuws);
Case Top
Infer moviecode into MCASTK
Compute MCASTK.NEWCODE/A6;
For all next Moviecode into stk1
  Stack copy from stk1 into MCASTK
  where moviecode contains 'MCA';
  Compute i/i2=1;
  Type "Original Code   New Code"
repeat mcastk.Foccount
  Compute MCASTK(i).Newcode = OVRLAY(MCASTK(I).MOVIECODE, 'MHD', 4);
  Type " <<MCASTK(i).moviecode          <<MCASTK(I).NEWCODE"
  Compute i=i+1;
endrepeat
EndCase
END
```

The following are sample values for MOVIECODE and the values for the result of the OVRLAY function:

<table>
<thead>
<tr>
<th>Original Code</th>
<th>New Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>001MCA</td>
<td>001MHD</td>
</tr>
<tr>
<td>081MCA</td>
<td>081MHD</td>
</tr>
<tr>
<td>082MCA</td>
<td>082MHD</td>
</tr>
<tr>
<td>161MCA</td>
<td>161MHD</td>
</tr>
<tr>
<td>196MCA</td>
<td>196MHD</td>
</tr>
<tr>
<td>530MCA</td>
<td>530MHD</td>
</tr>
<tr>
<td>550MCA</td>
<td>550MHD</td>
</tr>
<tr>
<td>883MCA</td>
<td>883MHD</td>
</tr>
</tbody>
</table>
Syntax: How to Find the Beginning of a Substring

POSIT(parent, substring)

where:

parent
Alphanumeric
Is the parent string.

substring
Alphanumeric
Is the substring for which to find the position.

Example: Finding the Beginning of a Substring

POSIT displays all movie titles containing the word ROOF and the starting position of the ROOF string:

```
MAINTAIN FILE movies
Module Import (mntuws);
Case Top
For all next Moviecode into stk1  
  Where Title Contains 'ROOF';
Compute i/i2=1;
Type "    Title       Start Position of word ROOF"
repeat stk1.Foccount
  Compute STK1(i).POS/I3 = **POSIT**(STK1(i).TITLE, 'ROOF');
  Type "  <STK1(i).Title  <<STK1(I).pos"
Compute i=i+1;
endrepeat
EndCase
END
```

The following are sample values for MOVIECODE and values for the result of the POSIT function:

<table>
<thead>
<tr>
<th>Title</th>
<th>Start Position of word ROOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIDDLER ON THE ROOF</td>
<td>16</td>
</tr>
<tr>
<td>CAT ON A HOT TIN ROOF</td>
<td>18</td>
</tr>
</tbody>
</table>

RJUST: Right-Justifying a Character String (Maintain)

The RJUST function right-justifies a character string. All trailing blanks become leading blanks. This is useful when you display alphanumeric fields containing numbers.

RJUST does not have any visible effect in a report that uses StyleSheets (SET STYLE=ON) unless you center the item. Also, if you use RJUST on a platform on which StyleSheets are turned on by default, issue SET STYLE=OFF before running the request.
There is also an RJUST function available for the reporting language. For information on this function, see *RJUST: Right-Justifying a Character String* on page 232.

Syntax:

How to Right-Justify a Character String

\[
\text{RJUST(} \text{string, length, char) }
\]

where:

- **string**
 Is the character string, or a temporary field that contains the string.

- **length**
 Is the length, in characters, of the result. If this argument is less than the length of \text{string}, RJUST trims \text{string} from right to left. If this argument is zero, RJUST returns a variable length string of length zero.

- **char**
 Is the character with which to pad the character string and right-justify it. RJUST uses \text{char} only when \text{length} is greater than the length of \text{string}.

SELECTS: Decoding a Value From a Stack

The SELECTS function decodes a value from a stack.

Syntax:

How to Decode a Value From a Stack

\[
\text{target SELECTS (} \text{code, result, code, result, ... [ELSE default]}\text{)}
\]

where:

- **target**
 Is a valid expression. It can be either a field name or a variable that resolves to a single stack cell.

- **code**
 Is the value for which SELECTS searches. Once the value is found, the input expression is assigned the corresponding result. The comma between the code and result is optional.

- **result**
 Is the value assigned when the input expression has the corresponding code.
default

Is the value to be assigned if the code is not found among the list of codes. If the default is omitted, a space or zero is assigned to non-matching codes.

Example: Decoding Values With SELECTS

The following computes a user-defined field based on the values in a stack:

```
COMPUTE Square = Stk(Cnt).Number SELECTS (1 1, 2 4, 3 9);
```

Because SELECTS is a binary operator, it can also be used in an expression:

```
COMPUTE Square_Plus = Stk(Cnt).Number SELECTS (1 1, 2 4, 3 9) +1;
```

Example: Decoding a Value From a Stack

The following example uses MASK to extract the first character of the field CURR_JOBCODE in the EMPLOYEE file. Then SELECTS creates a value for the field JOB_CATEGORY:

```
MAINTAIN FILE Employee
Case Top
  FOR ALL NEXT EMPINFO.EMP_ID INTO EmpStack;
  COMPUTE
    DEPX_CODE/A1     = MASK(EmpStack().CURR_JOBCODE,©9$$©);
    JOB_CATEGORY/A15 = DEPX_CODE SELECTS (A 'ADMINISTRATIVE'
                                 B 'DATA PROCESSING') ;
  EndCase
END
```

The following table shows sample values for CURR_JOBCODE and the corresponding values for JOB_CATEGORY:

<table>
<thead>
<tr>
<th>CURR_JOBCODE</th>
<th>JOB_CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>ADMINISTRATIVE</td>
</tr>
<tr>
<td>A07</td>
<td>ADMINISTRATIVE</td>
</tr>
<tr>
<td>A15</td>
<td>ADMINISTRATIVE</td>
</tr>
<tr>
<td>A17</td>
<td>ADMINISTRATIVE</td>
</tr>
<tr>
<td>B02</td>
<td>DATA PROCESSING</td>
</tr>
<tr>
<td>B03</td>
<td>DATA PROCESSING</td>
</tr>
<tr>
<td>B04</td>
<td>DATA PROCESSING</td>
</tr>
<tr>
<td>B14</td>
<td>DATA PROCESSING</td>
</tr>
</tbody>
</table>

STRAN: Substituting One Substring for Another

The STRAN function substitutes a substring for another substring in a character string. STRAN enables you to edit part of a character string without replacing the field entirely.

To use this function, import the function library MNTUWS. For more information on importing this library see *Calling a Function* on page 61.
Syntax:

How to Substitute a Substring

\[
\text{STRAN}(\text{string}, \text{substr1}, \text{substr2})
\]

where:

\textit{string}

Alphanumeric

Is the character string into which you want to substitute one substring for another, or a temporary field that contains the string.

\textit{substr1}

Alphanumeric

Is the substring to replace.

\textit{substr2}

Alphanumeric

Is the substring to insert in place of \textit{substr1}.

Example:

Substituting One String for Another

STRAN replaces the word DOOR with the word Seater in the MODEL field:

MAINTAIN FILE CAR
MODULE IMPORT (MNTUWS);
FOR ALL NEXT COUNTRY CAR MODEL INTO XSTK
 WHERE MODEL CONTAINS 'DOOR'
 COMPUTE XSTK.NEWMOD/A24;
 COMPUTE I/I2=1;
 REPEAT XSTK.FOCCOUNT
 COMPUTE XSTK(I).NEWMOD=\text{STRAN}(\text{XSTK(I).MODEL}, 'DOOR', 'SEATER');
 TYPE "<<XSTK(I).CAR <<XSTK(I).MODEL <<XSTK(I).NEWMOD"
 COMPUTE I=I+1;
 ENDREPEAT
END
The following are sample values for MODEL and values for the result of the STRAN function:

<table>
<thead>
<tr>
<th>CAR</th>
<th>MODEL</th>
<th>STRAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEUGEOT</td>
<td>504 4 DOOR</td>
<td>504 4 SEATER</td>
</tr>
<tr>
<td>ALFA ROMEO</td>
<td>2000 4 DOOR BERLINA</td>
<td>2000 4 SEATER BERLINA</td>
</tr>
<tr>
<td>MASERATI</td>
<td>DORA 2 DOOR</td>
<td>DORA 2 SEATER</td>
</tr>
<tr>
<td>DATSUN</td>
<td>B210 2 DOOR AUTO</td>
<td>B210 2 SEATER AUTO</td>
</tr>
<tr>
<td>TOYOTA</td>
<td>COROLLA 4 DOOR DIX AUTO</td>
<td>COROLLA 4 SEATER DIX AUTO</td>
</tr>
<tr>
<td>AUDI</td>
<td>100 LS 2 DOOR AUTO</td>
<td>100 LS 2 SEATER AUTO</td>
</tr>
<tr>
<td>BMW</td>
<td>2002 2 DOOR</td>
<td>2002 2 SEATER</td>
</tr>
<tr>
<td>BMW</td>
<td>2002 2 DOOR AUTO</td>
<td>2002 2 SEATER AUTO</td>
</tr>
<tr>
<td>BMW</td>
<td>3.0 SI 4 DOOR</td>
<td>3.0 SI 4 SEATER</td>
</tr>
<tr>
<td>BMW</td>
<td>3.0 SI 4 DOOR AUTO</td>
<td>3.0 SI 4 SEATER AUTO</td>
</tr>
<tr>
<td>BMW</td>
<td>530I 4 DOOR</td>
<td>530I 4 SEATER</td>
</tr>
<tr>
<td>BMW</td>
<td>530I 4 DOOR AUTO</td>
<td>530I 4 SEATER AUTO</td>
</tr>
</tbody>
</table>

STRCMP: Comparing Character Strings

The STRCMP function compares two character strings using the EBCDIC or ASCII collating sequence.

- If the first string is less than the second string, STRCMP returns a negative value.
- If the first string is greater than the second string, STRCMP returns a positive value.
- If the first string is equal to the second string, STRCMP returns zero.

Syntax:

How to Compare Character Strings

```
STRCMP(string1, string2)
```

where:

- `string1, string2` Alphanumeric

Are the strings to compare, or temporary fields that contain the strings.

Example: Comparing Character Strings

STRCMP compares the length of two fields:

```
MAINTAIN
COMPUTE STR1/A20 = 'STRING IS LONG';
COMPUTE STR2/A20 = 'STRING IS LONGER';
COMPUTE DIF/I3 = STRCMP(STR1, STR2);
TYPE "STR1 = <<STR1"
TYPE "STR2 = <<STR2"
```
IF DIF LT 0 THEN TYPE "STR2 IS GREATER THAN STR1"
ELSE IF DIF GT 0 THEN TYPE "STR2 IS LESS THAN STR1"
ELSE IF DIF EQ 0 THEN TYPE "STR2 EQUALS STR1"
TYPE "

COMPUTE STR3/A20 = 'STRING IS LONGEST';
STR4/A20 = 'STRING IS LONG';
TYPE "STR3 = <<STR3"
TYPE "STR4 = <<STR4"
COMPUTE DIF = STRCMP(STR3, STR4);
IF DIF LT 0 THEN TYPE "STR4 IS GREATER THAN STR3"
ELSE IF DIF GT 0 THEN TYPE "STR4 IS LESS THAN STR3"
ELSE IF DIF EQ 0 THEN TYPE "STR4 EQUALS STR3"
TYPE "
COMPUTE DIF = STRCMP(STR1, STR4);
IF DIF LT 0 THEN TYPE "STR1 IS GREATER THAN STR4"
ELSE IF DIF GT 0 THEN TYPE "STR1 IS LESS THAN STR4"
ELSE IF DIF EQ 0 THEN TYPE "STR1 EQUALS STR4"
END

The result is:

STR1 = STRING IS LONG
STR2 = STRING IS LONGER
STR2 IS GREATER THAN STR1

STR3 = STRING IS LONGEST
STR4 = STRING IS LONG
STR4 IS LESS THAN STR3
STR1 EQUALS STR4

STRCMP: Comparing Character Strings and Ignoring Case

The STRCMP function compares two character strings using the EBCDIC or ASCII collating sequence, but ignores case differences.

- If the first string is less than the second string, STRCMP returns a negative value.
- If the first string is greater than the second string, STRCMP returns a positive value.
- If the first string is equal to the second string, STRCMP returns zero.
Syntax:

How to Compare Character Strings and Ignore Case

\[
\text{STRICMP}(\text{string1}, \text{string2})
\]

where:

\[
\text{string1}, \text{string2}
\]

Alphanumeric

Are the strings to compare, or temporary fields that contain the strings.

STRNCMP: Comparing Character Substrings

The STRNCMP function compares a specified number of characters in two character strings starting at the beginning of the strings using the EBCDIC or ASCII collating sequence.

- If the first string is less than the second string, STRNCMP returns a negative value.
- If the first string is greater than the second string, STRNCMP returns a positive value.
- If the first string is equal to the second string, STRNCMP returns zero.

Syntax:

How to Compare Character Substrings

\[
\text{STRNCMP}(\text{string1}, \text{string2}, \text{number})
\]

where:

\[
\text{string1}, \text{string2}
\]

Alphanumeric

Are the strings that contain the substrings to compare.

\[
\text{number}
\]

Integer

Is the number of characters to compare in \text{string1} and \text{string2}.

STRTOKEN: Extracting a Substring Based on Delimiters

The STRTOKEN function returns a substring, consisting of the characters of a string, from the beginning of a string to a specified character, called a delimiter.

To use this function, you must import the function library MNTUWS. For more information on importing this library see Calling a Function on page 61.
Syntax: How to Extract a Substring

STRTOKEN(string, delimiters)

where:

string

Alphanumeric

Is the character string, or a variable that contains the string enclosed in double quotation marks (").

delimiters

Alphanumeric

Is a character string, or variable enclosed in double quotation marks (") that contains a list of delimiters. Separate the delimiters with semicolons.

Example: Extracting a Substring

STRTOKEN returns a substring of the first five STREET values in the VIDEOTRK data source based on the delimiters period, space, or asterisk.

MAINTAIN FILE VIDEOTRK
MODULE IMPORT (MNTUWS);
FOR ALL NEXT CUSTID INTO CSTACK ;
COMPUTE CNT/I5 = 1;
TYPE " ";
REPEAT WHILE CNT LE 5;
COMPUTE SUBSTREET/A20 = STRTOKEN(CSTACK(CNT).STREET,".; *,")
TYPE " STREET =
<STREET>
TYPE " SUBSTREET =
<STREET>
COMPUTE CNT = CNT +1;
ENDREPEAT
END

The output is:

STREET = 86 ELLIOTT AVE.
STREET = 86
STREET = 7 DAVENPORT LA.
STREET = 7
STREET = 8 MAGNOLIA LA.
STREET = 8
STREET = 35 POWELL ST.
STREET = 35
STREET = 10 COW LA.
STREET = 10
SUBSTR: Extracting a Substring (Maintain)

The SUBSTR function extracts a substring based on where it begins and its length in the parent string. SUBSTR can vary the position of the substring depending on the values of other fields.

There is also a SUBSTR function available for the reporting language. For information on this function, see SUBSTR: Extracting a Substring on page 241.

Syntax: How to Extract a Substring

SUBSTR(string, start, length)

where:

string

 Alphanumeric
 Is the parent string enclosed in single quotation marks, or a field or variable containing the character string.

start

 Integer
 Is the starting position of the substring in the parent string.

length

 Integer
 Is the length, in characters, of the substring.

Example: Extracting the First Character of a String in Maintain

SUBSTR extracts the first letter of FIRST_NAME, combines it with LAST_NAME, and stores the result in UID:

MAINTAIN FILE EMPLOYEE
CASE TOP
INFER EMP_ID FIRST_NAME LAST_NAME INTO ADDSTACK
COMPUTE UID/A9 = SUBSTR(ADDSTACK().FIRST_NAME,1,1) || ADDSTACK().LAST_NAME;
ENDCASE
END
The following table shows sample values for FIRST_NAME and LAST_NAME, and the corresponding values for UID:

<table>
<thead>
<tr>
<th>FIRST_NAME</th>
<th>LAST_NAME</th>
<th>UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOE</td>
<td>SMITH</td>
<td>JSMITH</td>
</tr>
<tr>
<td>SAM</td>
<td>JONES</td>
<td>SJONES</td>
</tr>
<tr>
<td>TERRI</td>
<td>WHITE</td>
<td>TWHITE</td>
</tr>
</tbody>
</table>

TRIM: Removing Trailing Occurrences (Maintain)

The TRIM function removes trailing occurrences of a pattern within a character string.

There is also a TRIM function available for the reporting language. For information on this function, see *TRIM: Removing Leading and Trailing Occurrences* on page 243.

Syntax: **How to Remove Trailing Occurrences**

```
TRIM(string)
```

where:

- **string**
 - Alphanumeric
 - Is the character string enclosed in single quotation marks, or the field containing the string.

TRIMLEN: Determining the Length of a String Excluding Trailing Spaces

The TRIMLEN function determines the length of a character string excluding trailing spaces.

Syntax: **How to Determine the Length of a String Excluding Trailing Spaces**

```
TRIMLEN(string)
```

where:

- **string**
 - Alphanumeric
 - Is the string to be measured.
Example: Determining the Length of a String Excluding Trailing Spaces

TRIMLEN determines the length of a field in COUNTRY excluding trailing blanks:

```plaintext
MAINTAIN FILE CAR
MODULE IMPORT (MNTUWS)
NEXT COUNTRY INTO STK1
COMPUTE LEN/I3 = LENGTH(STK1(1).COUNTRY);
COMPUTE LEN2/I3 = TRIMLEN(STK1(1).COUNTRY);
TYPE "<STK1(1).COUNTRY HAS A LENGTH OF <LEN2 WITHOUT TRAILING BLANKS"
END
```

The result is:

ENGLAND HAS A LENGTH OF 7 WITHOUT TRAILING BLANKS

UPCASE: Converting Text to Uppercase (Maintain)

The UPCASE function converts a character string to uppercase. It is useful for sorting on a field that contains both mixed-case and uppercase values. Sorting on a mixed-case field produces incorrect results because the sorting sequence in EBCDIC always places lowercase letters before uppercase letters, while the ASCII sorting sequence always places uppercase letters before lowercase. To obtain correct results, define a new field with all of the values in uppercase, and sort on that.

To use this function, you must import the function library MNTUWS. For information on importing this library, see *Calling a Function* on page 61.

There is also an UPCASE function available for the reporting language. For information on this function, see *UPCASE: Converting Text to Uppercase* on page 246.

Syntax: How to Convert Text to Uppercase

```plaintext
UPCASE(string)
```

where:

`string`

Alphanumeric

Is the character string to be converted to uppercase.
Data source and decoding functions search for data source records, retrieve data source records or values, and assign values based on the value of an input field.

The result of a data source function must be stored in a field. The result cannot be stored in a Dialogue Manager variable.

For many functions, the output argument can be supplied either as a field name or as a format enclosed in single quotation marks (’). However, if a function is called from a Dialogue Manager command, this argument must always be supplied as a format. If a function is called from a Maintain Data procedure, this argument must always be supplied as a field name. For detailed information about calling a function and supplying arguments, see Accessing and Calling a Function on page 61.

In this chapter:

- CHECKMD5: Computing an MD5 Hash Check Value
- CHECKSUM: Computing a Hash Sum
- COALESCE: Returning the First Non-Missing Value
- DB_EXPR: Inserting an SQL Expression Into a Request
- DB_INFILE: Testing Values Against a File or an SQL Subquery
- DB_LOOKUP: Retrieving Data Source Values
- DECODE: Decoding Values
- FIND: Verifying the Existence of a Value in a Data Source
- IMPUTE: Replacing Missing Values With Aggregated Values
- LAST: Retrieving the Preceding Value
- LOOKUP: Retrieving a Value From a Cross-referenced Data Source
- NULLIF: Returning a Null Value When Parameters Are Equal
CHECKMD5: Computing an MD5 Hash Check Value

CHECKMD5 takes an alphanumeric input value and returns a 128-bit value in a fixed length alphanumeric string, using the MD5 hash function. A hash function is any function that can be used to map data of arbitrary size to data of fixed size. The values returned by a hash function are called hash values. They can be used for assuring the integrity of transmitted data.

Syntax: How to Compute an MD5 Hash Check Value

```plaintext
CHECKMD5(buffer)
```

where:

buffer

Is a data buffer whose hash value is to be calculated. It can be a set of data of different types presented as a single field, or a group field in one of the following data type formats: An, AnV, or TXn.

Example: Calculating an MD5 Hash Check Value

The following request calculates an MD5 hash check value and converts it to an alphanumeric hexadecimal value for display.

```plaintext
DEFINE FILE WF_RETAIL_LITE
MD5/A32 = HEXTYPE(CHECKMD5(PRODUCT_CATEGORY));
END
TABLE FILE WF_RETAIL_LITE
SUM MD5
BY PRODUCT_CATEGORY
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
TYPE=REPORT, FONT=COURIER, $
ENDSTYLE
END
```
The output is shown in the following image. The monospaced font shows that although the input values have varying length, the output has a fixed length.

<table>
<thead>
<tr>
<th>Product Category</th>
<th>MD5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories</td>
<td>98EDB85B00D9527AD5ACEBE451B3FAE6</td>
</tr>
<tr>
<td>Camcorder</td>
<td>612A923BDD05C2231F81991B8D12A3A1</td>
</tr>
<tr>
<td>Computers</td>
<td>45888A4DA062F16A099A7F7C6CC15EE0</td>
</tr>
<tr>
<td>Media Player</td>
<td>D34BEA29F24AF9FEDE2E10B3E1D857CF9</td>
</tr>
<tr>
<td>Stereo Systems</td>
<td>3AA9FFE9806E269A7EB066A84092F0A3</td>
</tr>
<tr>
<td>Televisions</td>
<td>A3B5BC99DD2B42627EF64A4FCAAAAB0B2</td>
</tr>
<tr>
<td>Video Production</td>
<td>60913E9584G330A2C4A5D921E7C8BB14</td>
</tr>
</tbody>
</table>

CHECKSUM: Computing a Hash Sum

CHECKSUM computes a hash sum, called the checksum, of its input parameter, as a whole number in format I11. This can be used for equality search of the fields. A checksum is a hash sum used to ensure the integrity of a file after it has been transmitted from one storage device to another.

Syntax:

How to Compute a CHECKSUM Hash Value

CHECKSUM(buffer)

where:

buffer

Is a data buffer whose hash index is to be calculated. It can be a set of data of different types presented as a single field, in one of the following data type formats: An, AnV, or TXn.
Example: Calculating a CHECKSUM Hash Value

The following request computes a checksum hash value.

```plaintext
DEFINE FILE WF_RETAIL_LITE
CHKSUM/I11 = (CHECKSUM(PRODUCT_CATEGORY));
END
TABLE FILE WF_RETAIL_LITE
PRINT CHKSUM
BY PRODUCT_CATEGORY
WHERE PRODUCT_CATEGORY NE LAST PRODUCT_CATEGORY
ON TABLE SET PAGE NOLEAD
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Product Category</th>
<th>CHKSUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories</td>
<td>-830549649</td>
</tr>
<tr>
<td>Camcorder</td>
<td>-912058982</td>
</tr>
<tr>
<td>Computers</td>
<td>-469201037</td>
</tr>
<tr>
<td>Media Player</td>
<td>-1760917009</td>
</tr>
<tr>
<td>Stereo Systems</td>
<td>-1853215244</td>
</tr>
<tr>
<td>Televisions</td>
<td>810407163</td>
</tr>
<tr>
<td>Video Production</td>
<td>275494446</td>
</tr>
</tbody>
</table>

COALESCE: Returning the First Non-Missing Value

Given a list of arguments, COALESCE returns the value of the first argument that is not missing. If all argument values are missing, it returns a missing value if MISSING is ON. Otherwise it returns a default value (zero or blank).

Syntax: How to Return the First Non-Missing Value

```plaintext
COALESCE(arg1, arg2, ...)
```

where:

- `arg1, arg2, ...`
 - Any field, expression, or constant. The arguments should all be either numeric or alphanumeric.
 - Are the input parameters that are tested for missing values.
The output data type is the same as the input data types.

Example: Returning the First Non-Missing Value

This example uses the SALES data source with missing values added. The missing values are added by the following procedure named SALEMISS:

```
MODIFY FILE SALES
  FIXFORM STORE/4 DATE/5 PROD/4
  FIXFORM UNIT/3 RETAIL/5 DELIVER/3
  FIXFORM OPEN/3 RETURNS/C2 DAMAGED/C2
  MATCH STORE
      ON NOMATCH REJECT
      ON MATCH CONTINUE
  MATCH DATE
      ON NOMATCH REJECT
      ON MATCH CONTINUE
  MATCH PROD_CODE
      ON NOMATCH INCLUDE
      ON MATCH REJECT
DATA
  14Z 1017 C13 15 1.99 35 30   6
  14Z 1017 C14 18 2.05 30 25 4
  14Z 1017 E2  33 0.99 45 40
END
```

The following request uses COALESCE to return the first non-missing value:

```
TABLE FILE SALES
PRINT DAMAGED RETURNS RETAIL_PRICE
COMPUTE
  COAL1/D12.2 MISSING ON = COALESCE(DAMAGED, RETURNS, RETAIL_PRICE);
BY STORE_CODE
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
The output is shown in the following image. The value of DAMAGED is returned, if it is not missing. If DAMAGED is missing, the value of RETURNS is returned, if it is not missing. If they are both missing, the value of RETAIL_PRICE is returned.

<table>
<thead>
<tr>
<th>STORE_CODE</th>
<th>DAMAGED</th>
<th>RETURNS</th>
<th>RETAIL_PRICE</th>
<th>COAL1</th>
</tr>
</thead>
<tbody>
<tr>
<td>14B</td>
<td>6</td>
<td>10</td>
<td>$.95</td>
<td>6.00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>$1.29</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>$1.89</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3</td>
<td>$1.99</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>$2.39</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>$2.19</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>9</td>
<td>$.99</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>8</td>
<td>$1.09</td>
<td>9.00</td>
</tr>
<tr>
<td>14Z</td>
<td>3</td>
<td>2</td>
<td>$1.85</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>$1.89</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>$1.99</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>.</td>
<td>$1.99</td>
<td>6.00</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>4</td>
<td>$2.05</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>$2.09</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>$2.09</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4</td>
<td>$1.09</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>$.99</td>
<td>.99</td>
</tr>
<tr>
<td>77F</td>
<td>2</td>
<td>4</td>
<td>$1.09</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>$2.09</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>$2.49</td>
<td>.00</td>
</tr>
<tr>
<td>K1</td>
<td>0</td>
<td>1</td>
<td>$1.49</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>$.99</td>
<td>1.00</td>
</tr>
</tbody>
</table>

DB_EXPR: Inserting an SQL Expression Into a Request

The DB_EXPR function inserts a native SQL expression exactly as entered into the native SQL generated for a FOCUS or SQL language request.
The DB_EXPR function can be used in a DEFINE command, a DEFINE in a Master File, a WHERE clause, a FILTER FILE command, a filter in a Master File, or in an SQL statement. It can be used in a COMPUTE command if the request is an aggregate request (uses the SUM, WRITE, or ADD command) and has a single display command. The expression must return a single value.

Syntax: How to Insert an SQL Expression Into a Request With DB_EXPR

\[
\text{DB_EXPR(native_SQL_expression)}
\]

where:

- **native_SQL_expression**

 Is a partial native SQL string that is valid to insert into the SQL generated by the request. The SQL string must have double quotation marks (") around each field reference, unless the function is used in a DEFINE with a WITH phrase.

Reference: Usage Notes for the DB_EXPR Function

- The expression must return a single value.
- Any request that includes one or more DB_EXPR functions must be for a synonym that has a relational SUFFIX.
- Field references in the native SQL expression must be within the current synonym context.
- The native SQL expression must be coded inline. SQL read from a file is not supported.

Example: Inserting the DB2 BIGINT and CHAR Functions Into a TABLE Request

The following TABLE request against the WF_RETAIL data source uses the DB_EXPR function in the COMPUTE command to call two DB2 functions. It calls the BIGINT function to convert the squared revenue to a BIGINT data type, and then uses the CHAR function to convert that value to alphanumeric.

\[
\text{TABLE FILE WF_RETAIL} \\
\text{SUM REVENUE NOPRINT} \\
\text{AND COMPUTE BIGREV/A31 = DB_EXPR(CHAR(BIGINT("REVENUE" * "REVENUE"))) ;} \\
\text{AS 'Alpha Square Revenue'} \\
\text{BY REGION} \\
\text{ON TABLE SET PAGE NOPAGE} \\
\text{END}
\]

WF_RETAIL is a sample data source you can create by right-clicking an application on the Reporting Server browser interface and pointing to New and then clicking Tutorials from the context menu.
The trace shows that the expression from the DB_EXPR function was inserted into the DB2
SELECT statement:

```sql
SELECT
  T11."REGION",
  SUM(T1."Revenue")
FROM
  wrd_fact_sales T1,
  wrd_dim_customer T5,
  wrd_dim_geography T11
WHERE
  (T5."ID_CUSTOMER" = T1."ID_CUSTOMER") AND
  (T11."ID_GEOGRAPHY" = T5."ID_GEOGRAPHY")
GROUP BY
  T11."REGION"
ORDER BY
  T11."REGION"
FOR FETCH ONLY;
END
```

The output is:

<table>
<thead>
<tr>
<th>Region</th>
<th>Alpha Square Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>459024717717929</td>
</tr>
<tr>
<td>MidEast</td>
<td>61720506151994</td>
</tr>
<tr>
<td>NorthEast</td>
<td>247772056471221</td>
</tr>
<tr>
<td>NorthWest</td>
<td>42335175855351</td>
</tr>
<tr>
<td>SouthEast</td>
<td>205820846242532</td>
</tr>
<tr>
<td>SouthWest</td>
<td>9449541537794</td>
</tr>
<tr>
<td>West</td>
<td>164356565757257</td>
</tr>
</tbody>
</table>

DB_INFILE: Testing Values Against a File or an SQL Subquery

The DB_INFILE function compares one or more field values in a source file to values in a target
file. The comparison can be based on one or more field values. DB_INFILE returns the value 1
(TRUE) if the set of source fields matches a set of values from the target file. Otherwise, the
function returns 0 (zero, FALSE). DB_INFILE can be used where a function is valid in a
WebFOCUS® request, such as in a DEFINE or a WHERE phrase.
The target file can be any data source that WebFOCUS can read. Depending on the data sources accessed and the components in the request, either WebFOCUS or an RDBMS will process the comparison of values.

If WebFOCUS processes the comparison, it reads the target data source and dynamically creates a sequential file containing the target data values, along with a synonym describing the data file. It then builds IF or WHERE structures in memory with all combinations of source and target values. If the target data contains characters that WebFOCUS considers wildcard characters, it will treat them as wildcard characters unless the command SET EQTEST = EXACT is in effect.

The following situations exist when a relational data source is the source file:

1. **The target values are in a relational data source from the same RDBMS and connection.**
 In this case, the target file referenced by DB_INFILE can be:
 - An SQL file containing a subquery that retrieves the target values. A synonym must exist that describes the target SQL file. The Access File must specify the CONNECTION and DATASET for the target file.
 - If the subquery results in a SELECT statement supported by the RDBMS, the relational adapter inserts the subquery into the WHERE predicate of the generated SQL.
 - If the subquery does not result in a valid SELECT statement for the RDBMS, the relational adapter retrieves the target values. It then generates a WHERE predicate, with a list of all combinations of source and target field values.
 - You can create an SQL file containing a subquery and a corresponding synonym using the HOLD FORMAT SQL_SCRIPT command. For more information, see the *Creating Reports With TIBCO WebFOCUS® Language* manual.

2. **A relational data source. A synonym must exist that describes the target data source.**
 - If the data source contains only those fields referenced by DB_INFILE as target fields, the relational adapter creates a subquery that retrieves the target values. If the subquery results in a SELECT statement supported by the RDBMS, the relational adapter inserts the subquery into the WHERE predicate of the generated SQL.
 - If the subquery does not result in a valid SELECT statement for the RDBMS, the relational adapter retrieves a unique list of the target values. It then generates a WHERE predicate with a list of all combinations of source and target field values.
The target values are in a non-relational data source or a relational data source from a different RDBMS or connection. In this case, the target values are retrieved and passed to WebFOCUS for processing.

Syntax:

How to Compare Source and Target Field Values With DB_INFILE

\[
\text{DB_INFILE}(\text{target_file}, s_1, t_1, \ldots, s_n, t_n)
\]

where:

- \text{target_file}
 - Is the synonym for the target file.

- \text{s}_1, \ldots, \text{s}_n
 - Are fields from the source file.

- \text{t}_1, \ldots, \text{t}_n
 - Are fields from the target file.

The function returns the value 1 if a set of target values matches the set of source values. Otherwise, the function returns a zero (0).

Reference:

Usage Notes for DB_INFILE

- If both the source and target data sources have MISSING=ON for a comparison field, then a missing value in both files is considered an equality. If MISSING=OFF in one or both files, a missing value in one or both files results in an inequality.

- Values are not padded or truncated when compared, except when comparing date and date-time values.

 - If the source field is a date field and the target field is a date-time field, the time component is removed before comparison.

 - If the source field is a date-time field and the target field is a date field, a zero time component is added to the target value before comparison.

- If an alphanumeric field is compared to a numeric field, an attempt will be made to convert the alphanumeric value to a number before comparison.

- If WebFOCUS processes the comparison, and the target data contains characters that WebFOCUS considers wildcard characters, it will treat them as wildcard characters unless the command SET EQTEST = EXACT is in effect.
Example: Comparing Source and Target Values Using an SQL Subquery File

This example uses the WF_RETAIL DB2 data source.

WF_RETAIL is a sample data source you can create by right-clicking an application on the Reporting Server browser interface, selecting New, and then Samples from the context menu.

The SQL file named retail_subquery.sql contains the following subquery that retrieves specified state codes in the Central and NorthEast regions:

```sql
SELECT  MAX(T11.REGION), MAX(T11.STATECODE)  FROM wrd_dim_geography T11
WHERE (T11.STATECODE IN('AR', 'IA', 'KS', 'KY', 'WY', 'CT', 'MA', 'NJ', 'NY', 'RI')) AND (T11.REGION IN('Central', 'NorthEast')) GROUP BY T11.REGION, T11.STATECODE
```

The retail_subquery.mas Master File follows:

```sql
FILENAME=RETAIL_SUBQUERY, SUFFIX=DB2     , $
SEGMENT=RETAIL_SUBQUERY, SEGTYPE=S0, $
FIELDNAME=REGION, ALIAS=E01, USAGE=A15V, ACTUAL=A15V, MISSING=ON, $
FIELDNAME=STATECODE, ALIAS=E02, USAGE=A2, ACTUAL=A2, MISSING=ON, $
```

The retail_subquery.acx Access File follows:

```sql
SEGNAME=RETAIL_SUBQUERY, CONNECTION=CON1, DATASET=RETAIL_SUBQUERY.SQL, $
```

Note: You can create an SQL subquery file, along with a corresponding synonym, using the HOLD FORMAT SQL_SCRIPT command. For more information, see the Creating Reports With TIBCO WebFOCUS® Language manual.

The following request uses the DB_INFILE function to compare region names and state codes against the names retrieved by the subquery:

```sql
TABLE FILE WF_RETAIL
SUM REVENUE
BY REGION
BY STATECODE
WHERE DB_INFILE(RETAIL_SUBQUERY, REGION, REGION, STATECODE, STATECODE) ON TABLE SET PAGE NOPAGE
END
```
The trace shows that the subquery was inserted into the WHERE predicate in the generated SQL:

```sql
SELECT T11."REGION",
       T11."STATECODE",
       SUM(T1."Revenue")
FROM wrd_fact_sales T1,
     wrd_dim_customer T5,
     wrd_dim_geography T11
WHERE (T5."ID_CUSTOMER" = T1."ID_CUSTOMER") AND
       (T11."ID_GEOGRAPHY" = T5."ID_GEOGRAPHY") AND
       ((T11."REGION", T11."STATECODE") IN (SELECT MAX(T11.REGION),
                                                 MAX(T11.STATECODE) FROM wrd_dim_geography T11 WHERE
                                                 T11.STATECODE IN('AR', 'IA', 'KS', 'KY', 'WY', 'CT', 'MA',
                                                   'NJ', 'NY', 'RI')) AND
                                                T11.REGION IN('Central', 'NorthEast'))
GROUP BY T11.REGION, T11.STATECODE)
GROUP BY T11."REGION",
T11."STATECODE"
ORDER BY T11."REGION",
T11."STATECODE"
FOR FETCH ONLY;
END
```
Example: Comparing Source and Target Values Using a Sequential File

The empvalues.ftm sequential file contains the last and first names of employees in the MIS department:

<table>
<thead>
<tr>
<th>Region</th>
<th>State Code</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>AR</td>
<td>839,075.22</td>
</tr>
<tr>
<td></td>
<td>IA</td>
<td>1,197,171.09</td>
</tr>
<tr>
<td></td>
<td>KS</td>
<td>1,014,388.99</td>
</tr>
<tr>
<td></td>
<td>KY</td>
<td>1,014,825.22</td>
</tr>
<tr>
<td></td>
<td>WY</td>
<td>182,808.08</td>
</tr>
<tr>
<td>NorthEast</td>
<td>CT</td>
<td>1,146,626.05</td>
</tr>
<tr>
<td></td>
<td>MA</td>
<td>2,070,919.74</td>
</tr>
<tr>
<td></td>
<td>NJ</td>
<td>2,148,955.56</td>
</tr>
<tr>
<td></td>
<td>NY</td>
<td>6,360,267.52</td>
</tr>
<tr>
<td></td>
<td>RI</td>
<td>342,972.30</td>
</tr>
</tbody>
</table>

The empvalues.mas Master File describes the data in the empvalues.ftm file

FILENAME=EMPVALUES, SUFFIX=FIX , IOTYPE=BINARY, $
SEGMENT=EMPVALUE, SEGTYPE=S0, $
FIELDNAME=LN, ALIAS=E01, USAGE=A15, ACTUAL=A16, $
FIELDNAME=FN, ALIAS=E02, USAGE=A10, ACTUAL=A12, $

Note: You can create a sequential file, along with a corresponding synonym, using the HOLD FORMAT SQL_SCRIPT command. For more information, see the Creating Reports With TIBCO WebFOCUS® Language manual.
The following request against the FOCUS EMPLOYEE data source uses the DB_INFILE function to compare employee names against the names stored in the empvalues.ftm file:

```
FILEDEF EMPVALUES DISK baseapp/empvalues.ftm
TABLE FILE EMPLOYEE
  SUM CURR_SAL
  BY LAST_NAME BY FIRST_NAME
WHERE DB_INFILE(EMPVALUES, LAST_NAME, LN, FIRST_NAME, FN)
ON TABLE SET PAGE NOPAGE
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>CURR_SAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
<td>$21,780.00</td>
</tr>
<tr>
<td>CROSS</td>
<td>BARBARA</td>
<td>$27,062.00</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>MARY</td>
<td>$9,000.00</td>
</tr>
<tr>
<td>JONES</td>
<td>DIANE</td>
<td>$18,480.00</td>
</tr>
<tr>
<td>MCCOY</td>
<td>JOHN</td>
<td>$18,480.00</td>
</tr>
<tr>
<td>SMITH</td>
<td>MARY</td>
<td>$13,200.00</td>
</tr>
</tbody>
</table>

Syntax:

How to Control DB_INFILE Optimization

To control whether to prevent optimization of the DB_INFILE expression, issue the following command:

```
SET DB_INFILE = {DEFAULT|EXPAND_ALWAYS|EXPAND_NEVER}
```

In a TABLE request, issue the following command:

```
ON TABLE SET DB_INFILE  {DEFAULT|EXPAND_ALWAYS|EXPAND_NEVER}
```

where:

DEFAULT

Enables DB_INFILE to create a subquery if its analysis determines that it is possible. This is the default value.

EXPAND_ALWAYS

Prevents DB_INFILE from creating a subquery. Instead, it expands the expression into IF and WHERE clauses in memory.
Prevents DB_INFILE from expanding the expression into IF and WHERE clauses in memory. Instead, it attempts to create a subquery. If this is not possible, a FOC32585 message is generated and processing halts.

DB_LOOKUP: Retrieving Data Source Values

Available Languages: reporting, MODIFY

You can use the DB_LOOKUP function to retrieve a value from one data source when running a request against another data source, without joining or combining the two data sources.

DB_LOOKUP compares pairs of fields from the source and lookup data sources to locate matching records and retrieve the value to return to the request. You can specify as many pairs as needed to get to the lookup record that has the value you want to retrieve. If your field list pairs do not lead to a unique lookup record, the first matching lookup record retrieved is used.

DB_LOOKUP can be called in a DEFINE command, TABLE COMPUTE command, MODIFY COMPUTE command, or TIBCO® Data Migrator flow.

There are no restrictions on the source file. The lookup file can be any non-FOCUS data source that is supported as the cross referenced file in a cluster join. The lookup fields used to find the matching record are subject to the rules regarding cross-referenced join fields for the lookup data source. A fixed format sequential file can be the lookup file if it is sorted in the same order as the source file.

Syntax: How to Retrieve a Value From a Lookup Data Source

```plaintext
DB_LOOKUP(look_mf, srcfld1, lookfld1, srcfld2, lookfld2, ..., returnfld);
```

where:

- `look_mf`
 Is the lookup Master File.

- `srcfld1, srcfld2 ...`
 Are fields from the source file used to locate a matching record in the lookup file.

- `lookfld1, lookfld2 ...`
 Are columns from the lookup file that share values with the source fields. Only columns in the table or file can be used; columns created with DEFINE cannot be used. For multi-segment synonyms, only columns in the top segment can be used.
returnfld

Is the name of a column in the lookup file whose value is returned from the matching lookup record. Only columns in the table or file can be used; columns created with DEFINE cannot be used.

Reference: Usage Notes for DB_LOOKUP

- The maximum number of pairs that can be used to match records is 63.
- If the lookup file is a fixed format sequential file, it must be sorted and retrieved in the same order as the source file, unless the ENGINE INT SET CACHE=ON command is in effect. Having this setting in effect may also improve performance if the values will be looked up more than once. The key field of the sequential file must be the first lookup field specified in the DB_LOOKUP request. If it is not, no records will match.

In addition, if a DB_LOOKUP request against a sequential file is issued in a DEFINE FILE command, you must clear the DEFINE FILE command at the end of the TABLE request that references it, or the lookup file will remain open. It will not be reusable until closed and may cause problems when you exit. Other types of lookup files can be reused without clearing the DEFINE. They will be cleared automatically when all DEFINE fields are cleared.

- If the lookup field has the MISSING=ON attribute in its Master File and the DEFINE or COMPUTE command specifies MISSING ON, the missing value is returned when the lookup field is missing. Without MISSING ON in both places, the missing value is converted to a default value (blank for an alphanumeric field, zero for a numeric field).

- Source records display on the report output even if they lack a matching record in the lookup file.

- Only real fields in the lookup Master File are valid as lookup and return fields.

- If there are multiple rows in the lookup table where the source field is equal to the lookup field, the first value of the return field is returned.
Example: Retrieving a Value From a Fixed Format Sequential File in a TABLE Request

The following procedure creates a fixed format sequential file named GSALE from the GGSALES data source. The fields in this file are PRODUCT (product description), CATEGORY (product category), and PCD (product code). The file is sorted on the PCD field:

```
SET ASNAMES = ON
TABLE FILE GGSALES
SUM PRODUCT CATEGORY
BY PCD
ON TABLE HOLD AS GSALE FORMAT ALPHA
END
```

The following Master File is generated as a result of the HOLD command:

```
FILENAME=GSALE, SUFFIX=FIX, $
SEGMENT=GSALE, SEGTYPE=S1, $
FIELDNAME=PCD, ALIAS=E01, USAGE=A04, ACTUAL=A04, $
FIELDNAME=PRODUCT, ALIAS=E02, USAGE=A16, ACTUAL=A16, $
FIELDNAME=CATEGORY, ALIAS=E03, USAGE=A11, ACTUAL=A11, $
```

The following TABLE request against the GGPRODS data source, sorts the report on the field that matches the key field in the lookup file. It retrieves the value of the CATEGORY field from the GSALE lookup file by matching on the product code and product description fields. Note that the DEFINE FILE command is cleared at the end of the request:

```
DEFINE FILE GGPRODS
PCAT/A11 MISSING ON = DB_LOOKUP(GSALE, PRODUCT_ID, PCD, PRODUCT_DESCRIPTION, PRODUCT, CATEGORY);
END
TABLE FILE GGPRODS
PRINT PRODUCT_DESCRIPTION PCAT
BY PRODUCT_ID
END
DEFINE FILE GGPRODS CLEAR
END
```

Because the GSALE Master File does not define the CATEGORY field with the MISSING=ON attribute, the PCAT column displays a blank in those rows that have no matching record in the lookup file:

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Product</th>
<th>PCAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>B141</td>
<td>Hazelnut</td>
<td></td>
</tr>
<tr>
<td>B142</td>
<td>French Roast</td>
<td></td>
</tr>
<tr>
<td>B144</td>
<td>Kona</td>
<td></td>
</tr>
</tbody>
</table>
If you add the MISSING=ON attribute to the CATEGORY field in the GSALE Master File, the PCAT column displays a missing data symbol in rows that do not have a matching record in the lookup file:

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Product</th>
<th>PCAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>B141</td>
<td>Hazelnut</td>
<td>.</td>
</tr>
<tr>
<td>B142</td>
<td>French Roast</td>
<td>.</td>
</tr>
<tr>
<td>B144</td>
<td>Kona</td>
<td>.</td>
</tr>
<tr>
<td>F101</td>
<td>Scone</td>
<td>Food</td>
</tr>
<tr>
<td>F102</td>
<td>Biscotti</td>
<td>Food</td>
</tr>
<tr>
<td>F103</td>
<td>Croissant</td>
<td>Food</td>
</tr>
<tr>
<td>G100</td>
<td>Mug</td>
<td>Gifts</td>
</tr>
<tr>
<td>G104</td>
<td>Thermos</td>
<td>Gifts</td>
</tr>
<tr>
<td>G110</td>
<td>Coffee Grinder</td>
<td>Gifts</td>
</tr>
<tr>
<td>G121</td>
<td>Coffee Pot</td>
<td>Gifts</td>
</tr>
</tbody>
</table>

DECODE: Decoding Values

Available Languages: reporting, Maintain

The DECODE function assigns values based on the coded value of an input field. DECODE is useful for giving a more meaningful value to a coded value in a field. For example, the field GENDER may have the code F for female employees and M for male employees for efficient storage (for example, one character instead of six for female). DECODE expands (decodes) these values to ensure correct interpretation on a report.

You can use DECODE by supplying values directly in the function or by reading values from a separate file.

The use of DECODE with Maintain is limited. For information on decoding values with subscripted stack values, see SELECTS: Decoding a Value From a Stack on page 294.
Syntax: How to Supply Values in the Function

```plaintext
DECODE fieldname(code1 result1 code2 result2...[ELSE default ]);  
DECODE fieldname(filename ...[ELSE default ]);  
```

where:

- **fieldname**
 - Alphanumeric or Numeric
 - Is the name of the input field.

- **code**
 - Alphanumeric or Numeric
 - Is the coded value that DECODE compares with the current value of `fieldname`. If the value has embedded blanks, commas, or other special characters, it must be enclosed in single quotation marks. When DECODE finds the specified value, it returns the corresponding result. When the code is compared to the value of the field name, the code and field name must be in the same format.

- **result**
 - Alphanumeric or Numeric
 - Is the returned value that corresponds to the code. If the result has embedded blanks or commas, or contains a negative number, it must be enclosed in single quotation marks. Do not use double quotation marks (").
 - If the result is presented in alphanumeric format, it must be a non-null, non-blank string. The format of the result must correspond to the data type of the expression.

- **default**
 - Alphanumeric or Numeric
 - Is the value returned as a result for non-matching codes. The format must be the same as the format of `result`. If you omit a default value, DECODE assigns a blank or zero to non-matching codes.

- **filename**
 - Alphanumeric
 - Is the name of the file in which code/result pairs are stored. Every record in the file must contain a pair.

You can use up to 40 lines to define the code and result pairs for any given DECODE function, or 39 lines if you also use an ELSE phrase. Use either a comma or blank to separate the code from the result, or one pair from another.
Note: DECODE has no output argument.

Example: **Supplying Values Using the DECODE Function**

EDIT extracts the first character of the CURR_JOBCODE field, then DECODE returns either ADMINISTRATIVE or DATA PROCESSING depending on the value extracted.

```plaintext
TABLE FILE EMPLOYEE
PRINT CURR_JOBCODE AND COMPUTE
DEPX_CODE/A1 = EDIT(CURR_JOBCODE, '9$'); NOPRINT AND COMPUTE
JOB_CATEGORY/A15 = DECODE DEPX_CODE(A 'ADMINISTRATIVE'
B 'DATA PROCESSING');
BY LAST_NAME
WHERE DEPARTMENT EQ 'MIS';
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>CURR_JOBCODE</th>
<th>JOB_CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLACKWOOD</td>
<td>B04</td>
<td>DATA PROCESSING</td>
</tr>
<tr>
<td>CROSS</td>
<td>A17</td>
<td>ADMINISTRATIVE</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>A07</td>
<td>ADMINISTRATIVE</td>
</tr>
<tr>
<td>JONES</td>
<td>B03</td>
<td>DATA PROCESSING</td>
</tr>
<tr>
<td>MCCOY</td>
<td>B02</td>
<td>DATA PROCESSING</td>
</tr>
<tr>
<td>SMITH</td>
<td>B14</td>
<td>DATA PROCESSING</td>
</tr>
</tbody>
</table>

Reference: **Guidelines for Reading Values From a File**

- Each record in the file is expected to contain pairs of elements separated by a comma or blank.
- If each record in the file consists of only one element, this element is interpreted as the code, and the result becomes either a blank or zero, as needed.

This makes it possible to use the file to hold screening literals referenced in the screening condition:

```plaintext
IF field IS (filename)
```

and as a file of literals for an IF criteria specified in a computational expression. For example:

```plaintext
TAKE = DECODE SELECT (filename ELSE 1);
VALUE = IF TAKE IS 0 THEN... ELSE...;
```

TAKE is 0 for SELECT values found in the literal file and 1 in all other cases. The VALUE computation is carried out as if the expression had been:

```plaintext
IF SELECT (filename) THEN... ELSE...;
```
The file can contain up to 32,767 characters in the file.

All data is interpreted in ASCII format on UNIX and Windows, or in EBCDIC format on z/OS, and converted to the USAGE format of the DECODE pairs.

Leading and trailing blanks are ignored.

The remainder of each record is ignored and can be used for comments or other data. This convention applies in all cases, except when the file name is HOLD. In that case, the file is presumed to have been created by the HOLD command, which writes fields in the internal format, and the DECODE pairs are interpreted accordingly. In this case, extraneous data in the record is ignored.

Example:
Reading DECODE Values From a File

The following example has two parts. The first part creates a file with a list of IDs and reads the EDUCFILE data source. The second part reads the EMPLOYEE data source and assigns 0 to those employees who have taken classes and 1 to those employees who have not. The HOLD file contains only one column of values. Therefore, DECODE assigns the value 0 to an employee whose EMP_ID appears in the file and 1 when EMP_ID does not appear in the file.

```
TABLE FILE EDUCFILE
PRINT EMP_ID
ON TABLE HOLD
END

TABLE FILE EMPLOYEE
PRINT EMP_ID AND LAST_NAME AND FIRST_NAME AND COMPUTE
NOT_IN_LIST/I1 = DECODE EMP_ID(HOLD ELSE 1);
WHERE DEPARTMENT EQ 'MIS';
END
```

The output is:

<table>
<thead>
<tr>
<th>EMP_ID</th>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>NOT_IN_LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>112847612</td>
<td>SMITH</td>
<td>MARY</td>
<td>0</td>
</tr>
<tr>
<td>117593129</td>
<td>JONES</td>
<td>DIANE</td>
<td>0</td>
</tr>
<tr>
<td>219984371</td>
<td>MCCOY</td>
<td>JOHN</td>
<td>1</td>
</tr>
<tr>
<td>326179357</td>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
<td>0</td>
</tr>
<tr>
<td>543729165</td>
<td>GREENSPAN</td>
<td>MARY</td>
<td>1</td>
</tr>
<tr>
<td>818692173</td>
<td>CROSS</td>
<td>BARBARA</td>
<td>0</td>
</tr>
</tbody>
</table>
FIND: Verifying the Existence of a Value in a Data Source

The FIND function determines if a data value is in a data source field being searched. The function sets a temporary field to 1 (a non-zero value for MODIFY) if the data value is found in the data source field, and to 0 if it is not. FIND does not change the searched file's current database position. A value greater than zero confirms the presence of the data value, not the number of instances in the data source field.

You can also use FIND in a VALIDATE command to determine if a transaction field value exists in another FOCUS data source. If the field value is not in that data source, the function returns a value of 0, causing the validation test to fail and the request to reject the transaction.

You can use any number of FINDs in a COMPUTE or VALIDATE command. However, more FINDs increase processing time and require more buffer space in memory.

Limit: FIND does not work on files with different DBA passwords.

The opposite of FIND is NOT FIND. The NOT FIND function sets a temporary field to 1 if the incoming value is not in the data source and to 0 if the incoming value is in the data source.

Syntax: How to Verify the Existence of a Value in a Data Source

FIND(fieldname [AS dbfield] IN file);

where:

fieldname
Is the name of the field that contains the incoming data value.

AS dbfield
Is the name of the data source field whose values are compared to the incoming field values.

For Maintain - the AS field is required and the name must be qualified.

file
Is the name of the FOCUS data source.

For Maintain - the IN file is unnecessary since the AS field name is required and must be qualified.

Note:

- FIND does not use an output argument.
Example: **Verifying the Existence of a Value in Another Data Source (Maintain)**

In the following example, FIND determines if a data value is found in another data source.

```
MAINTAIN FILE MOVIES AND VIDEOTRK
FOR ALL NEXT MOVIES.MOVIECODE INTO FILMSTK
TYPE "RC SHOULD BE 1 WHERE MOVIECODE EXISTS IN BOTH FILES";
TYPE " "
COMPUTE RC/I1;
COMPUTE I/I1=1;
REPEAT FILMSTK.FOCCOUNT
  COMPUTE RC= FIND(FILMSTK(I).MOVIECODE AS VIDEOTRK.MOVIECODE)
  TYPE "FOR MOVIECODE = <<FILMSTK(I).MOVIECODE , RC = <<RC"
  COMPUTE I=I+1;
ENDREPEAT
END
```

The output is:

```
RC SHOULD BE 1 WHERE MOVIECODE EXISTS IN BOTH FILES
FOR MOVIECODE = 001MCA, RC = 1

FOR MOVIECODE = 387PLA, RC = 0

FOR MOVIECODE = 963CBS, RC = 1
```

TRANSACTIONS: COMMITS = 1 ROLLBACKS = 0
SEGMENTS : INCLUDED = 0 UPDATED = 0 DELETED = 0

Example: **Verifying the Existence of a Value in the Same Data Source (Maintain)**

In the following example, FIND determines if a data value is found in the same data source.

```
MAINTAIN FILE CAR
COMPUTE RETAIL_COST=31500;
COMPUTE CHECK/I1;
COMPUTE CHECK= FIND (RETAIL_COST);
IF CHECK = 1 THEN GOTO FOUND1
ELSE GOTO NOT1;
CASE FOUND1
  TYPE "THERE IS A CAR WITH A RETAIL_COST OF <<RETAIL_COST"
  -* ....
ENDCASE
CASE NOT1
  TYPE "THERE IS NO CAR WITH A RETAIL_COST OF <<RETAIL_COST"
  -* ..... END
```
The output is:

```
THERE IS A CAR WITH A RETAIL_COST OF 31,500
TRANSACTIONS: COMMITS = 1 ROLLBACKS = 0
SEGMENTS : INCLUDED = 0 UPDATED = 0 DELETED = 0
```

IMPUTE: Replacing Missing Values With Aggregated Values

IMPUTE calculates a value to replace missing numeric data on report output, within a partition. In place of eliminating data records with missing values from analysis, IMPUTE enables you to substitute a variety of estimates for the missing values, including the mean, the median, the mode, or a numeric constant, all calculated within the data partition specified by the reset key. This function is designed to be used with detail level reports (PRINT or LIST commands), and with calculated values (fields created with the COMPUTE command).

Syntax:

```
How to Replace Missing Values With Aggregated Values

IMPUTE(field, reset_key, replacement)
```

where:

- **field**
 Is the name of the numeric input field that is defined with MISSING ON.

- **reset_key**
 Defines the partition for the calculation. Valid values are:
 - A sort field name.
 - PRESET, which uses the break defined by the SET PARTITION_ON command.
 - TABLE, which performs the calculation on the entire table.

- **replacement**
 Is a numeric constant or one of the following:
 - MEAN
 - MEDIAN
 - MODE
Example: Replacing Missing Values With Aggregated Values

To run this example, the FOCUS data source SALEMISS must be created. SALEMISS is the SALES data source with some missing values added in the RETURNS and DAMAGED fields. The following is the SALEMISS Master File, which should be added to the IBISAMP application.

FILENAME=KSALES, SUFFIX=FOC, REMARKS='Legacy Metadata Sample: sales',$

SEGNAME=STOR_SEG, SEGTYPE=S1,
 FIELDNAME=STORE_CODE, ALIAS=SNO, FORMAT=A3, $
 FIELDNAME=CITY, ALIAS=CTY, FORMAT=A15, $
 FIELDNAME=AREA, ALIAS=LOC, FORMAT=A1, $

SEGNAME=DATE_SEG, PARENT=STOR_SEG, SEGTYPE=SH1,
 FIELDNAME=DATE, ALIAS=DTE, FORMAT=A4MD, $

SEGNAME=PRODUCT, PARENT=DATE_SEG, SEGTYPE=S1,
 FIELDNAME=PROD_CODE, ALIAS=PCODE, FORMAT=A3, FIELDTYPE=I, $
 FIELDNAME=UNIT_SOLD, ALIAS=SOLD, FORMAT=I5, $
 FIELDNAME=RETAIL_PRICE, ALIAS=RP, FORMAT=D5.2M, $
 FIELDNAME=DELIVER_AMT, ALIAS=SHIP, FORMAT=I5, $
 FIELDNAME=OPENING_AMT, ALIAS=INV, FORMAT=I5, $
 FIELDNAME=RETURNS, ALIAS=RTN, FORMAT=I3, MISSING=ON, $
 FIELDNAME=DAMAGED, ALIAS=BAD, FORMAT=I3, MISSING=ON, $

Using Functions
The following procedure creates the SALEMISS data source and then adds the missing values to the RETURNS and DAMAGED fields:

```
CREATE FILE ibisamp/SALEMISS
MODIFY FILE ibisamp/SALEMISS
FIXFORM STORE_CODE/3 CITY/15 AREA/1 DATE/4 PROD_CODE/3
FIXFORM UNIT_SOLD/5 RETAIL_PRICE/5 DELIVER_AMT/5
FIXFORM OPENING_AMT/5 RETURNS/3 DAMAGED/3
MATCH STORE_CODE
ON NOMATCH INCLUDE
ON MATCH CONTINUE
MATCH DATE
ON NOMATCH INCLUDE
ON MATCH CONTINUE
MATCH PROD_CODE
ON NOMATCH INCLUDE
ON MATCH REJECT
DATA
14BSTAMFORD  S1212B10  60  .95  80  65 10  6
14BSTAMFORD  S1212B12  40 1.29  20  50  3  3
14BSTAMFORD  S1212B17  29 1.89  30  30  2  1
14BSTAMFORD  S1212C13  25 1.99  30  40  3  0
14BSTAMFORD  S1212C7  45 2.39  50  49  5  4
14BSTAMFORD  S1212D12  27 2.19  40  35  0  0
14BSTAMFORD  S1212E2  80  .99  100 100  9  4
14BSTAMFORD  S1212E3  70 1.09  80  90  8  9
14ZNEW YORK  U1017B10  30  .85  30  10  2  3
14ZNEW YORK  U1017B17  20 1.89  40  25  2  1
14ZNEW YORK  U1017B20  15 1.99  30  5  0  1
14ZNEW YORK  U1017C17  12 2.09  10  15  0  0
14ZNEW YORK  U1017D12  20 2.09  30  10  3  2
14ZNEW YORK  U1017E1  30  .89  25  45  4  7
14ZNEW YORK  U1017E3  35 1.09  25  45  4  2
77FUNKIONDALE R1018B20  25 2.09  40  25  1  1
77FUNKIONDALE R1018C7  40 2.49  40  40  0  0
K1 NEWARK   U1019B12  29 1.49  30  30  1  0
K1 NEWARK   U1018B10  13  .99  30  15  1  1
END
-RUN
```
The following request against the SALEMISS data source generates replacement values for the missing values in the RETURNS field, using only the values within the same store.

```plaintext
SET PARTITION_ON=FIRST
TABLE FILE SALEMISS
PRINT RETURNS
COMPUTE MEDIAN1 = IMPUTE(RETURNS, PRESET, MEDIAN);
COMPUTE MEAN1 = IMPUTE(RETURNS, PRESET, MEAN);
COMPUTE MODE1 = IMPUTE(RETURNS, PRESET, MODE);
BY STORE_CODE
ON TABLE SET PAGE NOPAGE
ON TABLE SET STYLE *
(TYPE=REPORT, GRID=OFF, $ ENDSTYLE
END
```
The output is shown in the following image. The missing values occur in store 14Z, and the replacement values are calculated using only the RETURNS values from that store because PARTITION_ON is set to FIRST.

<table>
<thead>
<tr>
<th>STORE_CODE</th>
<th>RETURNS</th>
<th>MEDIAN1</th>
<th>MEAN1</th>
<th>MODE1</th>
</tr>
</thead>
<tbody>
<tr>
<td>14B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9.00</td>
<td>9.00</td>
<td>9.00</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td>14Z</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>2.00</td>
<td>2.00</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>2.00</td>
<td>2.00</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>77F</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>K1</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>
Changing the PARTITION_ON setting to TABLE produces the following output, in which the replacement values are calculated using all of the rows in the table.

<table>
<thead>
<tr>
<th>STORE_CODE</th>
<th>RETURNS</th>
<th>MEDIAN1</th>
<th>MEAN1</th>
<th>MODE1</th>
</tr>
</thead>
<tbody>
<tr>
<td>14B</td>
<td>10</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9.00</td>
<td>9.00</td>
<td>9.00</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
</tr>
<tr>
<td>14Z</td>
<td>2</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>2.00</td>
<td>3.00</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>2.00</td>
<td>3.00</td>
<td>.00</td>
</tr>
<tr>
<td>77F</td>
<td>1</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>K1</td>
<td>1</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

LAST: Retrieving the Preceding Value

Available Languages: reporting

The LAST function retrieves the preceding value for a field.

The effect of LAST depends on whether it appears in a DEFINE or COMPUTE command:

- In a DEFINE command, the LAST value applies to the previous record retrieved from the data source before sorting takes place.
In a COMPUTE command, the LAST value applies to the record in the previous line of the internal matrix.

Do not use LAST with the -SET command in Dialogue Manager.

Syntax:

How to Retrieve the Preceding Value

LAST *fieldname*

where:

fieldname

 Alphanumeric or Numeric

 Is the field name.

Note: LAST does not use an output argument.

Example:

LAST retrieves the previous value of the DEPARTMENT field to determine whether to restart the running total of salaries by department. If the previous value equals the current value, CURR_SAL is added to RUN_TOT to generate a running total of salaries within each department.

```
TABLE FILE EMPLOYEE
PRINT LAST_NAME CURR_SAL AND COMPUTE
RUN_TOT/D12.2M = IF DEPARTMENT EQ LAST DEPARTMENT THEN
    (RUN_TOT + CURR_SAL) ELSE CURR_SAL ;
AS 'RUNNING, TOTAL, SALARY'
BY DEPARTMENT SKIP-LINE
END
```

The output is:

<table>
<thead>
<tr>
<th>DEPARTMENT</th>
<th>LAST_NAME</th>
<th>CURR_SAL</th>
<th>RUNNING TOTAL SALARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIS</td>
<td>SMITH</td>
<td>$13,200.00</td>
<td>$13,200.00</td>
</tr>
<tr>
<td></td>
<td>JONES</td>
<td>$18,480.00</td>
<td>$31,680.00</td>
</tr>
<tr>
<td></td>
<td>MCCOY</td>
<td>$18,480.00</td>
<td>$50,160.00</td>
</tr>
<tr>
<td></td>
<td>BLACKWOOD</td>
<td>$21,780.00</td>
<td>$71,940.00</td>
</tr>
<tr>
<td></td>
<td>GREENSPAN</td>
<td>$9,000.00</td>
<td>$80,940.00</td>
</tr>
<tr>
<td></td>
<td>CROSS</td>
<td>$27,062.00</td>
<td>$108,002.00</td>
</tr>
<tr>
<td>PRODUCTION</td>
<td>STEVENS</td>
<td>$11,000.00</td>
<td>$11,000.00</td>
</tr>
<tr>
<td></td>
<td>SMITH</td>
<td>$9,500.00</td>
<td>$20,500.00</td>
</tr>
<tr>
<td></td>
<td>BANNING</td>
<td>$29,700.00</td>
<td>$50,200.00</td>
</tr>
<tr>
<td></td>
<td>IRVING</td>
<td>$26,862.00</td>
<td>$77,062.00</td>
</tr>
<tr>
<td></td>
<td>ROMANS</td>
<td>$21,120.00</td>
<td>$98,182.00</td>
</tr>
<tr>
<td></td>
<td>MCKNIGHT</td>
<td>$16,100.00</td>
<td>$114,282.00</td>
</tr>
</tbody>
</table>
LOOKUP: Retrieving a Value From a Cross-referenced Data Source

Available Languages: MODIFY

The LOOKUP function retrieves a data value from a cross-referenced FOCUS data source in a MODIFY request. You can retrieve data from a data source cross-referenced statically in a Master File or a data source joined dynamically to another by the JOIN command. LOOKUP retrieves a value, but does not activate the field. LOOKUP is required because a MODIFY request, unlike a TABLE request, cannot read cross-referenced data sources freely.

LOOKUP allows a request to use the retrieved data in a computation or message, but it does not allow you to modify a cross-referenced data source.

To modify more than one data source in one request, use the COMBINE command or the Maintain Data facility.

LOOKUP can read a cross-referenced segment that is linked directly to a segment in the host data source (the host segment). This means that the cross-referenced segment must have a segment type of KU, KM, DKU, or DKM (but not KL or KLU) or must contain the cross-referenced field specified by the JOIN command. Because LOOKUP retrieves a single cross-referenced value, it is best used with unique cross-referenced segments.

The cross-referenced segment contains two fields used by LOOKUP:

- The field containing the retrieved value. Alternatively, you can retrieve all the fields in a segment at one time. The field, or your decision to retrieve all the fields, is specified in LOOKUP.

 For example, LOOKUP retrieves all the fields from the segment

 \[
 \text{RTN} = \text{LOOKUP} (\text{SEG.DATE_ATTEND});
 \]

- The cross-referenced field. This field shares values with a field in the host segment called the host field. These two fields link the host segment to the cross-referenced segment. LOOKUP uses the cross-referenced field, which is indexed, to locate a specific segment instance.

When using LOOKUP, the MODIFY request reads a transaction value for the host field. It then searches the cross-referenced segment for an instance containing this value in the cross-referenced field:

- If there are no instances of the value, the function sets a return variable to 0. If you use the field specified by LOOKUP in the request, the field assumes a value of blank if alphanumeric and 0 if numeric.
If there are instances of the value, the function sets the return variable to 1 and retrieves the value of the specified field from the first instance it finds. There can be more than one if the cross-referenced segment type is KM or DKM, or if you specified the ALL keyword in the JOIN command.

Syntax:

How to Retrieve a Value From a Cross-referenced Data Source

```plaintext
LOOKUP(field);
```

where:

field

Is the name of the field to retrieve in the cross-referenced file. If the field name also exists in the host data source, you must qualify it here. Do not include a space between LOOKUP and the left parenthesis.

Note: LOOKUP does not use an *output* argument.

Example:

Using a Value in a Host Segment to Search a Data Source

You can use a field value in a host segment instance to search a cross-referenced segment. Do the following:

- In the MATCH command that selects the host segment instance, activate the host field with the ACTIVATE command.

- In the same MATCH command, code LOOKUP after the ACTIVATE command.

This request displays the employee ID, date of salary increase, employee name, and the employee position after the raise was granted:

- The employee ID and name (EMP_ID) are in the root segment.

- The date of increase (DAT_INC) is in the descendant host segment.

- The job position is in the cross-referenced segment.

- The shared field is JOBCODE. You never enter a job code; the values are stored in the data source.
The request is:

```
MODIFY FILE EMPLOYEE
PROMPT EMP_ID DAT_INC
MATCH EMP_ID
  ON NOMATCH REJECT
  ON MATCH CONTINUE
MATCH DAT_INC
  ON NOMATCH REJECT
  ON MATCH ACTIVATE JOBCODE
  ON MATCH COMPUTE
  RTN = LOOKUP(JOB_DESC);
  ON MATCH TYPE
    "EMPLOYEE ID:          <EMP_ID"
    "DATE INCREASE:        <DAT_INC"
    "NAME:                 <D.FIRST_NAME <D.LAST_NAME"
    "POSITION:             <JOB_DESC"
DATA
```

A sample execution is:

1. The request prompts you for the employee ID and date of pay increase. Enter the employee ID 071382660 and the date 820101 (January 1, 1982).
2. The request locates the instance containing the ID 071382660, then locates the child instance containing the date of increase 820101.
3. This child instance contains the job code A07. The ACTIVATE command makes this value available to LOOKUP.
4. LOOKUP locates the job code A07 in the cross-referenced segment. It returns a 1 the RTN variable and retrieves the corresponding job description SECRETARY.
5. The TYPE command displays the values:

 | EMPLOYEE ID: | 071382660 |
 | DATE INCREASE: | 82/01/01 |
 | NAME: | ALFRED STEVENS |
 | POSITION: | SECRETARY |

Fields retrieved by LOOKUP do not require the D. prefix. FOCUS treats the field values as transaction values.
You may also need to activate the host field if you are using LOOKUP within a NEXT command. This request displays the latest position held by an employee:

```sql
MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID
  ON NOMATCH REJECT
  ON MATCH CONTINUE
NEXT DAT_INC
  ON NONEXT REJECT
  ON NEXT ACTIVATE JOBCODE
  ON NEXT COMPUTE
    RTN = LOOKUP(JOB_DESC);
  ON MATCH TYPE
    "EMPLOYEE ID:      <EMP_ID"
    "DATE OF POSITION: <DAT_INC"
    "NAME:             <D.FIRST_NAME <D.LAST_NAME"
    "POSITION:         <JOB_DESC"
DATA
```

Example: Using the LOOKUP Function With a VALIDATE Command

When you use LOOKUP, reject transactions containing values for which there is no corresponding instance in the cross-reference segment. To do this, place the function in a VALIDATE command. If the function cannot locate the instance in the cross-referenced segment, it sets the value of the return variable to 0, causing the request to reject the transaction.

The following request updates an employee's classroom hours (ED_HRS). If the employee enrolled in classes on or after January 1, 1982, the request increases the number of classroom hours by 10%. The enrollment dates are stored in a cross-referenced segment (field DATE_ATTEND). The shared field is the employee ID.

The request is as follows:

```sql
MODIFY FILE EMPLOYEE
PROMPT EMP_ID ED_HRS
VALIDATE
  TEST_DATE = LOOKUP(DATE_ENROLL);
COMPUTE
  ED_HRS = IF DATE_ENROLL GE 820101 THEN ED_HRS * 1.1
            ELSE ED_HRS;
MATCH EMP_ID
  ON MATCH UPDATE ED_HRS
  ON NOMATCH REJECT
DATA
```

If an employee record is not found in the cross-referenced segment, that employee never enrolled in a class. The transaction is rejected as an error.
Using the Extended LOOKUP Function

If the LOOKUP function cannot locate a value of the host field in the cross-referenced segment, use extended syntax to locate the next highest or lowest cross-referenced field value in the cross-referenced segment.

To use this feature, create the index with the INDEX parameter set to NEW (the binary tree scheme). To determine the type of index used by a data source, enter the FDT command.

Syntax: How to Use the Extended LOOKUP Function

```
COMPUTE
LOOKUP(field action);
```

where:

- **field**

 Is the name of the field in the cross-referenced data source, used in a MODIFY computation. If the field name also exists in the host data source, you must qualify it here.

- **action**

 Specifies the action the request takes. Valid values are:

 - **EQ** causes LOOKUP to take no further action if an exact match is not found. If a match is found, the value of rcode is set to 1; otherwise, it is set to 0. This is the default.
 - **GE** causes LOOKUP to locate the instance with the next highest value of the cross-referenced field. The value of rcode is set to 2.
 - **LE** causes LOOKUP to locate the instance with the next lowest value of the cross-referenced field. The value of rcode is set to -2.

Do not include a space between LOOKUP and the left parenthesis.

The following table shows the value of rcode, depending on which instance LOOKUP locates:

<table>
<thead>
<tr>
<th>Value</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exact cross-referenced value located.</td>
</tr>
<tr>
<td>2</td>
<td>Next highest cross-referenced value located.</td>
</tr>
<tr>
<td>-2</td>
<td>Next lowest cross-referenced value located.</td>
</tr>
<tr>
<td>0</td>
<td>Cross-referenced value not located.</td>
</tr>
</tbody>
</table>
NULLIF: Returning a Null Value When Parameters Are Equal

NULLIF returns a null (missing) value when its parameters are equal. If they are not equal, it returns the first value. The field to which the value is returned should have MISSING ON.

Syntax:

How to Return a Null Value for Equal Parameters

```
NULLIF(arg1, arg2)
```

where:

- `arg1, arg2`
 - Any type of field, constant, or expression.
 - Are the input parameters that are tested for equality. They must either both be numeric or both be alphanumeric.

The output data type is the same as the input data types.

Example:

Testing for Equal Parameters

The following request uses NULLIF to test the DAMAGED and RETURNS field values for equality.

```
DEFINE FILE SALES
NULL1/I4 MISSING ON = NULLIF(DAMAGED, RETURNS);
END
TABLE FILE SALES
PRINT DAMAGED RETURNS NULL1
BY STORE_CODE
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
END
```
The output is shown in the following image.

<table>
<thead>
<tr>
<th>STORE_CODE</th>
<th>DAMAGED</th>
<th>RETURNS</th>
<th>NULL1</th>
</tr>
</thead>
<tbody>
<tr>
<td>14B</td>
<td>6</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>14Z</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>77F</td>
<td>1</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>K1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>.</td>
</tr>
</tbody>
</table>
NULLIF: Returning a Null Value When Parameters Are Equal
Simplified date and date-time functions have streamlined parameter lists, similar to those used by SQL functions. In some cases, these simplified functions provide slightly different functionality than previous versions of similar functions.

The simplified functions do not have an output argument. Each function returns a value that has a specific data type.

When used in a request against a relational data source, these functions are optimized (passed to the RDBMS for processing).

Standard date and date-time formats refer to YYMD and HYYMD syntax (dates that are not stored in alphanumeric or numeric fields). Dates not in these formats must be converted before they can be used in the simplified functions. Input date and date-time parameters must provide full component dates. Literal date-time values can be used with the DT function.

All arguments can be either literals, field names, or amper variables.

Note: The simplified date and date-time functions are not supported in Maintain Data.

In this chapter:

- DAYNAME: Returning the Name of the Day From a Date Expression
- DT_CURRENT_DATE: Returning the Current Date
- DT_CURRENT_DATETIME: Returning the Current Date and Time
- DT_CURRENT_TIME: Returning the Current Time
- DT_TOLOCAL: Converting Universal Coordinated Time to Local Time
- DT_TOUTC: Converting Local Time to Universal Coordinated Time
- DTADD: Incrementing a Date or Date-Time Component
- DTDIFF: Returning the Number of Component Boundaries Between Date or Date-Time Values
- DTIME: Extracting Time Components From a Date-Time Value
- DTPART: Returning a Date or Date-Time Component in Integer Format
- DTRUNC: Returning the Start of a Date Period for a Given Date
DAYNAME: Returning the Name of the Day From a Date Expression

DAYNAME returns a character string that contains the data-source-specific name of the day for the day part of a date expression.

Syntax: How to Return the Name of the Day From a Date Expression

```
DAYNAME(date_exp)
```

where:

- `date_exp`
 Is a date or date-time expression.

Example: Returning the Name of the Day From a Date Expression

The following request returns the name of the day from the TIME_DATE field.

```
TABLE FILE WF_RETAIL_TIME
PRINT TIME_DATE
COMPUTE DAYNAME1/A12 = DAYNAME(TIME_DATE);
WHERE RECORDLIMIT EQ 5
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF, $
ENDSTYLE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Date</th>
<th>DAYNAME1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009/01/01</td>
<td>Thursday</td>
</tr>
<tr>
<td>2009/01/02</td>
<td>Friday</td>
</tr>
<tr>
<td>2009/01/03</td>
<td>Saturday</td>
</tr>
<tr>
<td>2009/01/04</td>
<td>Sunday</td>
</tr>
<tr>
<td>2009/01/05</td>
<td>Monday</td>
</tr>
</tbody>
</table>
DT_CURRENT_DATE: Returning the Current Date

The DT_CURRENT_DATE function returns the current date-time provided by the running operating environment in date-time format. The time portion of the date-time is set to zero.

Syntax:

How to Return the Current Date

```
DT_CURRENT_DATE()
```

Example:

Returning the Current Date

The following request returns the current date.

```
DEFINE FILE WF_RETAIL_LITE
CURRDATE/YYMD WITH COUNTRY_NAME = DT_CURRENT_DATE();
END
TABLE FILE WF_RETAIL_LITE
SUM CURRDATE
ON TABLE SET PAGE NOPAGE
END
```

The output is shown in the following image.

![CURRDATE](image)

2016/09/08

DT_CURRENT_DATETIME: Returning the Current Date and Time

DT_CURRENT_DATETIME returns the current date and time provided by the running operating environment in date-time format, with a specified time precision.

Syntax:

How to Return the Current Date and Time

```
DT_CURRENT_DATETIME(component)
```

where:

`component`

Is one of the following time precisions.

- SECOND.
- MILLISECOND.
- MICROSECOND.
Note: The field to which the value is returned must have a format that supports the time precision requested.

Example: Returning the Current Date and Time

The following request returns the current date and time, with the time specified in microseconds.

```define file wf_retail_lite currdate/hyymdm with country_name = dt_current_datetime(microsecond);
end
table file wf_retail_lite
sum currdate
on table set page nopage
end
```

The output is shown in the following image.

```
<table>
<thead>
<tr>
<th>CURRDATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016/09/08 17:10:31.605718</td>
</tr>
</tbody>
</table>
```

DT_CURRENT_TIME: Returning the Current Time

The DT_CURRENT_TIME function returns the current time provided by the running operating environment in date-time format, with a specified time precision. The date portion of the returned date-time value is set to zero.

Syntax: How to Return the Current Time

```
dt_current_time(component)
```

where:

- `component` is one of the following time precisions.
 - SECOND.
 - MILLISECOND.
 - MICROSECOND.

Note: The field to which the value is returned must have a format that supports the time precision requested.
Example: Returning the Current Time

The following request returns the current time, with the time precision set to milliseconds.

```
DEFINE FILE WF_RETAIL_LITE
CURRTIME/HHISs WITH COUNTRY_NAME = DT_CURRENT_TIME(MILLISECOND);
END
TABLE FILE WF_RETAIL_LITE
SUM CURRTIME
ON TABLE SET PAGE NOPAGE
END
```

The output is shown in the following image.

![Current Time Output]

DT_TOLOCAL: Converting Universal Coordinated Time to Local Time

Coordinated Universal Time (UTC) is the time standard commonly used around the world. To convert UTC time to a local time, a certain number of hours must be added to or subtracted from the UTC time, depending on the number of time zones between the locality and Greenwich, England (GMT).

DT_TOLOCAL converts UTC time to local time.

Converting timestamp values from different localities to a common standard time enables you to sort events into the actual event sequence.
This function requires an IANA (Internet Assigned Numbers Authority) time zone database names (expressed as 'Area/Location') as a parameter. You can find a table of IANA TZ database names on Wikipedia at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones, as shown in the following image.

If you do not know what Area and Location corresponds to your time zone, but you do know your offset from GMT, or your legacy time zone name (such as EST), scroll down in the table. There are TZ database names that correspond to these time zone identifiers, as shown in the following image.
Note: If you use a standard IANA time zone database name in the form 'Area/Location' (for example, 'America/New_York'), automatic adjustments are made for Daylight Savings Time. If you use a name that corresponds to an offset from GMT or to a legacy time zone name, it is your responsibility to account for Daylight Savings Time.

Syntax:

How to Convert UTC Time to Local Time

```
DT_TOLOCAL(datetime, timezone)
```

where:

- **datetime**
 - Date-time
 - Is a date-time expression representing UTC time, containing date and time components.

- **timezone**
 - Alphanumeric
 - Is a character expression containing the IANA time zone name of the local time, in the form 'Area/Location' (for example, 'America/New_York')

Example:

Converting UTC Time to Local Time

The following request converts the current date-time value from UTC time to local time for time zone 'America/New_York'.

```
TABLE FILE GGSALES
SUM DOLLARS NOPRINT
COMPUTE UTC1/HYYMDS = DT_CURRENT_DATETIME(SECOND);
COMPUTE LOCAL1/HYYMDS = DT_TOLOCAL(UTC1, 'America/New_York');
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>UTC1</th>
<th>LOCAL1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020/09/04</td>
<td>2020/09/04</td>
</tr>
<tr>
<td>15:00:26</td>
<td>11:00:26</td>
</tr>
</tbody>
</table>

DT_TOUTC: Converting Local Time to Universal Coordinated Time

Coordinated Universal Time (UTC) is the time standard commonly used around the world. To convert UTC time to a local time, a certain number of hours must be added to or subtracted from the UTC time, depending on the number of time zones between the locality and Greenwich, England (GMT).
DT_TOUTC converts local time to UTC time.

Converting timestamp values from different localities to a common standard time enables you to sort events into the actual event sequence.

This function requires an IANA (Internet Assigned Numbers Authority) time zone database names (expressed as 'Area/Location') as a parameter. You can find a table of IANA TZ database names on Wikipedia at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones, as shown in the following image.
If you do not know what Area and Location corresponds to your time zone, but you do know your offset from GMT, or your legacy time zone name (such as EST), scroll down in the table. There are TZ database names that correspond to these time zone identifiers, as shown in the following image.

<table>
<thead>
<tr>
<th>Time Zone</th>
<th>Deprecation</th>
<th>Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EST</td>
<td></td>
<td>-05:00</td>
<td>Choose a zone that currently observes EST without daylight saving time, such as America/Caracas.</td>
</tr>
<tr>
<td>EST/EDT</td>
<td></td>
<td>-04:00</td>
<td>Choose a zone that observed EST with United States daylight saving time rules, such as America/New_York.</td>
</tr>
<tr>
<td>Etc/GMT-6</td>
<td></td>
<td>00:00</td>
<td>Link to Etc/GMT.</td>
</tr>
<tr>
<td>Etc/GMT+1</td>
<td>Canonical</td>
<td>+01:00</td>
<td>Sign is intentionally inverted. See the Etc area description.</td>
</tr>
<tr>
<td>Etc/GMT+10</td>
<td>Canonical</td>
<td>+10:00</td>
<td>Sign is intentionally inverted. See the Etc area description.</td>
</tr>
<tr>
<td>Etc/GMT-11</td>
<td>Canonical</td>
<td>-11:00</td>
<td>Sign is intentionally inverted. See the Etc area description.</td>
</tr>
<tr>
<td>Etc/GMT+12</td>
<td>Canonical</td>
<td>+12:00</td>
<td>Sign is intentionally inverted. See the Etc area description.</td>
</tr>
<tr>
<td>Etc/GMT+2</td>
<td>Canonical</td>
<td>+02:00</td>
<td>Sign is intentionally inverted. See the Etc area description.</td>
</tr>
<tr>
<td>Etc/GMT+3</td>
<td>Canonical</td>
<td>+03:00</td>
<td>Sign is intentionally inverted. See the Etc area description.</td>
</tr>
<tr>
<td>Etc/GMT-4</td>
<td>Canonical</td>
<td>-04:00</td>
<td>Sign is intentionally inverted. See the Etc area description.</td>
</tr>
<tr>
<td>Etc/GMT-5</td>
<td>Canonical</td>
<td>-05:00</td>
<td>Sign is intentionally inverted. See the Etc area description.</td>
</tr>
</tbody>
</table>

Note: If you use a standard IANA time zone database name in the form 'Area/Location' (for example, 'America/New_York'), automatic adjustments are made for Daylight Savings Time. If you use a name that corresponds to an offset from GMT or to a legacy time zone name, it is your responsibility to account for Daylight Savings Time.

Syntax:

How to Convert Local Time to UTC Time

```
DT_TOUTC(datetime, timezone)
```

where:

- **datetime**
 - Date-time
 - Is a date-time expression representing local time, containing date and time components.

- **timezone**
 - Alphanumeric
 - Is a character expression containing the IANA time zone name of the local time, in the form 'Area/Location' (for example, 'America/New_York').
Example: Converting Local Time to UTC Time

The following request converts the current local date-time value for time zone America/New_York to UTC time.

```
TABLE FILE GGSALES
SUM DOLLARS NOPRINT
COMPUTE LOCAL1/HYYMDS = DT_CURRENT_DATETIME(SECOND);
COMPUTE UTC1/HYYMDS = DT_TOUTC(LOCAL1, 'America/New_York');
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

The output is shown in the following image.

```
<table>
<thead>
<tr>
<th>LOCAL1</th>
<th>UTC1</th>
</tr>
</thead>
</table>
```

Example: Sorting by UTC Time

The following request retrieves the current date and time into the field LOCALT1 and sets the field TIMEZONE to IANA time zone database names. It then uses DT_TOUTC to convert the same local time, with different time zones, to the UTC time that corresponds to the given time zone, and sorts the output by the generated UTC time.

```
DEFINE FILE GGSALES
LOCALT1/HYYMDS=DT_CURRENT_DATETIME(SECOND);
TIMEZONE/A30=IF LAST TIMEZONE EQ ' ' THEN 'AMERICA/NEW_YORK'
ELSE IF LAST TIMEZONE EQ 'AMERICA/NEW_YORK' THEN 'AMERICA/CHICAGO'
ELSE IF LAST TIMEZONE EQ 'AMERICA/CHICAGO' THEN 'AMERICA/DENVER'
ELSE IF LAST TIMEZONE EQ 'AMERICA/DENVER' THEN 'ASIA/TOKYO'
ELSE IF LAST TIMEZONE EQ 'ASIA/TOKYO' THEN 'EUROPE/LONDON'
ELSE IF LAST TIMEZONE EQ 'EUROPE/LONDON' THEN 'AMERICA/NEW_YORK';
UTCTIME/HYYMDS=DT_TOUTC(LOCALT1,TIMEZONE);
END
TABLE FILE GGSALES
PRINT TIMEZONE LOCALT1 DOLLARS NOPRINT
       BY UTCTIME
WHERE PRODUCT EQ 'Thermos'
IF RECORDLIMIT EQ 20
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
The output is shown in the following image.

<table>
<thead>
<tr>
<th>UTC TIME</th>
<th>TIMEZONE</th>
<th>LOCAL TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020/10/02 06:45:59</td>
<td>ASIA/TOKYO</td>
<td>2020/10/02 15:45:59</td>
</tr>
<tr>
<td>2020/10/02 14:45:59</td>
<td>EUROPE/LONDON</td>
<td>2020/10/02 15:45:59</td>
</tr>
<tr>
<td>2020/10/02 19:45:59</td>
<td>AMERICA/NEW_YORK</td>
<td>2020/10/02 15:45:59</td>
</tr>
<tr>
<td>2020/10/02 20:45:59</td>
<td>AMERICA/CHICAGO</td>
<td>2020/10/02 15:45:59</td>
</tr>
<tr>
<td>2020/10/02 21:45:59</td>
<td>AMERICA/DENVER</td>
<td>2020/10/02 15:45:59</td>
</tr>
</tbody>
</table>

DTADD: Incrementing a Date or Date-Time Component

Given a date in standard date or date-time format, DTADD returns a new date after adding the specified number of a supported component. The returned date format is the same as the input date format.

Syntax:

```
DTADD(date, component, increment)
```

where:

- **date**

 Date or date-time

 Is the date or date-time value to be incremented, which must provide a full component date.
component

Keyword

Is the component to be incremented. Valid components (and acceptable values) are:

- YEAR (1-9999).
- QUARTER (1-4).
- MONTH (1-12).
- WEEK (1-53). This is affected by the WEEKFIRST setting.
- DAY (of the Month, 1-31).
- HOUR (0-23).
- MINUTE (0-59).
- SECOND (0-59).

increment

Integer

Is the value (positive or negative) to add to the component.

Example: Incrementing the DAY Component of a Date

The following request against the WF_RETAIL data source adds three days to the employee date of birth:

```
DEFINE FILE WF_RETAIL
NEWDATE/YYMD = DTADD(DATE_OF_BIRTH, DAY, 3);
MGR/A3 = DIGITS(ID_MANAGER, 3);
END
TABLE FILE WF_RETAIL
SUM MGR NOPRINT DATE_OF_BIRTH NEWDATE
BY MGR
ON TABLE SET PAGE NOPAGE
END
```
The output is:

<table>
<thead>
<tr>
<th>MGR</th>
<th>Date of Birth</th>
<th>NEWDATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>1985/01/29</td>
<td>1985/02/01</td>
</tr>
<tr>
<td>101</td>
<td>1982/04/01</td>
<td>1982/04/04</td>
</tr>
<tr>
<td>201</td>
<td>1976/11/14</td>
<td>1976/11/17</td>
</tr>
<tr>
<td>301</td>
<td>1980/05/15</td>
<td>1980/05/18</td>
</tr>
<tr>
<td>401</td>
<td>1975/10/19</td>
<td>1975/10/22</td>
</tr>
<tr>
<td>501</td>
<td>1985/04/11</td>
<td>1985/04/14</td>
</tr>
<tr>
<td>601</td>
<td>1967/02/03</td>
<td>1967/02/06</td>
</tr>
<tr>
<td>701</td>
<td>1977/10/16</td>
<td>1977/10/19</td>
</tr>
<tr>
<td>801</td>
<td>1970/04/18</td>
<td>1970/04/21</td>
</tr>
<tr>
<td>901</td>
<td>1972/03/29</td>
<td>1972/04/01</td>
</tr>
<tr>
<td>999</td>
<td>1976/10/21</td>
<td>1976/10/24</td>
</tr>
</tbody>
</table>

Reference: Usage Notes for DTADD

- Each element must be manipulated separately. Therefore, if you want to add 1 year and 1 day to a date, you need to call the function twice, once for YEAR (you need to take care of leap years) and once for DAY. The simplified functions can be nested in a single expression, or created and applied in separate DEFINE or COMPUTE expressions.

- With respect to parameter validation, DTADD will not allow anything but a standard date or a date-time value to be used in the first parameter.

- The increment is not checked, and the user should be aware that decimal numbers are not supported and will be truncated. Any combination of values that increases the YEAR beyond 9999 returns the input date as the value, with no message. If the user receives the input date when expecting something else, it is possible there was an error.
DTDIFF: Returning the Number of Component Boundaries Between Date or Date-Time Values

Given two dates in standard date or date-time formats, DTDIFF returns the number of given component boundaries between the two dates. The returned value has integer format for calendar components or double precision floating point format for time components.

Syntax: How to Return the Number of Component Boundaries

\[\text{DTDIFF}(\text{end}_\text{date}, \text{start}_\text{date}, \text{component}) \]

where:

end_date

Date or date-time

Is the ending full-component date in either standard date or date-time format. If this date is given in standard date format, all time components are assumed to be zero.

start_date

Date or date-time

Is the starting full-component date in either standard date or date-time format. If this date is given in standard date format, all time components are assumed to be zero.

component

Keyword

Is the component on which the number of boundaries is to be calculated. For example, QUARTER finds the difference in quarters between two dates. Valid components (and acceptable values) are:

- YEAR (1-9999).
- QUARTER (1-4).
- MONTH (1-12).
- WEEK (1-53). This is affected by the WEEKFIRST setting.
- DAY (of the Month, 1-31).
- HOUR (0-23).
- MINUTE (0-59).
- SECOND (0-59).
Example: Returning the Number of Years Between Two Dates

The following request against the WF_RETAIL data source calculates employee age when hired:

```sql
DEFINE FILE WF_RETAIL
YEARS/I9 = DTDIFF(START_DATE, DATE_OF_BIRTH, YEAR);
END
TABLE FILE WF_RETAIL
PRINT START_DATE DATE_OF_BIRTH YEARS AS 'Hire,Age'
BY EMPLOYEE_NUMBER
WHERE EMPLOYEE_NUMBER CONTAINS 'AA'
ON TABLE SET PAGE NOPAGE
END
```

The output is:

<table>
<thead>
<tr>
<th>Employee Number</th>
<th>Start Date</th>
<th>Date of Birth</th>
<th>Hire Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA100</td>
<td>2008/11/14</td>
<td>1991/06/04</td>
<td>17</td>
</tr>
<tr>
<td>AA12</td>
<td>2008/11/19</td>
<td>1985/07/13</td>
<td>23</td>
</tr>
<tr>
<td>AA137</td>
<td>2013/01/15</td>
<td>1988/12/24</td>
<td>25</td>
</tr>
<tr>
<td>AA174</td>
<td>2013/01/15</td>
<td>1980/08/30</td>
<td>33</td>
</tr>
<tr>
<td>AA195</td>
<td>2013/01/15</td>
<td>1977/12/11</td>
<td>36</td>
</tr>
<tr>
<td>AA427</td>
<td>2008/12/23</td>
<td>1969/08/08</td>
<td>39</td>
</tr>
<tr>
<td>AA820</td>
<td>2013/10/29</td>
<td>1983/11/27</td>
<td>30</td>
</tr>
<tr>
<td>AA892</td>
<td>2013/10/27</td>
<td>1981/04/24</td>
<td>32</td>
</tr>
</tbody>
</table>

DTIME: Extracting Time Components From a Date-Time Value

Given a date-time value and time component keyword as input, DTIME returns the value of all of the time components up to and including the requested component. The remaining time components in the value are set to zero. The field to which the time component is returned must have a time format that supports the component being returned.

Syntax: How to Extract a Time Component From a Date-Time Value

`DTIME(datetime, component)`
where:

datetime

Date-time

Is the date-time value from which to extract the time component. It can be a field name or a date-time literal. It must provide a full component date.

component

Keyword

Valid values are:

- **TIME**. The complete time portion is returned. Its smallest component depends on the input date-time format. Nanoseconds are not supported or returned.
- **HOUR**. The time component up to and including the hour component is extracted.
- **MINUTE**. The time component up to and including the minute component is extracted.
- **SECOND**. The time component up to and including the second component is extracted.
- **MILLISECOND**. The time component up to and including the millisecond component is extracted.
- **MICROSECOND**. The time component up to and including the microsecond component is extracted.

Example: Extracting Time Components

The following request defines two date-time fields:

- **TRANSTIME** contains the extracted time components from TRANSDATE down to the minute.
- **TRANSTIME2** extracts all of the time components from the literal date-time value 2018/01/17 05:45:22.777888.
DEFINE FILE VIDEOTR2
TRANSTIME/HHISsm = DTIME(TRANSDATE, MINUTE);
TRANSTIME2/HHISsm = DTIME(DT(2018/01/17 05:45:22.777888), TIME);
END
TABLE FILE VIDEOTR2
SUM TRANSTIME TRANSTIME2
BY MOVIECODE
BY TRANSDATE
WHERE MOVIECODE CONTAINS 'MGM'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The output is shown in the following image.

<table>
<thead>
<tr>
<th>MOVIECODE</th>
<th>TRANSDATE</th>
<th>TRANSTIME</th>
<th>TRANSTIME2</th>
</tr>
</thead>
<tbody>
<tr>
<td>145MGM</td>
<td>1999/11/06 02:12</td>
<td>02:12:00.000000</td>
<td>05:45:22.777888</td>
</tr>
<tr>
<td>243MGM</td>
<td>1991/06/19 04:11</td>
<td>04:11:00.000000</td>
<td>05:45:22.777888</td>
</tr>
<tr>
<td>259MGM</td>
<td>1991/06/19 07:18</td>
<td>07:18:00.000000</td>
<td>05:45:22.777888</td>
</tr>
<tr>
<td>284MGM</td>
<td>1999/06/18 03:30</td>
<td>03:30:00.000000</td>
<td>05:45:22.777888</td>
</tr>
<tr>
<td>505MGM</td>
<td>1996/06/21 01:16</td>
<td>01:16:00.000000</td>
<td>05:45:22.777888</td>
</tr>
<tr>
<td>518MGM</td>
<td>1991/06/24 04:43</td>
<td>04:43:00.000000</td>
<td>05:45:22.777888</td>
</tr>
<tr>
<td>688MGM</td>
<td>1998/03/19 07:23</td>
<td>07:23:00.000000</td>
<td>05:45:22.777888</td>
</tr>
<tr>
<td></td>
<td>1999/04/22 06:19</td>
<td>06:19:00.000000</td>
<td>05:45:22.777888</td>
</tr>
<tr>
<td></td>
<td>1999/10/22 06:25</td>
<td>06:25:00.000000</td>
<td>05:45:22.777888</td>
</tr>
<tr>
<td></td>
<td>1999/10/30 06:29</td>
<td>06:29:00.000000</td>
<td>05:45:22.777888</td>
</tr>
</tbody>
</table>

DTPART: Returning a Date or Date-Time Component in Integer Format

Given a date in standard date or date-time format and a component, DTPART returns the component value in integer format.

Syntax: How to Return a Date or Date-Time Component in Integer Format

DTPART(date, component)
where:

date

Date or date-time

Is the full-component date in standard date or date-time format.

component

Keyword

Is the component to extract in integer format. Valid components (and values) are:

- YEAR (1-9999).
- QUARTER (1-4).
- MONTH (1-12).
- WEEK (of the year, 1-53). This is affected by the WEEKFIRST setting.
- DAY (of the Month, 1-31).
- DAY_OF_YEAR (1-366).
- WEEKDAY (day of the week, 1-7). This is affected by the WEEKFIRST setting.
- HOUR (0-23).
- MINUTE (0-59).
- SECOND (0-59).
- MILLISECOND (0-999).
- MICROSECOND (0-999999).

Example: Extracting the Quarter Component as an Integer

The following request against the WF_RETAIL data source extracts the QUARTER component from the employee start date:

```sql
DEFINE FILE WF_RETAIL
QTR/I2 = DTPART(START_DATE, QUARTER);
END
TABLE FILE WF_RETAIL
PRINT START_DATE QTR AS Quarter
BY  EMPLOYEE_NUMBER
WHERE EMPLOYEE_NUMBER CONTAINS 'AH'
ON TABLE SET PAGE NOPAGE
END
```
The output is:

![Employee Number and Start Date Table]

DTRUNC: Returning the Start of a Date Period for a Given Date

Given a date or timestamp and a component, DTRUNC returns the first date within the period specified by that component.

Syntax:

How to Return the First or Last Date of a Date Period

DTRUNC(date_or_timestamp, date_period, extend)

where:

- **date_or_timestamp**

 Date or date-time

 Is the date or timestamp of interest, which must provide a full component date.

- **date_period**

 Is the period whose starting or ending date you want to find. Can be one of the following:

 - DAY, returns the date that represents the input date (truncates the time portion, if there is one).
 - YEAR, returns the date of the first day of the year.
 - MONTH, returns the date of the first day of the month.
 - QUARTER, returns the date of the first day in the quarter.
 - WEEK, returns the date that represents the first date of the given week.

 By default, the first day of the week will be Sunday, but this can be changed using the WEEKFIRST parameter.
DTRUNC: Returning the Start of a Date Period for a Given Date

- YEAR_END, returns the last date of the year.
- QUARTER_END, returns the last date of the quarter.
- MONTH_END, returns the last date of the month.
- WEEK_END, returns the last date of the week.

extend

Optional. Is a number that indicates how many of the specified date components to include in the resulting date period.

Since all intervals have to be the same size, the extend argument is limited to the following values for the date period:

- YEAR. No limitations.
- QUARTER. 1 and 2 only.
- MONTH. 1, 2, 3, 4, and 6 only.
- HOUR. 1, 2, 3, 4, 6, and 12 only.
- MINUTE. 1, 2, 3, 4, 5, 6, 10, 15, 20, and 30 only.
- SECOND. 1, 2, 3, 4, 5, 6, 10, 15, 20, and 30 only.

Example: Returning the First Date in a Date Period

In the following request, DTRUNC returns the first date of the quarter given the start date of the employee:

```
DEFINE FILE WF_RETAIL
QTRSTART/YYMD = DTRUNC(START_DATE, QUARTER);
END
TABLE FILE WF_RETAIL
PRINT START_DATE QTRSTART AS 'Start, of Quarter'
BY EMPLOYEE_NUMBER
WHERE EMPLOYEE_NUMBER CONTAINS 'AH'
ON TABLE SET PAGE NOPAGE
END
```
Example: Using the Start of Week Parameter for DTRUNC

The following request returns the date that is the start of the week for the start date of certain employees:

```plaintext
DEFINE FILE WF_RETAIL
DAY1/WT = DTRUNC(START_DATE, DAY);
WKSTART/YYMD = DTRUNC(START_DATE, WEEK);
DAY2/WT = DTRUNC(WKSTART, DAY);
END
TABLE FILE WF_RETAIL
PRINT START_DATE
DAY1 AS 'DOW 1'
WKSTART AS 'Start,of Week'
DAY2 AS 'DOW 2'
BY EMPLOYEE_NUMBER
WHERE START_DATE GT '20130101'
WHERE EMPLOYEE_NUMBER CONTAINS 'AH'
ON TABLE SET PAGE NOPAGE
END
```

The output is:

<table>
<thead>
<tr>
<th>Employee Number</th>
<th>Start Date</th>
<th>Start of Week</th>
<th>Start of Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH118</td>
<td>2013/01/15</td>
<td>TUE</td>
<td>2013/01/01</td>
</tr>
<tr>
<td>AH288</td>
<td>2013/01/17</td>
<td>THU</td>
<td>2013/01/01</td>
</tr>
<tr>
<td>AH42</td>
<td>2008/10/01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AH928</td>
<td>2009/04/11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Simplified Date and Date-Time Functions
Example: Returning the Date of the First and Last Days of a Week

The following request returns the dates that correspond to the first day of the week and the last day of the week for the given date.

```sql
DEFINE FILE WF_RETAIL
WEEKSTART/YYMD = DTRUNC(START_DATE, WEEK);
WEEKEND/YYMD = DTRUNC(START_DATE, WEEK_END);
END
TABLE FILE WF_RETAIL
PRINT START_DATE WEEKSTART AS 'Start, of Week'
WEEKEND AS 'End, of Week'
BY EMPLOYEE_NUMBER
WHERE EMPLOYEE_NUMBER CONTAINS 'AH1'
ON TABLE SET PAGE NOPAGE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Employee Number</th>
<th>Start Date</th>
<th>Start of Week</th>
<th>End of Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH118</td>
<td>2013/01/15</td>
<td>2013/01/13</td>
<td>2013/01/19</td>
</tr>
<tr>
<td>AH1994</td>
<td>2006/01/01</td>
<td>2006/01/01</td>
<td>2006/01/07</td>
</tr>
</tbody>
</table>

Example: Returning a Date Using the Extend Argument

In the following request, given the date of birth for each employee, the DTRUNC function uses the extend argument to return the start date of the decade in which they were born.

```sql
DEFINE FILE WF_RETAIL
BIRTH_DECADE/YYMD = DTRUNC(DATE_OF_BIRTH, YEAR, 10);
END
TABLE FILE WF_RETAIL
PRINT DATE_OF_BIRTH BIRTH_DECADE AS 'Start, of Decade'
BY EMPLOYEE_NUMBER
ON TABLE SET PAGE NOPAGE
END
```
MONTHNAME: Returning the Name of the Month From a Date Expression

MONTHNAME returns a character string that contains the data-source-specific name of the month for the month part of a date expression.

Syntax: How to Return the Name of the Month From a Date Expression

MONTHNAME(date_exp)

where:

date_exp
 Is a date or date-time expression.
Example: Returning the Name of the Month From a Date Expression

The following request returns the name of the month from the TRANSDATE field.

```
TABLE FILE EMPLOYEE
PRINT HIRE_DATE
COMPUTE TRANSDATE/YYMD= HIRE_DATE; NOPRINT
COMPUTE MONTHNAME1/A12 = MONTHNAME(TRANSDATE);
BY  TRANSDATE
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>TRANSDATE</th>
<th>HIRE_DATE</th>
<th>MONTHNAME1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980/06/02</td>
<td>80/06/02</td>
<td>June</td>
</tr>
<tr>
<td>1981/07/01</td>
<td>81/07/01</td>
<td>July</td>
</tr>
<tr>
<td>1981/07/01</td>
<td>81/07/01</td>
<td>July</td>
</tr>
<tr>
<td>1981/11/02</td>
<td>81/11/02</td>
<td>November</td>
</tr>
<tr>
<td>1982/01/04</td>
<td>82/01/04</td>
<td>January</td>
</tr>
<tr>
<td>1982/01/04</td>
<td>82/01/04</td>
<td>January</td>
</tr>
<tr>
<td>1982/02/02</td>
<td>82/02/02</td>
<td>February</td>
</tr>
<tr>
<td>1982/04/01</td>
<td>82/04/01</td>
<td>April</td>
</tr>
<tr>
<td>1982/04/01</td>
<td>82/04/01</td>
<td>April</td>
</tr>
<tr>
<td>1982/05/01</td>
<td>82/05/01</td>
<td>May</td>
</tr>
<tr>
<td>1982/07/01</td>
<td>82/07/01</td>
<td>July</td>
</tr>
<tr>
<td>1982/08/01</td>
<td>82/08/01</td>
<td>August</td>
</tr>
</tbody>
</table>
Date Functions

Date functions manipulate date values. There are two types of date functions:

- Standard date functions for use with non-legacy dates.
- Legacy date functions for use with legacy dates.

If a date is in an alphanumeric or numeric field that contains date display options (for example, I6YMD), you must use the legacy date functions.

In this chapter:

- Overview of Date Functions
- Using Standard Date Functions
- DATEADD: Adding or Subtracting a Date Unit to or From a Date
- DATECVT: Converting the Format of a Date
- DATEDIF: Finding the Difference Between Two Dates
- DATEMOV: Moving a Date to a Significant Point
- DATETRAN: Formatting Dates in International Formats
- DPART: Extracting a Component From a Date
- FIQTR: Obtaining the Financial Quarter
- FIYR: Obtaining the Financial Year
- FIYYQ: Converting a Calendar Date to a Financial Date
- TODAY: Returning the Current Date
- Using Legacy Date Functions
- AYM: Adding or Subtracting Months
- AYMD: Adding or Subtracting Days
- CHGDAT: Changing How a Date String Displays
- DA Functions: Converting a Legacy Date to an Integer
- DMY, MDY, YMD: Calculating the Difference Between Two Dates
- DOWK and DOWKL: Finding the Day of the Week
- DT Functions: Converting an Integer to a Date
- GREGDT: Converting From Julian to Gregorian Format
- JULDAT: Converting From Gregorian to Julian Format
- YM: Calculating Elapsed Months
Overview of Date Functions

The following explains the difference between the types of date functions:

- **Standard date** functions are for use with standard date formats, or just date formats. A date format refers to internally stored data that is capable of holding date components, such as century, year, quarter, month, and day. It does not include time components. A synonym does not specify an internal data type or length for a date format. Instead, it specifies display date components, such as D (day), M (month), Q (quarter), Y (2-digit year), or YY (4-digit year). For example, format MDYY is a date format that has three date components; it can be used in the USAGE attribute of a synonym. A real date value, such as March 9, 2004, described by this format is displayed as 03/09/2004, by default. Date formats can be full component and non-full component. Full component formats include all three letters, for example, D, M, and Y. JUL for Julian can also be included. All other date formats are non-full component. Some date functions require full component arguments for date fields, while others will accept full or non-full components. A date format was formerly called a smart date.

- **Legacy date** functions are for use with legacy dates only. A legacy date refers to formats with date edit options, such as I6YMD, A6MDY, I8YYMD, or A8MDYY. For example, A6MDY is a 6-byte alphanumeric string. The suffix MDY indicates the order in which the date components are stored in the field, and the prefix I or A indicates a numeric or alphanumeric form of representation. For example, a value '030599' can be assigned to a field with format A6MDY, which will be displayed as 03/05/99.

Date formats have an internal representation matching either numeric or alphanumeric format. For example, A6MDY matches alphanumeric format, YYMD and I6DMY match numeric format. When function output is a date in specified by output, it can be used either for assignment to another date field of this format, or it can be used for further data manipulation in the expression with data of matching formats. Assignment to another field of a different date format, will yield a random result.

In addition to the functions discussed in this topic, there are date and time functions that are available only in the Maintain language. For information on these functions, see *Maintain-specific Date and Time Functions* on page 481.

For many functions, the output argument can be supplied either as a field name or as a format enclosed in single quotation marks. However, if a function is called from a Dialogue Manager command, this argument must always be supplied as a format, and if a function is called from a Maintain procedure, this argument must always be supplied as a field name. For detailed information about calling a function and supplying arguments, see *Accessing and Calling a Function* on page 61.
Using Standard Date Functions

When using standard date functions, you need to understand the settings that alter the behavior of these functions, as well as the acceptable formats and how to supply values in these formats.

You can affect the behavior of date functions in the following ways:

- Defining which days of the week are work days and which are not. Then, when you use a date function involving work days, dates that are not work days are ignored. For details, see *Specifying Work Days* on page 369.
- Determining whether to display leading zeros when a date function in Dialogue Manager returns a date. For details, see *Enabling Leading Zeros For Date and Time Functions in Dialogue Manager* on page 375.

For detailed information on each standard date function, see:

- **DATEADD: Adding or Subtracting a Date Unit to or From a Date** on page 377
- **DATECVT: Converting the Format of a Date** on page 380
- **DATEDIF: Finding the Difference Between Two Dates** on page 382
- **DATEMOV: Moving a Date to a Significant Point** on page 385
- **DATETRAN: Formatting Dates in International Formats** on page 392
- **DPART: Extracting a Component From a Date** on page 408
- **FIYR: Obtaining the Financial Year** on page 412
- **FIQTR: Obtaining the Financial Quarter** on page 410
- **FIYYQ: Converting a Calendar Date to a Financial Date** on page 414
- **TODAY: Returning the Current Date** on page 417

Specifying Work Days

You can determine which days are work days and which are not. Work days affect the DATEADD, DATEDIF, and DATEMOV functions. You identify work days as business days or holidays.

Specifying Business Days

Business days are traditionally Monday through Friday, but not every business has this schedule. For example, if your company does business on Sunday, Tuesday, Wednesday, Friday, and Saturday, you can tailor business day units to reflect that schedule.
Syntax:
How to Set Business Days

```
SET BUSDAYS = smtwtfs
```

where:

`smtwtfs`
Is the seven character list of days that represents your business week. The list has a position for each day from Sunday to Saturday:

- To identify a day of the week as a business day, enter the first letter of that day in that day's position.
- To identify a non-business day, enter an underscore (_) in that day's position.

If a letter is not in its correct position, or if you replace a letter with a character other than an underscore, you receive an error message.

Example:
Setting Business Days to Reflect Your Work Week

The following designates work days as Sunday, Tuesday, Wednesday, Friday, and Saturday:

```
SET BUSDAYS = S_TW_FS
```

Syntax:
How to View the Current Setting of Business Days

```
? SET BUSDAYS
```

Specifying Holidays

You can specify a list of dates that are designated as holidays in your company. These dates are excluded when using functions that perform calculations based on working days. For example, if Thursday in a given week is designated as a holiday, the next working day after Wednesday is Friday.

To define a list of holidays, you must:

1. Create a holiday file using a standard text editor.
2. Select the holiday file by issuing the SET command with the HDAY parameter.

Reference:
Rules for Creating a Holiday File

- Dates must be in YYMD format.
- Dates must be in ascending order.
Each date must be on its own line.

Each year for which data exists must be included or the holiday file is considered invalid. Calling a date function with a date value outside the range of the holiday file returns a zero for business day requests.

If you are subtracting two dates in 2005, and the latest date in the holiday file is 20041231, the subtraction will not be performed. One way to avoid invalidating the holiday file is to put a date very far in the future in any holiday file you create (for example, 29991231), and then it will always be considered valid.

You may include an optional description of the holiday, separated from the date by a space.

By default, the holiday file has a file name of the form HDAYxxxx.err and is on your path, or on z/OS under PDS deployment, is a member named HDAYxxxx of a PDS allocated to DDNAME ERRORS. In your procedure or request, you must issue the SET HDAY=xxxx command to identify the file or member name. Alternatively, you can define the file to have any name and be stored anywhere or, on z/OS under PDS deployment, allocate the holiday file as a sequential file of any name or as member HDAYxxxx of any PDS. For information about using non-default holiday file names, see *How to FILEDEF or DYNAM the Holiday File* on page 372.

Procedure: How to Create a Holiday File

1. In a text editor, create a list of dates designated as holidays using the *Rules for Creating a Holiday File* on page 370.

2. Save the file.

 If you are not using the default naming convention, see *How to FILEDEF or DYNAM the Holiday File* on page 372. If you are using the default naming convention, use the following instructions:

 In Windows and UNIX: The file must be HDAYxxxx.ERR

 In z/OS: The file must be a member of ERRORS named HDAYxxxx.

 where:

 $xxxx$

 Is a string of text four characters long.
Syntax: How to Select a Holiday File

```
SET HDAY = xxxx
```

where:

```
xxxx
```

Is the part of the name of the holiday file after HDAY. This string must be four characters long.

Example: Creating and Selecting a Holiday File

The following is the HDAYTEST file, which establishes holidays:

```
19910325 TEST HOLIDAY
19911225 CHRISTMAS
```

The following sets HDAYTEST as the holiday file:

```
SET BUSDAYS = SMTWTF
SET HDAY = TEST
```

This request uses HDAYTEST in its calculations:

```
TABLE FILE MOVIES
PRINT TITLE RELDATE
COMPUTE NEXTDAY/YMD = DATEADD(RELDATE, 'BD', 1);
WHERE RELDATE GE '19910101';
END
```

The output is:

```
TITLE                                    RELDATE   NEXTDAY
-----                                    -------   -------
TOTAL RECALL                             91/03/24  91/03/26
```

Syntax: How to FILEDEF or DYNAM the Holiday File

In all environments except z/OS under PDS deployment, use the following syntax.

```
FILEDEF HDAYxxxx DISK {app/|path}/filename.ext
```

where:

```
HDAYxxxx
```

Is the logical name (DDNAME) for the holiday file, where xxxx is any four characters. You establish this logical name by issuing the SET HDAY=xxxx command in your procedure or request.
app

Is the name of the application in which the holiday file resides.

path

Is the path to the holiday file.

filename.ext

Is the name of the holiday file.

On z/OS under PDS deployment, use the following to allocate a sequential holiday file.

```
DYNAM ALLOC (DD|FILE) HDAYxxxx DA qualif.filename.suffix SHR REU
```

On z/OS under PDS deployment, use the following to allocate a holiday file that is a member of a PDS.

```
DYNAM ALLOC (DD|FILE) HDAYxxxx DA qualif.filename.suffix(HDAYxxxx) SHR REU
```

where:

HDAYxxxx

Is the DDNAME for the holiday file. Your FOCEXEC or request must set the HDAY parameter to xxxx, where xxxx is any four characters you choose. If your holiday file is a member of a PDS, HDAYxxxx must also be the member name.

qualif.filename.suffix

Is the fully-qualified name of the sequential file that contains the list of holidays or the PDS with member HDAYxxxx that contains the list of holidays.

Example: Defining a Holiday File

The following holiday file, named holiday.data in the c:\temp directory on Windows, defines November 3, 2011 and December 24, 2011 as holidays:

```
20111103
20111224
```
The following request against the MOVIES data source uses the FILEDEF command to define this file as the holiday file. The logical name in the FILEDEF command is HDAYMMMM, and the procedure issues the SET HDAY=MMMM command. It then defines the date November 2, 2011 and calculates the next business day:

FILEDEF HDAYMMMM DISK c:\ibi\holiday.data
SET HDAY = MMMM
SET BUSDAYS = _MTWTF_
DEFINE FILE MOVIES
NEWDATE/YYMD = '20111102';
NEXTDATE/YYMD = DATEADD(NEWDATE, 'BD', 1);
END
TABLE FILE MOVIES
SUM COPIES NEWDATE NEXTDATE
ON TABLE SET PAGE NOPAGE
END

The output shows that the next business day after November 2 is November 4 because November 3 is a holiday:

<table>
<thead>
<tr>
<th>COPIES</th>
<th>NEWDATE</th>
<th>NEXTDATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>117</td>
<td>2011/11/02</td>
<td>2011/11/04</td>
</tr>
</tbody>
</table>

Example: Allocating the Holiday File to a Sequential File on z/OS Under PDS Deployment

The following sequential file, named USER1.HOLIDAY.DATA, defines November 3, 2011 and December 24, 2011 as holidays:

20111103
20111224

The following request against the MOVIES data source uses the DYNAM command to allocate this file as the holiday file. The DDNAME in the DYNAM command is HDAYMMMM, and the procedure issues the SET HDAY=MMMM command. It then defines the date November 2, 2011 and calculates the next business day:

DYNAM ALLOC DD HDAYMMMM DA USER1.HOLIDAY.DATA SHR REU
SET HDAY = MMMM
SET BUSDAYS = _MTWTF_
DEFINE FILE MOVIES
NEWDATE/YYMD = '20111102';
NEXTDATE/YYMD = DATEADD(NEWDATE, 'BD', 1);
END
TABLE FILE MOVIES
SUM COPIES NEWDATE NEXTDATE
ON TABLE SET PAGE NOPAGE
END
The output shows that the next business day after November 2 is November 4 because November 3 is a holiday:

<table>
<thead>
<tr>
<th>COPIES</th>
<th>NEWDATE</th>
<th>NEXTDATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>117</td>
<td>2011/11/02</td>
<td>2011/11/04</td>
</tr>
</tbody>
</table>

Example: Allocating the Holiday File to a PDS Member on z/OS Under PDS Deployment

The following holiday file, member HDAYMMMM in a PDS named USER1.HOLIDAY.DATA, defines November 3, 2011 and December 24, 2011 as holidays:

```
20111103
20111224
```

The following request against the MOVIES data source uses the DYNAM command to allocate this file as the holiday file. The DDNAME in the DYNAM command is HDAYMMMM, the member name is also HDAYMMMM, and the procedure issues the SET HDAY=MMMMM command. It then defines the date November 2, 2011 and calculates the next business day:

```
DYNAM ALLOC DD HDAYMMMM DA USER1.HOLIDAY.DATA(HDAYMMMM) SHR REU
SET HDAY = MMMM
SET BUSDAYS = _MTWTF_
DEFINE FILE MOVIES
NEWDATE/YYMD = '20111102';
NEXTDATE/YYMD = DATEADD(NEWDATE, 'BD', 1);
END
TABLE FILE MOVIES
SUM COPIES NEWDATE NEXTDATE
ON TABLE SET PAGE NOPAGE
END
```

The output shows that the next business day after November 2 is November 4 because November 3 is a holiday:

<table>
<thead>
<tr>
<th>COPIES</th>
<th>NEWDATE</th>
<th>NEXTDATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>117</td>
<td>2011/11/02</td>
<td>2011/11/04</td>
</tr>
</tbody>
</table>

Enabling Leading Zeros For Date and Time Functions in Dialogue Manager

If you use a date and time function in Dialogue Manager that returns a numeric integer format, Dialogue Manager truncates any leading zeros. For example, if a function returns the value 000101 (indicating January 1, 2000), Dialogue Manager truncates the leading zeros, producing 101, an incorrect date. To avoid this problem, use the LEADZERO parameter.
LEADZERO only supports an expression that makes a direct call to a function. An expression that has nesting or another mathematical function always truncates leading zeros. For example,

```plaintext
-SET &OUT = AYM(&IN, 1, 'I4')/100;
```

truncates leading zeros regardless of the LEADZERO parameter setting.

Syntax: How to Set the Display of Leading Zeros

```plaintext
SET LEADZERO = {ON|OFF}
```

where:

ON

Displays leading zeros if present.

OFF

Truncates leading zeros. OFF is the default value.

Example: Displaying Leading Zeros

The AYM function adds one month to the input date of December 1999:

```plaintext
-SET &IN = '9912';
-RUN
-SET &OUT = AYM(&IN, 1, 'I4');
-TYPE &OUT
```

Using the default LEADZERO setting, this yields:

1

This represents the date January 2000 incorrectly. Setting the LEADZERO parameter in the request as follows:

```plaintext
SET LEADZERO = ON
-SET &IN = '9912';
-SET &OUT = AYM(&IN, 1, 'I4');
-TYPE &OUT
```

results in the following:

0001

This correctly indicates January 2000.
DATEADD: Adding or Subtracting a Date Unit to or From a Date

Available Languages: reporting, Maintain

The DATEADD function adds a unit to or subtracts a unit from a full component date format. A unit is one of the following:

- **Year.**

- **Month.** If the calculation using the month unit creates an invalid date, DATEADD corrects it to the last day of the month. For example, adding one month to October 31 yields November 30, not November 31, since November has 30 days.

- **Day.**

- **Weekday.** When using the weekday unit, DATEADD does not count Saturday or Sunday. For example, if you add one day to Friday, first DATEADD moves to the next weekday, Monday, then it adds a day. The result is Tuesday.

- **Business day.** When using the business day unit, DATEADD uses the BUSDAYS parameter setting and holiday file to determine which days are working days and disregards the rest. If Monday is not a working day, then one business day past Sunday is Tuesday.

Note that when the DATEADD function calculates the next or previous business day or work day, it always starts from a business day or work day. So if the actual day is Saturday or Sunday, and the request wants to calculate the next business day, the function will use Monday as the starting day, not Saturday or Sunday, and will return Tuesday as the next business day. Similarly, when calculating the previous business day, it will use the starting day Friday, and will return Thursday as the previous business day. You can use the DATEMOV function to move the date to the correct type of day before using DATEADD.

DATEADD requires a date to be in date format. Since Dialogue Manager interprets a date as alphanumeric or numeric, and DATEADD requires a standard date stored as an offset from the base date, do not use DATEADD with Dialogue Manager unless you first convert the variable used as the input date to an offset from the base date.

You add or subtract non day-based dates (for example, YM or YQ) directly without using DATEADD.

DATEADD works only with full component dates.
Syntax: How to Add or Subtract a Date Unit to or From a Date

\[
\text{DATEADD}(\text{date, 'component', increment})
\]

where:

- **date**
 - Date
 - Is a full component date.

- **component**
 - Alphanumeric
 - Is one of the following enclosed in single quotation marks:
 - **Y** indicates a year component.
 - **M** indicates a month component.
 - **D** indicates a day component.
 - **WD** indicates a weekday component.
 - **BD** indicates a business day component.

- **increment**
 - Integer
 - Is the number of date units added to or subtracted from `date`. If this number is not a whole unit, it is rounded down to the next largest integer.

Note: DATEADD does not use an `output` argument. It uses the format of the `date` argument for the result. As long as the result is a full component date, it can be assigned only to a full component date field or to integer field.

Example: Truncation With DATEADD

The number of units passed to DATEADD is always a whole unit. For example

\[
\text{DATEADD(DATE, 'M', 1.999)}
\]

adds one month because the number of units is less than two.
Example: Using the Weekday Unit

If you use the weekday unit and a Saturday or Sunday is the input date, DATEADD changes the input date to Monday. The function

```
DATEADD(‘910623’, ‘WD’, 1)
```

in which DATE is either Saturday or Sunday yields Tuesday; Saturday and Sunday are not weekdays, so DATEADD begins with Monday and adds one.

Note that the single quotes around the number in the first argument, ‘910623’, causes it to be treated as a natural date literal.

Example: Adding Weekdays to a Date (Reporting)

DATEADD adds three weekdays to NEW_DATE. In some cases, it adds more than three days because HIRE_DATE_PLUS_THREE would otherwise be on a weekend.

```
TABLE FILE EMPLOYEE
PRINT FIRST_NAME AND HIRE_DATE AND COMPUTE
NEW_DATE/YYMD = HIRE_DATE;
HIRE_DATE_PLUS_THREE/YYMD = DATEADD(NEW_DATE, ‘WD’, 3);
BY LAST_NAME
WHERE DEPARTMENT EQ ’MIS’;
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>HIRE_DATE</th>
<th>NEW_DATE</th>
<th>HIRE_DATE_PLUS_THREE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
<td>82/04/01</td>
<td>1982/04/01</td>
<td>1982/04/06</td>
</tr>
<tr>
<td>CROSS</td>
<td>BARBARA</td>
<td>81/11/02</td>
<td>1981/11/02</td>
<td>1981/11/05</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>MARY</td>
<td>82/04/01</td>
<td>1982/04/01</td>
<td>1982/04/06</td>
</tr>
<tr>
<td>JONES</td>
<td>DIANE</td>
<td>82/05/01</td>
<td>1982/05/01</td>
<td>1982/05/06</td>
</tr>
<tr>
<td>MCCOY</td>
<td>JOHN</td>
<td>81/07/01</td>
<td>1981/07/01</td>
<td>1981/07/06</td>
</tr>
<tr>
<td>SMITH</td>
<td>MARY</td>
<td>81/07/01</td>
<td>1981/07/01</td>
<td>1981/07/06</td>
</tr>
</tbody>
</table>
Example: Determining If a Date Is a Work Day (Reporting)

DATEADD determines which values in the TRANSDATE field do not represent work days by adding zero days to TRANSDATE using the business day unit. If TRANSDATE does not represent a business day, DATEADD returns the next business day to DATEX. TRANSDATE is then compared to DATEX, and the day of the week is printed for all dates that do not match between the two fields, resulting in a list of all non-work days.

```
DEFINE FILE VIDEOTRK
DATEX/YMD = DATEADD(TRANSDATE, 'BD', 0);
DATEINT/I8YYMD = DATECVT(TRANSDATE, 'YMD', 'I8YYMD');
END
TABLE FILE VIDEOTRK
SUM TRANSDATE NOPRINT
COMPUTE DAYNAME/A8 = DOWKL(DATEINT, DAYNAME); AS 'Day of Week'
BY TRANSDATE AS 'Date'
WHERE TRANSDATE NE DATEX
END
```

The output is:

<table>
<thead>
<tr>
<th>Date</th>
<th>Day of Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>91/06/22</td>
<td>SATURDAY</td>
</tr>
<tr>
<td>91/06/23</td>
<td>SUNDAY</td>
</tr>
<tr>
<td>91/06/30</td>
<td>SUNDAY</td>
</tr>
</tbody>
</table>

Example: Adding Months to a Date (Maintain)

DATEADD adds months to the DATE1 field:

```
MAINTAIN
compute DATE1/yymd = '20000101'
compute DATE2/yymd= dateadd(date1, 'M', 2, date2);
type "DATE1 = <<DATE1 + 2 MONTHS = DATE2 = <<DATE2"
END
```

The result is:

```
DATE1 = 2000/01/01+ 2 MONTHS = DATE2 = 2000/03/01
```

DATECVT: Converting the Format of a Date

Available Languages: reporting, Maintain

The DATECVT function converts the field value of any standard date format or legacy date format into a date format (offset from the base date), in the desired standard date format or legacy date format. If you supply an invalid format, DATECVT returns a zero or a blank.

DATECVT turns off optimization and compilation.
Note: You can use simple assignment instead of calling this function.

Syntax: How to Convert a Date Format

\[
\text{DATECVT}(\text{date}, \ 'in_format', \ output)
\]

where:

date

Date

Is the date to be converted. If you supply an invalid date, DATECVT returns zero. When the conversion is performed, a legacy date obeys any DEFCENT and YRTHRESH parameter settings supplied for that field.

in_format

Alphanumeric

Is the format of the date enclosed in single quotation marks. It is one of the following:

- A non-legacy date format (for example, YYMD, YQ, M, DMY, JUL).
- A legacy date format (for example, I6YMD or A8MDYY).
- A non-date format (such as I8 or A6). A non-date format in in_format functions as an offset from the base date of a YYMD field (12/31/1900).

output

Alphanumeric

Is the output format enclosed in single quotation marks or a field containing the format. It is one of the following:

- A non-legacy date format (for example, YYMD, YQ, M, DMY, JUL).
- A legacy date format (for example, I6YMD or A8MDYY).
- A non-date format (such as I8 or A6). This format type causes DATECVT to convert the date into a full component date and return it as a whole number in the format provided.

Example: Converting a YYMD Date to DMY

DATECVT converts 19991231 to 311299 and stores the result in CONV_FIELD:

\[
\text{CONV_FIELD}/\text{DMY} = \text{DATECVT}(19991231, \ 'I8YYMD', \ 'DMY');
\]

or
ONV_FIELD/DMY = DATECVT('19991231\)', 'A8YYMD', 'DMY');

Example: Converting a Legacy Date to Date Format (Reporting)

DATECVT converts HIRE_DATE from I6YMD legacy date format to YYMD date format:

```sql
TABLE FILE EMPLOYEE
PRINT FIRST_NAME AND HIRE_DATE AND COMPUTE
NEW_HIRE_DATE/YYMD = DATECVT(HIRE_DATE, 'I6YMD', 'YYMD');
BY LAST_NAME
WHERE DEPARTMENT EQ 'MIS';
END
```

The output is:

```
LAST_NAME     FIRST_NAME   HIRE_DATE  NEW_HIRE_DATE
---------     ----------   ---------  --------------
BLACKWOOD     ROSEMARIE    82/04/01   1982/04/01
CROSS         BARBARA      81/11/02   1981/11/02
GREENSPAN     MARY         82/04/01   1982/04/01
JONES         DIANE        82/05/01   1982/05/01
MCCOY         JOHN         81/07/01   1981/07/01
SMITH         MARY         81/07/01   1981/07/01
```

DATEDIF: Finding the Difference Between Two Dates

Available Languages: reporting, Maintain

The DATEDIF function returns the difference between two full component standard dates in units of a specified component. A component is one of the following:

- **Year.** Using the year unit with DATEDIF yields the inverse of DATEADD. If subtracting one year from date X creates date Y, then the count of years between X and Y is one. Subtracting one year from February 29 produces the date February 28.

- **Month.** Using the month component with DATEDIF yields the inverse of DATEADD. If subtracting one month from date X creates date Y, then the count of months between X and Y is one. If the to-date is the end-of-month, then the month difference may be rounded up (in absolute terms) to guarantee the inverse rule.

If one or both of the input dates is the end of the month, DATEDIF takes this into account. This means that the difference between January 31 and April 30 is three months, not two months.

- **Day.**

- **Weekday.** With the weekday unit, DATEDIF does not count Saturday or Sunday when calculating days. This means that the difference between Friday and Monday is one day.
Business day. With the business day unit, DATEDIF uses the BUSDAYS parameter setting and holiday file to determine which days are working days and disregards the rest. This means that if Monday is not a working day, the difference between Friday and Tuesday is one day.

DATEDIF returns a whole number. If the difference between two dates is not a whole number, DATEDIF truncates the value to the next largest integer. For example, the number of years between March 2, 2001, and March 1, 2002, is zero. If the end date is before the start date, DATEDIF returns a negative number.

You can find the difference between non-day based dates (for example YM or YQ) directly without using DATEDIF.

Since Dialogue Manager interprets a date as alphanumeric or numeric, and DATEDIF requires a standard date stored as an offset from the base date, do not use DATEDIF with Dialogue Manager unless you first convert the variable used as the input date to an offset from the base date.

DATEDIF works only with full component dates.

Syntax: How to Find the Difference Between Two Dates

DATEDIF(from_date, to_date, 'component')

where:

from_date
 Date
 Is the start date from which to calculate the difference. Is a full component date.

to_date
 Date
 Is the end date from which to calculate the difference.
component
 Alphanumeric

 Is one of the following enclosed in single quotation marks:

 Y indicates a year unit.
 M indicates a month unit.
 D indicates a day unit.
 WD indicates a weekday unit.
 BD indicates a business day unit.

 Note: DATEDIF does not use an output argument because for the result it uses the format 'I8'.

Example: Truncation With DATEDIF

DATEDIF calculates the difference between March 2, 1996, and March 1, 1997, and returns a zero because the difference is less than a year:

DATEDIF('19960302', '19970301', 'Y')

Example: Using Month Calculations

The following expressions return a result of minus one month:

DATEDIF('19990228', '19990128', 'M')
DATEDIF('19990228', '19990129', 'M')
DATEDIF('19990228', '19990130', 'M')
DATEDIF('19990228', '19990131', 'M')

Additional examples:

DATEDIF('March 31 2001', 'May 31 2001', 'M') yields 2.
DATEDIF('March 31 2001', 'May 30 2001', 'M') yields 1 (because May 30 is not the end of the month).
DATEDIF('March 31 2001', 'April 30 2001', 'M') yields 1.
Example: Finding the Number of Weekdays Between Two Dates (Reporting)

DATECVT converts the legacy dates in HIRE_DATE and DAT_INC to the date format YYMD. DATEDIF then uses those date formats to determine the number of weekdays between NEW_HIRE_DATE and NEW_DAT_INC:

```sql
TABLE FILE EMPLOYEE
PRINT FIRST_NAME AND
COMPUTE NEW_HIRE_DATE/YYMD = DATECVT(HIRE_DATE, 'I6YMD', 'YYMD'); AND
COMPUTE NEW_DAT_INC/YYMD = DATECVT(DAT_INC, 'I6YMD', 'YYMD'); AND
COMPUTE WDAY_HIRE_D/W = DATEDIF(NEW_HIRE_DATE, NEW_DAT_INC, 'WD');
BY LAST_NAME
IF WDAY_HIRE_D NE 0
WHERE DEPARTMENT EQ 'PRODUCTION';
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>NEW_HIRE_DATE</th>
<th>NEW_DAT_INC</th>
<th>WDAY_HIRE_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRVING</td>
<td>JOAN</td>
<td>1982/01/04</td>
<td>1982/05/14</td>
<td>94</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>ROGER</td>
<td>1982/02/02</td>
<td>1982/05/14</td>
<td>73</td>
</tr>
<tr>
<td>SMITH</td>
<td>RICHARD</td>
<td>1982/01/04</td>
<td>1982/05/14</td>
<td>94</td>
</tr>
<tr>
<td>STEVENS</td>
<td>ALFRED</td>
<td>1980/06/02</td>
<td>1982/01/01</td>
<td>414</td>
</tr>
<tr>
<td>ALFRED</td>
<td>ALFRED</td>
<td>1980/06/02</td>
<td>1981/01/01</td>
<td>153</td>
</tr>
</tbody>
</table>

Example: Finding the Number of Years Between Two Dates (Maintain)

DATEDIF determines the number of years between DATE2 and DATE1:

```sql
MAINTAIN
Case Top
compute DATE1/ymd = '20020717';
compute DATE2/ymd = '19880705';
compute DIFF/I3 = DATEDIF(DATE2, DATE1, 'Y', DIFF);
type "<<DATE1 - <<DATE2 = <DIFF YEARS"
ENDCASE
END
```

The result is:

```
2002/07/17 - 1988/07/05 = 14 YEARS
```

DATEMOV: Moving a Date to a Significant Point

Available Languages: reporting, Maintain

The DATEMOV function moves a date to a significant point on the calendar.
Note: Using the beginning of week point (BOW) will always return Monday, and using the end of week point (EOW) will always return Friday. Also, if the date used with the DATEMOV function falls on Saturday or Sunday, the actual date used by the function will be the moved forward to the next Monday. If you do not want to do the calculation by moving the date from Saturday or Sunday to Monday, or if you want the BOW to be Sunday and the EOW to be Saturday, you can use the DTRUNC function.

Since Dialogue Manager interprets a date as alphanumeric or numeric, and DATEMOV requires a standard date stored as an offset from the base date, do not use DATEMOV with Dialogue Manager unless you first convert the variable used as the input date to an offset from the base date. For example, the following converts the integer legacy date 20050131 to a smart date, adds one month, and converts the result to an alphanumeric legacy date:

```
-SET &STRT=DATECVT(20050131,'I8YYMD','YYMD');
-SET &NMT=DATEADD(&STRT,'M',1);
-SET &NMTA=DATECVT(&NMT,'YYMD','A8MTDYY');
-TYPE A MONTH FROM 20050131 IS &NMTA
```

The output shows that the DATEADD function added the actual number of days in the month of February to get to the end of the month from the end of January:

```
A MONTH FROM 20050131 IS 02282005
```

DATEMOV works only with full component dates.

Syntax:

How to Move a Date to a Significant Point

```
DATEMOV(date, 'move-point')
```

where:

date

Date

Is the date to be moved. It must be a full component format date (for example, MDYY or YYJUL).

move-point

Alphanumeric

Is the significant point the date is moved to enclosed in single quotation marks (''). An invalid point results in a return code of zero. Valid values are:

- **EOM**, which is the end of month.
- **BOM**, which is the beginning of month.
- **EOQ**, which is the end of quarter.
- **BOQ**, which is the beginning of quarter.
- **EOY**, which is the end of year.
- **BOY**, which is the beginning of year.
- **EOW**, which is the end of week.
- **BOW**, which is the beginning of week.
- **NWD**, which is the next weekday.
- **NBD**, which is the next business day.
- **PWD**, which is the prior weekday.
- **PBD**, which is the prior business day.
- **WD-**, which is a weekday or earlier.
- **BD-**, which is a business day or earlier.
- **WD+**, which is a weekday or later.
- **BD+**, which is a business day or later.

A business day calculation is affected by the BUSDAYS and HDAY parameter settings.

Note that when the DATEADD function calculates the next or previous business day or work day, it always starts from a business day or work day. So if the actual day is Saturday or Sunday, and the request wants to calculate the next business day, the function will use Monday as the starting day, not Saturday or Sunday, and will return Tuesday as the next business day. Similarly, when calculating the previous business day, it will use the starting day Friday, and will return Thursday as the previous business day.

To avoid skipping a business day or work day, use DATEMOV. To return the next business or work day, use BD- or WD- to first move to the previous business or work day (if it is already a business day or work day, it will not be moved). Then use DATEADD to move to the next business or work day. If you want to return the previous business or work day, first use BD+ or WD+ to move to the next business or work day (if it is already the correct type of day, it will not be moved). Then use DATEADD to return the previous business or work day.

Note: DATEMOV does not use an output argument. It uses the format of the *date* argument for the result. As long as the result is a full component date, it can be assigned only to a full component date field or to an integer field.
Example: Returning the Next Business Day

This example shows why you may need to use DATEMOV to get the correct result.

The following request against the GGSALES data source uses the BD (Business Day) move point against the DATE field. First DATE is converted to a smart date, then DATEADD is called with the BD move-point:

```
DEFINE FILE GGSALES
DT1/WMDYY=DATE;
DT2/WMDYY = DATEADD(DT1 ,'BD',1);
DAY/Dt = DT1;
END

TABLE FILE GGSALES
SUM  DT1
DT2
BY DT1 NOPRINT
WHERE RECORDLIMIT EQ 10
END
```

When the date is on a Saturday or Sunday on the output, the next business day is returned as a Tuesday. This is because before doing the calculation, the original date was moved to a business day:

<table>
<thead>
<tr>
<th>DT1</th>
<th>DT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>SUN, 09/01/1996</td>
<td>TUE, 09/03/1996</td>
</tr>
<tr>
<td>FRI, 11/01/1996</td>
<td>MON, 11/04/1996</td>
</tr>
<tr>
<td>SUN, 12/01/1996</td>
<td>TUE, 12/03/1996</td>
</tr>
<tr>
<td>SAT, 03/01/1997</td>
<td>TUE, 03/04/1997</td>
</tr>
<tr>
<td>TUE, 04/01/1997</td>
<td>WED, 04/02/1997</td>
</tr>
<tr>
<td>THU, 05/01/1997</td>
<td>FRI, 05/02/1997</td>
</tr>
<tr>
<td>SUN, 06/01/1997</td>
<td>TUE, 06/03/1997</td>
</tr>
<tr>
<td>MON, 09/01/1997</td>
<td>TUE, 09/02/1997</td>
</tr>
<tr>
<td>WED, 10/01/1997</td>
<td>THU, 10/02/1997</td>
</tr>
</tbody>
</table>
In the following version of the request, DATEMOV is called to make sure the starting day is a business day. The move point specified in the first call is BD- which only moves the date to the prior business day if it is not already a business day. The call to DATEADD then uses the BD move point to return the next business day:

```sql
DEFINE FILE GGSALES
DT1/WMDYY=DATE;
DT1A/WMDYY=DATEMOV(DT1, 'BD-');
DT2/WMDYY = DATEADD(DT1A, 'BD', 1);
DAY/Dt = DT1;
END

TABLE FILE GGSALES
SUM DT1 DT1A DT2
BY DT1 NOPRINT
WHERE RECORDLIMIT EQ 10
END
```

On the output, the next business day after a Saturday or Sunday is now returned as Monday:

<table>
<thead>
<tr>
<th>DT1</th>
<th>DT1A</th>
<th>DT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun, 09/01/1996</td>
<td>Fri, 08/30/1996</td>
<td>Mon, 09/02/1996</td>
</tr>
<tr>
<td>Fri, 11/01/1996</td>
<td>Fri, 11/01/1996</td>
<td>Mon, 11/04/1996</td>
</tr>
<tr>
<td>Sun, 12/01/1996</td>
<td>Fri, 11/29/1996</td>
<td>Mon, 12/02/1996</td>
</tr>
<tr>
<td>Sat, 03/01/1997</td>
<td>Fri, 02/28/1997</td>
<td>Mon, 03/03/1997</td>
</tr>
<tr>
<td>Tue, 04/01/1997</td>
<td>Tue, 04/01/1997</td>
<td>Wed, 04/02/1997</td>
</tr>
<tr>
<td>Thu, 05/01/1997</td>
<td>Thu, 05/01/1997</td>
<td>Fri, 05/02/1997</td>
</tr>
<tr>
<td>Sun, 06/01/1997</td>
<td>Fri, 05/30/1997</td>
<td>Mon, 06/02/1997</td>
</tr>
<tr>
<td>Mon, 09/01/1997</td>
<td>Mon, 09/01/1997</td>
<td>Tue, 09/02/1997</td>
</tr>
<tr>
<td>Wed, 10/01/1997</td>
<td>Wed, 10/01/1997</td>
<td>Thu, 10/02/1997</td>
</tr>
</tbody>
</table>

Example: Using a DEFINE FUNCTION to Move a Date to the Beginning of the Week

The following DEFINE FUNCTION named BOWK takes a date and the name of the day you want to consider the beginning of the week and returns a date that corresponds to the beginning of the week:

```sql
DEFINE FUNCTION BOWK(THEDATE/MDYY,WEEKSTART/A10)
DAYOFWEEK/W=THEDATE;
DAYNO/I1=IF DAYOFWEEK EQ 7 THEN 0 ELSE DAYOFWEEK;
FIRSTOFWK/I1=DECODE WEEKSTART( 'SUNDAY' 0 'MONDAY' 1 'TUESDAY' 2
 'WEDNESDAY' 3 'THURSDAY' 4 'FRIDAY' 5 'SATURDAY' 6
 'SUN' 0 'MON' 1 'TUE' 2 'WED' 3 'THU' 4 'FRI' 5 'SAT' 6);
BOWK/MDYY=IF DAYNO GE FIRSTOFWK THEN THEDATE-DAYNO-FIRSTOFWK
ELSE THEDATE-7-DAYNO-FIRSTOFWK;
END
```
The following request uses the BOWK function to use return a date (DT2) that corresponds to the beginning of the week for each value of the DT1 field:

```
DEFINE FILE GGSALES
DT1/WMDYY=DATE;
DT2/WMDYY = BOWK(DT1 , 'SUN');
END

TABLE FILE GGSALES
SUM  DT1  DT2
BY DT1 NOPRINT
WHERE RECORDLIMIT EQ 10
ON TABLE SET PAGE NOLEAD
END
```

The output is shown in the following image:

<table>
<thead>
<tr>
<th>DT1</th>
<th>DT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUN, 09/01/1996</td>
<td>SUN, 09/01/1996</td>
</tr>
<tr>
<td>FRI, 11/01/1996</td>
<td>SUN, 10/27/1996</td>
</tr>
<tr>
<td>SUN, 12/01/1996</td>
<td>SUN, 12/01/1996</td>
</tr>
<tr>
<td>SAT, 03/01/1997</td>
<td>SUN, 02/23/1997</td>
</tr>
<tr>
<td>TUE, 04/01/1997</td>
<td>SUN, 03/30/1997</td>
</tr>
<tr>
<td>THU, 05/01/1997</td>
<td>SUN, 04/27/1997</td>
</tr>
<tr>
<td>SUN, 06/01/1997</td>
<td>SUN, 06/01/1997</td>
</tr>
<tr>
<td>MON, 09/01/1997</td>
<td>SUN, 08/31/1997</td>
</tr>
<tr>
<td>WED, 10/01/1997</td>
<td>SUN, 09/28/1997</td>
</tr>
</tbody>
</table>
Example: Determining Significant Points for a Date (Reporting)

The BUSDAYS parameter sets the business days to Monday, Tuesday, Wednesday, and Thursday. DATECVT converts the legacy date HIRE_DATE to the date format YYMD and provides date display options. DATEMOV then determines significant points for HIRE_DATE.

```plaintext
SET BUSDAY = _MTWT__
TABLE FILE EMPLOYEE
PRINT
COMPUTE NEW_DATE/YYMD = DATECVT(HIRE_DATE, 'I6YMD', 'YYMD'); AND
COMPUTE NWD/WT = DATEMOV(NEW_DATE, 'NWD'); AND
COMPUTE PWD/WT = DATEMOV(NEW_DATE, 'PWD'); AND
COMPUTE WDP/WT = DATEMOV(NEW_DATE, 'WD+'); AS 'WD+' AND
COMPUTE WDM/WT = DATEMOV(NEW_DATE, 'WD-'); AS 'WD-' AND
COMPUTE NBD/WT = DATEMOV(NEW_DATE, 'NBD'); AND
COMPUTE PBD/WT = DATEMOV(NEW_DATE, 'PBD'); AND
COMPUTE WBP/WT = DATEMOV(NEW_DATE, 'BD+'); AS 'BD+' AND
COMPUTE WBM/WT = DATEMOV(NEW_DATE, 'BD-'); AS 'BD-' BY LAST_NAME NOPRINT
HEADING
"Examples of DATEMOV"
"Business days are Monday, Tuesday, Wednesday, + Thursday"
"START DATE.. | MOVE POINTS...........................
WHERE DEPARTMENT EQ 'MIS';
END
```

The output is:

Examples of DATEMOV

Business days are Monday, Tuesday, Wednesday, + Thursday

```
START DATE.. | MOVE POINTS.........................
NEW_DATE    DOW  NWD  PWD  WD+  WD-  NBD  PBD  BD+  BD- 
--------    ---  ---  ---  ---  ---  ---  ---  ---  ---
1982/04/01  THU  FRI  WED  THU  THU  MON  WED  THU  THU
1981/11/02  MON  TUE  FRI  MON  MON  TUE  THU  MON  MON
1982/04/01  THU  FRI  WED  THU  THU  MON  WED  THU  THU
1982/05/01  SAT  TUE  THU  MON  FRI  TUE  WED  MON  THU
1981/07/01  WED  THU  TUE  WED  WED  THU  TUE  WED  WED
1981/07/01  WED  THU  TUE  WED  WED  THU  TUE  WED  WED
```

Example: Determining the End of the Week (Reporting)

DATEMOV determines the end of the week for each date in NEW_DATE and stores the result in EOW:

```plaintext
TABLE FILE EMPLOYEE
PRINT FIRST_NAME AND
COMPUTE NEW_DATE/YYMDWT = DATECVT(HIRE_DATE, 'I6YMD', 'YYMDWT'); AND
COMPUTE EOW/YYMDWT = DATEMOV(NEW_DATE, 'EOW');
BY LAST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END
```
The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>NEW_DATE</th>
<th>EOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANNING</td>
<td>JOHN</td>
<td>1982 AUG 1, SUN</td>
<td>1982 AUG 6, FRI</td>
</tr>
<tr>
<td>IRVING</td>
<td>JOAN</td>
<td>1982 JAN 4, MON</td>
<td>1982 JAN 8, FRI</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>ROGER</td>
<td>1982 FEB 2, TUE</td>
<td>1982 FEB 5, FRI</td>
</tr>
<tr>
<td>ROMANS</td>
<td>ANTHONY</td>
<td>1982 JUL 1, THU</td>
<td>1982 JUL 2, FRI</td>
</tr>
<tr>
<td>SMITH</td>
<td>RICHARD</td>
<td>1982 JAN 4, MON</td>
<td>1982 JAN 8, FRI</td>
</tr>
<tr>
<td>STEVENS</td>
<td>ALFRED</td>
<td>1980 JUN 2, MON</td>
<td>1980 JUN 6, FRI</td>
</tr>
</tbody>
</table>

Example: Determining the End of the Week (Maintain)

DATEMOV determines the end of the week for each date:

```
MAINTAIN
COMPUTE X/YYMDWT='20020717';
COMPUTE Y/YYMDWT=DATEMOV(X, 'EOW', Y);
TYPE "<<X  <<Y  END OF WEEK "
END
```

The result is:

```
2002/07/17, WED   2002/07/19, FRI END OF WEEK
```

DATETRAN: Formatting Dates in International Formats

Available Languages: reporting, Maintain

The DATETRAN function formats dates in international formats.

Syntax: How to Format Dates in International Formats

```
DATETRAN (indate, '(intype)', '([formatops])', 'lang', outlen, output)
```

where:

- **indate**
 - Is the input date (in date format) to be formatted. Note that the date format cannot be an alphanumeric or numeric format with date display options (legacy date format).
intype

Is one of the following character strings indicating the input date components and the order in which you want them to display, enclosed in parentheses and single quotation marks.

The following table shows the single component input types:

<table>
<thead>
<tr>
<th>Single Component Input Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>' (W)'</td>
<td>Day of week component only (original format must have only W component).</td>
</tr>
<tr>
<td>' (M)'</td>
<td>Month component only (original format must have only M component).</td>
</tr>
</tbody>
</table>

The following table shows the two-component input types:

<table>
<thead>
<tr>
<th>Two-Component Input Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>' (YYM)'</td>
<td>Four-digit year followed by month.</td>
</tr>
<tr>
<td>' (YM)'</td>
<td>Two-digit year followed by month.</td>
</tr>
<tr>
<td>' (MYY)'</td>
<td>Month component followed by four-digit year.</td>
</tr>
<tr>
<td>' (MY)'</td>
<td>Month component followed by two-digit year.</td>
</tr>
</tbody>
</table>

The following table shows the three-component input types:

<table>
<thead>
<tr>
<th>Three-Component Input Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>' (YYMD)'</td>
<td>Four-digit year followed by month followed by day.</td>
</tr>
<tr>
<td>' (YMD)'</td>
<td>Two-digit year followed by month followed by day.</td>
</tr>
<tr>
<td>' (DMYY)'</td>
<td>Day component followed by month followed by four-digit year.</td>
</tr>
</tbody>
</table>
Three-Component Input Type | Description
--- | ---
'(DMY)' | Day component followed by month followed by two-digit year.
'(MDYY)' | Month component followed by day followed by four-digit year.
'(MDY)' | Month component followed by day followed by two-digit year.
'(MD)' | Month component followed by day (derived from three-component date by ignoring year component).
'(DM)' | Day component followed by month (derived from three-component date by ignoring year component).

formatops

Is a string of zero or more formatting options enclosed in parentheses and single quotation marks. The parentheses and quotation marks are required even if you do not specify formatting options. Formatting options fall into the following categories:

- Options for suppressing initial zeros in month or day numbers.

 Note: Zero suppression replaces initial zeros with blanks spaces.

- Options for translating month or day components to full or abbreviated uppercase or default case (mixed-case or lowercase depending on the language) names.

- Date delimiter options and options for punctuating a date with commas.

Valid options for suppressing initial zeros in month or day numbers are listed in the following table. Note that the initial zero is replaced by a blank space:

<table>
<thead>
<tr>
<th>Format Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>Zero-suppresses months (displays numeric months before October as 1 through 9 rather than 01 through 09).</td>
</tr>
<tr>
<td>Format Option</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>d</td>
<td>Displays days before the tenth of the month as 1 through 9 rather than 01 through 09.</td>
</tr>
<tr>
<td>dp</td>
<td>Displays days before the tenth of the month as 1 through 9 rather than 01 through 09 with a period after the number.</td>
</tr>
<tr>
<td>do</td>
<td>Displays days before the tenth of the month as 1 through 9. For English (langcode EN) only, displays an ordinal suffix (st, nd, rd, or th) after the number.</td>
</tr>
</tbody>
</table>

The following table shows valid month and day name translation options:

<table>
<thead>
<tr>
<th>Format Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Displays month as an abbreviated name, with no punctuation, all uppercase.</td>
</tr>
<tr>
<td>TR</td>
<td>Displays month as a full name, all uppercase.</td>
</tr>
<tr>
<td>Tp</td>
<td>Displays month as an abbreviated name, followed by a period, all uppercase.</td>
</tr>
<tr>
<td>t</td>
<td>Displays month as an abbreviated name with no punctuation. The name is all lowercase or initial uppercase, depending on language code.</td>
</tr>
<tr>
<td>tr</td>
<td>Displays month as a full name. The name is all lowercase or initial uppercase, depending on language code.</td>
</tr>
<tr>
<td>tp</td>
<td>Displays month as an abbreviated name, followed by a period. The name displays in the default case of the specified language (for example, all lowercase for French and Spanish, initial uppercase for English and German).</td>
</tr>
<tr>
<td>Format Option</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>W</td>
<td>Includes an abbreviated day-of-the-week name at the start of the displayed date, all uppercase with no punctuation.</td>
</tr>
<tr>
<td>WR</td>
<td>Includes a full day-of-the-week name at the start of the displayed date, all uppercase.</td>
</tr>
<tr>
<td>Wp</td>
<td>Includes an abbreviated day-of-the-week name at the start of the displayed date, all uppercase, followed by a period.</td>
</tr>
<tr>
<td>w</td>
<td>Includes an abbreviated day-of-the-week name at the start of the displayed date with no punctuation. The name displays in the default case of the specified language (for example, all lowercase for French and Spanish, initial uppercase for English and German).</td>
</tr>
<tr>
<td>wr</td>
<td>Includes a full day-of-the-week name at the start of the displayed date. The name displays in the default case of the specified language (for example, all lowercase for French and Spanish, initial uppercase for English and German).</td>
</tr>
<tr>
<td>wp</td>
<td>Includes an abbreviated day-of-the-week name at the start of the displayed date followed by a period. The name displays in the default case of the specified language (for example, all lowercase for French and Spanish, initial uppercase for English and German).</td>
</tr>
<tr>
<td>X</td>
<td>Includes an abbreviated day-of-the-week name at the end of the displayed date, all uppercase with no punctuation.</td>
</tr>
<tr>
<td>XR</td>
<td>Includes a full day-of-the-week name at the end of the displayed date, all uppercase.</td>
</tr>
<tr>
<td>Format Option</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>xp</td>
<td>Includes an abbreviated day-of-the-week name at the end of the displayed date, all uppercase, followed by a period.</td>
</tr>
<tr>
<td>x</td>
<td>Includes an abbreviated day-of-the-week name at the end of the displayed date with no punctuation. The name displays in the default case of the specified language (for example, all lowercase for French and Spanish, initial uppercase for English and German).</td>
</tr>
<tr>
<td>xr</td>
<td>Includes a full day-of-the-week name at the end of the displayed date. The name displays in the default case of the specified language (for example, all lowercase for French and Spanish, initial uppercase for English and German).</td>
</tr>
<tr>
<td>xp</td>
<td>Includes an abbreviated day-of-the-week name at the end of the displayed date followed by a period. The name displays in the default case of the specified language (for example, all lowercase for French and Spanish, initial uppercase for English and German).</td>
</tr>
</tbody>
</table>

The following table shows valid date delimiter options:

<table>
<thead>
<tr>
<th>Format Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Uses a blank as the component delimiter. This is the default if the month or day of week is translated or if comma is used.</td>
</tr>
<tr>
<td>.</td>
<td>Uses a period (.) as the component delimiter.</td>
</tr>
<tr>
<td>-</td>
<td>Uses a minus sign (-) as the component delimiter. This is the default when the conditions for a blank default delimiter are not satisfied.</td>
</tr>
<tr>
<td>Format Option</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>/</td>
<td>Uses a slash (/) as the component delimiter.</td>
</tr>
<tr>
<td></td>
<td>Omits component delimiters.</td>
</tr>
<tr>
<td>K</td>
<td>Uses appropriate Asian characters as component delimiters.</td>
</tr>
<tr>
<td>c</td>
<td>Places a comma (,) after the month name (following T, Tp, TR, t, tp, or tr).</td>
</tr>
<tr>
<td></td>
<td>Places a comma and blank after the day name (following W, Wp, WR, w, wp, or wr).</td>
</tr>
<tr>
<td></td>
<td>Places a comma and blank before the day name (following X, XR, x, or xr).</td>
</tr>
<tr>
<td>e</td>
<td>Displays the Spanish or Portuguese word de or DE between the day and month, and between the month and year. The case of the word de is determined by the case of the month name. If the month is displayed in uppercase, DE is displayed. Otherwise, de is displayed. Useful for formats DMY, DMYY, MY, and MYY.</td>
</tr>
<tr>
<td>D</td>
<td>Inserts a comma (,) after the day number and before the general delimiter character specified.</td>
</tr>
<tr>
<td>Y</td>
<td>Inserts a comma (,) after the year and before the general delimiter character specified.</td>
</tr>
</tbody>
</table>

lang

Is the two-character standard ISO code for the language into which the date should be translated, enclosed in single quotation marks ('). Valid language codes are:

- 'AR' Arabic
- 'CS' Czech
- 'DA' Danish
- 'DE' German
outlen

Numeric

Is the length of the output field in bytes. If the length is insufficient, an all blank result is returned. If the length is greater than required, the field is padded with blanks on the right.
output

Alphanumeric

Is the name of the field that contains the translated date, or its format enclosed in single quotation marks.

Reference: Usage Notes for the DATETRAN Function

- The output field, though it must be type A, and not AnV, may in fact contain variable length information, since the lengths of month names and day names can vary, and also month and day numbers may be either one or two bytes long if a zero-suppression option is selected. Unused bytes are filled with blanks.

- All invalid and inconsistent inputs result in all blank output strings. Missing data also results in blank output.

- The base dates (1900-12-31 and 1900-12 or 1901-01) are treated as though the DATEDISPLAY setting were ON (that is, not automatically shown as blanks). To suppress the printing of base dates, which have an internal integer value of 0, test for 0 before calling DATETRAN. For example:

  ```
  RESULT/A40 = IF DATE EQ 0 THEN '' ELSE DATETRAN (DATE, '(YYMD)', '.t', 'FR', 40, 'A40');
  ```

- Valid translated date components are contained in files named DTLNGlng where lng is a three-character code that specifies the language. These files must be accessible for each language into which you want to translate dates.

- For these NLS characters to appear correctly, the WebFOCUS Reporting Server and TIBCO WebFOCUS® Client must be configured with the correct code pages.

- The DATETRAN function is not supported in Dialogue Manager.
Example: Using the DATETRAN Function

The following request prints the day of the week in the default case of the specific language:

```sql
DEFINE FILE VIDEOTRK
TRANS1/YYMD=20050104;
TRANS2/YYMD=20051003;

DATEW/W=TRANS1       ;
DATEW2/W=TRANS2       ;
DATEYYMD/YYMDW=TRANS1   ;
DATEYYMD2/YYMDW=TRANS2    ;

OUT1A/A8=DATETRAN(DATEW, '(W)', '(wr)', 'EN', 8, 'A8')   ;
OUT1B/A8=DATETRAN(DATEW2, '(W)', '(wr)', 'EN', 8, 'A8')   ;
OUT1C/A8=DATETRAN(DATEW, '(W)', '(wr)', 'ES', 8, 'A8')   ;
OUT1D/A8=DATETRAN(DATEW2, '(W)', '(wr)', 'ES', 8, 'A8')   ;
OUT1E/A8=DATETRAN(DATEW, '(W)', '(wr)', 'FR', 8, 'A8')   ;
OUT1F/A8=DATETRAN(DATEW2, '(W)', '(wr)', 'FR', 8, 'A8')   ;
OUT1G/A8=DATETRAN(DATEW, '(W)', '(wr)', 'DE', 8, 'A8')   ;
OUT1H/A8=DATETRAN(DATEW2, '(W)', '(wr)', 'DE', 8, 'A8')   ;
END
```

```sql
TABLE FILE VIDEOTRK
HEADING
"FORMAT wr"
"
"Full day of week name at beginning of date, default case (wr)"
"English / Spanish / French / German"
"
SUM OUT1A AS '' OUT1B AS '' TRANSDATE NOPRINT
OVER OUT1C AS '' OUT1D AS ''
OVER OUT1E AS '' OUT1F AS ''
OVER OUT1G AS '' OUT1H AS ''
ON TABLE SET PAGE-NUM OFF
ON TABLE SET STYLE *
GRID=OFF, $
END
```
The output is:

```
FORMAT wr

Full day of week name at beginning of date, default case (wr)
English / Spanish / French / German

Tuesday               Monday
martes                lunes
mardi                 lundi
Dienstag             Montag
```

The following request prints a blank delimited date with an abbreviated month name in English. Initial zeros in the day number are suppressed, and a suffix is added to the end of the number:

```plaintext
DEFINE FILE VIDEOTRK
TRANS1/YYMD=20050104;
TRANS2/YYMD=20050302;

DATEW/W=TRANS1    ;
DATEW2/W=TRANS2   ;
DATEYYMD/YYMDW=TRANS1    ;
DATEYYMD2/YYMDW=TRANS2   ;

OUT2A/A15=DATETRAN(DATEYYMD, ©(MDYY)©, ©(Btdo)©, ©EN©, 15, ©A15©) ;
OUT2B/A15=DATETRAN(DATEYYMD2, ©(MDYY)©, ©(Btdo)©, ©EN©, 15, 'A15') ;
END
```

TABLE FILE VIDEOTRK
HEADING
"FORMAT Btdo"
"
"Blank-delimited (B)"
"Abbreviated month name, default case (t)"
"Zero-suppress day number, end with suffix (do)"
"English"
"
SUM OUT2A AS ' ' OUT2B AS ' ' TRANSDATE NOPRINT
ON TABLE SET PAGE-NUM OFF
END
```
The output is:

<table>
<thead>
<tr>
<th>FORMAT Btdp</th>
<th>Blank-delimited (B)</th>
<th>Abbreviated month name, default case (t)</th>
<th>Zero-suppress day number, end with suffix (do)</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan 4th 2005</td>
<td>Mar 2nd 2005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following request prints a blank delimited date, with an abbreviated month name in German. Initial zeros in the day number are suppressed, and a period is added to the end of the number:

```plaintext
DEFINE FILE VIDEOTRK
TRANS1/YYMD=20050104;
TRANS2/YYMD=20050302;

DATEW/W=TRANS1 ;
DATEW2/W=TRANS2 ;
DATEYYMD/YYMDW=TRANS1 ;
DATEYYMD2/YYMDW=TRANS2 ;

OUT3A/A12=DATETRAN(DATEYYMD, ©(DMYY)©, ©(Btdp)©, ©DE©, 12, ©A12©);
OUT3B/A12=DATETRAN(DATEYYMD2, ©(DMYY)©, ©(Btdp)©, ©DE©, 12, ©A12©);
END

TABLE FILE VIDEOTRK
HEADING
"FORMAT Btdp"
"
"Blank-delimited (B)"
"Abbreviated month name, default case (t)"
"Zero-suppress day number, end with period (dp)"
"German"
"
SUM OUT3A AS '' OUT3B AS '' TRANSDATE NOPRINT
ON TABLE SET PAGE-NUM OFF
END
```
The output is:

```
FORMAT Btdp

Blank-delimited (B)
Abbreviated month name, default case (t)
Zero-suppress day number, end with period (dp)
German

```

The following request prints a blank delimited date in French, with a full day name at the beginning and a full month name, in lowercase (the default for French):

```
DEFINE FILE VIDEOTRK
TRANS1/YYMD=20050104;
TRANS2/YYMD=20050302;

DATEW/W=TRANS1 ;
DATEW2/W=TRANS2 ;
DATEYYMD/YYMDW=TRANS1 ;
DATEYYMD2/YYMDW=TRANS2 ;

OUT4A/A30 = DATETRAN(DATEYYMD, '(DMYY)', '(Bwrtr)', 'FR', 30, 'A30');
OUT4B/A30 = DATETRAN(DATEYYMD2, '(DMYY)', '(Bwrtr)', 'FR', 30, 'A30');
END

TABLE FILE VIDEOTRK
HEADING
"FORMAT Bwrtr"
""
"Blank-delimited (B)"
"Full day of week name at beginning of date, default case (wr)"
"Full month name, default case (tr)"
"English"
"
SUM OUT4A AS "" OUT4B AS "" TRANSDATE NOPRINT
ON TABLE SET PAGE-NUM OFF
END
```
The output is:

<table>
<thead>
<tr>
<th>FORMAT Bwrtr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank-delimited (B)</td>
</tr>
<tr>
<td>Full day of week name at beginning of date, default case (wr)</td>
</tr>
<tr>
<td>Full month name, default case (tr)</td>
</tr>
<tr>
<td>English</td>
</tr>
</tbody>
</table>

mardi 04 janvier 2005  mercredi 02 mars 2005

The following request prints a blank delimited date in Spanish with a full day name at the beginning in lowercase (the default for Spanish), followed by a comma, and with the word “de” between the day number and month and between the month and year:

```plaintext
DEFINE FILE VIDEOTRK
TRANS1/YYMD=20050104;
TRANS2/YYMD=20050302;

DATEW/W=TRANS1
DATEW2/W=TRANS2
DATEYYMD/YYMDW=TRANS1
DATEYYMD2/YYMDW=TRANS2

OUT5A/A30=DATETRAN(DATEYYMD, '(DMYY)', '(Bwrctrde)', 'ES', 30, 'A30');
OUT5B/A30=DATETRAN(DATEYYMD2, '(DMYY)', '(Bwrctrde)', 'ES', 30, 'A30');
END

TABLE FILE VIDEOTRK
HEADING
"FORMAT Bwrctrde"
"
"Blank-delimited (B)"
"Full day of week name at beginning of date, default case (wr)"
"Comma after day name (c)"
"Full month name, default case (tr)"
"Zero-suppress day number (d)"
"de between day and month and between month and year (e)"
"Spanish"
"
SUM OUT5A AS '' OUT5B AS '' TRANSDATE NOPRINT
ON TABLE SET PAGE-NUM OFF
END
```
The following request prints a date in Japanese characters with a full month name at the beginning, in the default case and with zero suppression:

```
DEFINE FILE VIDEOTRK
TRANS1/YYMD=20050104;
TRANS2/YYMD=20050302;

DATEW/W=TRANS1 ;
DATEW2/W=TRANS2 ;
DATEYYMD/YYMDW=TRANS1 ;
DATEYYMD2/YYMDW=TRANS2 ;

OUT6A/A30=DATETRAN(DATEYYMD , ©(YYMD)©, ©(Ktrd)©, ©JA©, 30, ©A30©);
OUT6B/A30=DATETRAN(DATEYYMD2, ©(YYMD)©, ©(Ktrd)©, ©JA©, 30, ©A30©);
END
```

```
TABLE FILE VIDEOTRK
HEADING
"FORMAT Ktrd"
"Japanese characters (K in conjunction with the language code JA)"
"Full month name at beginning of date, default case (tr)"
"Zero-suppress day number (d)"
"Japanese"

SUM OUT6A AS '' OUT6B AS '' TRANSDATE NOPRINT
ON TABLE SET PAGE-NUM OFF
END
```
The output is:

```
FORMAT Ktrd

Japanese characters (K in conjunction with the language code JA)
Full month name at beginning of date, default case (tr)
Zero-suppress day number (d)
Japanese

2005年1月4日 2005年3月2日
```

The following request prints a blank delimited date in Greek with a full day name at the beginning in the default case, followed by a comma, and with a full month name in the default case:

```
DEFINE FILE VIDEOTRK
TRANS1/YYMD=20050104;
TRANS2/YYMD=20050302;

DATEW/W=TRANS1 ;
DATEW2/W=TRANS2 ;
DATEYYMD/YYMDW=TRANS1 ;
DATEYYMD2/YYMDW=TRANS2 ;

OUT7A/A30=DATETRAN(DATEYYMD , ©(DMYY)©, ©(Bwrctr)©, ©GR©, 30, ©A30©);
OUT7B/A30=DATETRAN(DATEYYMD2, ©(DMYY)©, ©(Bwrctr)©, ©GR©, 30, ©A30©);
END

TABLE FILE VIDEOTRK
HEADING
"FORMAT Bwrctrde"
"
"Blank-delimited (B)"
"Full day of week name at beginning of date, default case (wr)"
"Comma after day name (c)"
"Full month name, default case (tr)"
"Greek"
"
SUM OUT7A AS '' OUT7B AS '' TRANSDATE NOPRINT
ON TABLE SET PAGE-NUM OFF
END
```
The output is:

<table>
<thead>
<tr>
<th>FORMAT Bwrcr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank-delimited (B)</td>
</tr>
<tr>
<td>Full day of week name at beginning of date, default case (wr)</td>
</tr>
<tr>
<td>Comma after day name (c)</td>
</tr>
<tr>
<td>Full month name, default case (tr)</td>
</tr>
<tr>
<td>Greek</td>
</tr>
</tbody>
</table>

**DPART: Extracting a Component From a Date**

The DPART function extracts a specified component from a date field and returns it in numeric format.

Since Dialogue Manager interprets a date as alphanumeric or numeric, and DPART requires a standard date stored as an offset from the base date, do not use DPART with Dialogue Manager unless you first convert the variable used as the input date to an offset from the base date.

Available Languages: reporting, Maintain

**Syntax:**  
How to Extract a Date Component and Return It in Integer Format

\[
\text{DPART (} \text{datevalue, 'component', output) }
\]

where:

**datevalue**

Date

Is a full component date.

**component**

Alphanumeric

Is the name of the component to be retrieved enclosed in single quotation marks. Valid values are:

For year: YEAR, YY
For month: MONTH, MM
For day: DAY, For day of month: DAY-OF-MONTH, DD.
For weekday: WEEKDAY, WW.
For quarter: QUARTER, QQ

output

Integer

Is the field that contains the result, or the integer format of the output value enclosed in single quotation marks.

**Example:** Extracting Date Components in Integer Format

The following request against the VIDEOTRK data source uses the DPART function to extract the year, month, and day component from the TRANSDATE field:

```
DEFINE FILE VIDEOTRK
YEAR/I4 = DPART(TRANSDATE, 'YEAR', 'I11');
MONTH/I4 = DPART(TRANSDATE, 'MM', 'I11');
DAY/I4 = DPART(TRANSDATE, 'DAY', 'I11');
END

TABLE FILE VIDEOTRK
PRINT TRANSDATE YEAR MONTH DAY
BY LASTNAME BY FIRSTNAME
WHERE LASTNAME LT 'DIAZ'
END
```

The output is:

<table>
<thead>
<tr>
<th>LASTNAME</th>
<th>FIRSTNAME</th>
<th>TRANSDATE</th>
<th>YEAR</th>
<th>MONTH</th>
<th>DAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANDREWS</td>
<td>NATALIA</td>
<td>91/06/19</td>
<td>1991</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91/06/18</td>
<td>1991</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>BAKER</td>
<td>MARIE</td>
<td>91/06/17</td>
<td>1991</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>BERTAL</td>
<td>MARCIA</td>
<td>91/06/23</td>
<td>1991</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91/06/18</td>
<td>1991</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>CHANG</td>
<td>ROBERT</td>
<td>91/06/28</td>
<td>1991</td>
<td>6</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91/06/27</td>
<td>1991</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91/06/26</td>
<td>1991</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>COLE</td>
<td>ALLISON</td>
<td>91/06/24</td>
<td>1991</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91/06/23</td>
<td>1991</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>CRUZ</td>
<td>IVY</td>
<td>91/06/27</td>
<td>1991</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>DAVIS</td>
<td>JASON</td>
<td>91/06/24</td>
<td>1991</td>
<td>6</td>
<td>24</td>
</tr>
</tbody>
</table>
FIQTR: Obtaining the Financial Quarter

The FIQTR function returns the financial quarter corresponding to a given calendar date based on the financial year starting date and the financial year numbering convention.

Since Dialogue Manager interprets a date as alphanumeric or numeric, and FIQTR requires a standard date stored as an offset from the base date, do not use FIQTR with Dialogue Manager unless you first convert the variable used as the input date to an offset from the base date.

Syntax: How to Obtain the Financial Quarter

FIQTR(inputdate, lowcomponent, startmonth, startday, yrnumbering, output)

where:

inputdate

Date

Is the date for which the financial year is returned. The date must be a standard date stored as an offset from the base date.

If the financial year does not begin on the first day of a month, the date must have Y(Y), M, and D components, or Y(Y) and JUL components (note that JUL is equivalent to YJUL). Otherwise, the date only needs Y(Y) and M components or Y(Y) and Q components.

lowcomponent

Alphanumeric

Is one of the following:

- D if the date contains a D or JUL component.
- M if the date contains an M component, but no D component.
- Q if the date contains a Q component.

startmonth

Numeric

1 through 12 are used to represent the starting month of the financial year, where 1 represents January and 12 represents December. If the low component is Q, the start month must be 1, 4, 7, or 10.

startday

Numeric
Is the starting day of the starting month, usually 1. If the low component is M or Q, 1 is required.

**yrnumbering**

Alphanumeric

Valid values are:

- **FYE** to specify the *Financial Year Ending* convention. The financial year number is the calendar year of the ending date of the financial year. For example, when the financial year starts on October 1, 2008, the date 2008 November 1 is in FY 2009 Q1 because that date is in the financial year that ends on 2009 September 30.

- **FYS** to specify the *Financial Year Starting* convention. The financial year number is the calendar year of the starting date of the financial year. For example, when the financial year starts on April 6, 2008, the date 2008 July 6 is in FY 2008 Q2 because that date is in the financial year that starts on 2008 April 6.

**output**

S or Q

The result will be in integer format, or Q. This function will return a value of 1 through 4. In case of an error, zero is returned.

**Note:** February 29 cannot be used as a start day for a financial year.

**Example:** **Obtaining the Financial Quarter**

The following request against the CENTHR data source obtains the financial quarter corresponding to an employee starting date (field START_DATE, format YYMD) and returns the values in each of the supported formats: Q and I1.

```plaintext
DEFINE FILE CENTHR
FISCALQ/Q=FIQTR(START_DATE,'D',10,1,'FYE',FISCALQ);
FISCALI/I1=FIQTR(START_DATE,'D',10,1,'FYE',FISCALI);
END

TABLE FILE CENTHR
PRINT START_DATE FISCALQ FISCALI
BY LNAME BY FNAME
WHERE LNAME LIKE 'C%'
END
```
On the output, note that the date November 12, 1998 (1998/11/12) is in fiscal quarter Q1 because the starting month is October (10):

<table>
<thead>
<tr>
<th>Last Name</th>
<th>First Name</th>
<th>Starting Date</th>
<th>FISCALQ</th>
<th>FISCALI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARNEY</td>
<td>ROSS</td>
<td>1998/09/12</td>
<td>Q4</td>
<td>4</td>
</tr>
<tr>
<td>CHIEN</td>
<td>CHRISTINE</td>
<td>1997/10/01</td>
<td>Q1</td>
<td>1</td>
</tr>
<tr>
<td>CLEVELAND</td>
<td>PHILIP</td>
<td>1996/07/30</td>
<td>Q4</td>
<td>4</td>
</tr>
<tr>
<td>CLINE</td>
<td>STEPHEN</td>
<td>1998/11/12</td>
<td>Q1</td>
<td>1</td>
</tr>
<tr>
<td>COHEN</td>
<td>DANIEL</td>
<td>1997/10/05</td>
<td>Q1</td>
<td>1</td>
</tr>
<tr>
<td>CORRIVEAU</td>
<td>RAYMOND</td>
<td>1997/12/05</td>
<td>Q1</td>
<td>1</td>
</tr>
<tr>
<td>COSSMAN</td>
<td>MARK</td>
<td>1996/12/19</td>
<td>Q1</td>
<td>1</td>
</tr>
<tr>
<td>CRONIN</td>
<td>CHRIS</td>
<td>1996/12/03</td>
<td>Q1</td>
<td>1</td>
</tr>
<tr>
<td>CROWDER</td>
<td>WESLEY</td>
<td>1996/09/17</td>
<td>Q4</td>
<td>4</td>
</tr>
<tr>
<td>CULLEN</td>
<td>DENNIS</td>
<td>1995/09/05</td>
<td>Q4</td>
<td>4</td>
</tr>
<tr>
<td>CUMMINGS</td>
<td>JAMES</td>
<td>1993/07/11</td>
<td>Q4</td>
<td>4</td>
</tr>
<tr>
<td>CUTLIP</td>
<td>GREGG</td>
<td>1997/03/26</td>
<td>Q2</td>
<td>2</td>
</tr>
</tbody>
</table>

**FIYR: Obtaining the Financial Year**

The FIYR function returns the financial year, also known as the fiscal year, corresponding to a given calendar date based on the financial year starting date and the financial year numbering convention.

Since Dialogue Manager interprets a date as alphanumeric or numeric, and FIYR requires a standard date stored as an offset from the base date, do not use FIYR with Dialogue Manager unless you first convert the variable used as the input date to an offset from the base date.

**Syntax:**

How to Obtain the Financial Year

FIYR(inputdate, lowcomponent, startmonth, startday, yrnumbering, output)

where:

- **inputdate**
  
  Date
  
  Is the date for which the financial year is returned. The date must be a standard date stored as an offset from the base date.

  If the financial year does not begin on the first day of a month, the date must have Y(Y), M, and D components, or Y(Y) and JUL components (note that JUL is equivalent to YJUL). Otherwise, the date only needs Y(Y) and M components or Y(Y) and Q components.

- **lowcomponent**
  
  Alphanumeric
Is one of the following:

- **D** if the date contains a D or JUL component.
- **M** if the date contains an M component, but no D component.
- **Q** if the date contains a Q component.

**startmonth**

Numeric

1 through 12 are used to represent the starting month of the financial year, where 1 represents January and 12 represents December. If the low component is Q, the start month must be 1, 4, 7, or 10.

**startday**

Numeric

Is the starting day of the starting month, usually 1. If the low component is M or Q, 1 is required.

**yrnumbering**

Alphanumeric

Valid values are:

- **FYE** to specify the *Financial Year Ending* convention. The financial year number is the calendar year of the ending date of the financial year. For example, when the financial year starts on October 1, 2008, the date 2008 November 1 is in FY 2009 Q1 because that date is in the financial year that ends on 2009 September 30.

- **FYS** to specify the *Financial Year Starting* convention. The financial year number is the calendar year of the starting date of the financial year. For example, when the financial year starts on April 6, 2008, the date 2008 July 6 is in FY 2008 Q2 because that date is in the financial year that starts on 2008 April 6.

**output**

I, Y, or YY

The result will be in integer format, or Y or YY. This function returns a year value. In case of an error, zero is returned.

**Note:** February 29 cannot be used as a start day for a financial year.
Example: Obtaining the Financial Year

The following request against the CENTSTMT data source obtains the financial year corresponding to an account period (field PERIOD, format YYM) and returns the values in each of the supported formats: Y, YY, and I4.

```
DEFINE FILE CENTSTMT
FISCALYY/YY=FIYR(PERIOD,'M', 4,1,'FYE',FISCALYY);
FISCALY/Y=FIYR(PERIOD,'M', 4,1,'FYE',FISCALY);
FISCALI/I4=FIYR(PERIOD,'M', 4,1,'FYE',FISCALI);
END
TABLE FILE CENTSTMT
PRINT PERIOD FISCALYY FISCALY FISCALI
BY GL_ACCOUNT
WHERE GL_ACCOUNT LT '2100'
END
```

On the output, note that the period April 2002 (2002/04) is in fiscal year 2003 because the starting month is April (4), and the FYE numbering convention is used:

<table>
<thead>
<tr>
<th>Ledger Account</th>
<th>PERIOD</th>
<th>FISCALYY</th>
<th>FISCALY</th>
<th>FISCALI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>2002/01</td>
<td>2002</td>
<td>02</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td>2002/02</td>
<td>2002</td>
<td>02</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td>2002/03</td>
<td>2002</td>
<td>02</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td>2002/04</td>
<td>2003</td>
<td>03</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>2002/05</td>
<td>2003</td>
<td>03</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>2002/06</td>
<td>2003</td>
<td>03</td>
<td>2003</td>
</tr>
<tr>
<td>2000</td>
<td>2002/01</td>
<td>2002</td>
<td>02</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td>2002/02</td>
<td>2002</td>
<td>02</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td>2002/03</td>
<td>2002</td>
<td>02</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td>2002/04</td>
<td>2003</td>
<td>03</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>2002/05</td>
<td>2003</td>
<td>03</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>2002/06</td>
<td>2003</td>
<td>03</td>
<td>2003</td>
</tr>
</tbody>
</table>

FIYYQ: Converting a Calendar Date to a Financial Date

The FIYYQ function returns a financial date containing both the financial year and quarter that corresponds to a given calendar date. The returned financial date is based on the financial year starting date and the financial year numbering convention.

Since Dialogue Manager interprets a date as alphanumerical or numeric, and FIYYQ requires a standard date stored as an offset from the base date, do not use FIYYQ with Dialogue Manager unless you first convert the variable used as the input date to an offset from the base date.
**Syntax:** How to Convert a Calendar Date to a Financial Date

FIYYQ(inputdate, lowcomponent, startmonth, startday, yrnumbering, output)

where:

**inputdate**

Date

Is the date for which the financial year is returned. The date must be a standard date stored as an offset from the base date.

If the financial year does not begin on the first day of a month, the date must have Y(Y), M, and D components, or Y(Y) and JUL components (note that JUL is equivalent to YJUL). Otherwise, the date only needs Y(Y) and M components or Y(Y) and Q components.

**lowcomponent**

Alphanumeric

Is one of the following:

- **D** if the date contains a D or JUL component.
- **M** if the date contains an M component, but no D component.
- **Q** if the date contains a Q component.

**startmonth**

Numeric

1 through 12 are used to represent the starting month of the financial year, where 1 represents January and 12 represents December. If the low component is Q, the start month must be 1, 4, 7, or 10.

**startday**

Numeric

Is the starting day of the starting month, usually 1. If the low component is M or Q, 1 is required.

**yrnumbering**

Alphanumeric

Valid values are:
FYE to specify the Financial Year Ending convention. The financial year number is the calendar year of the ending date of the financial year. For example, when the financial year starts on October 1, 2008, the date 2008 November 1 is in FY 2009 Q1 because that date is in the financial year that ends on 2009 September 30.

FYS to specify the Financial Year Starting convention. The financial year number is the calendar year of the starting date of the financial year. For example, when the financial year starts on April 6, 2008, the date 2008 July 6 is in FY 2008 Q2 because that date is in the financial year that starts on 2008 April 6.

output

Y[Y]Q or QY[Y]

In case of an error, zero is returned.

Note: February 29 cannot be used as a start day for a financial year.

Example: Converting a Calendar Date to a Financial Date

The following request against the CENTHR data source converts each employee starting date (field START_DATE, format YYMD) to a financial date containing year and quarter components in all the supported formats: YQ, YYQ, QY, and QYY.

DEFINE FILE CENTHR
FISYQ/QY=FIYYQ(START_DATE,'D',10,1,'FYE',FISYQ);
FISYYQ/YYQ=FIYYQ(START_DATE,'D',10,1,'FYE',FISYYQ);
FISQY/QY=FIYYQ(START_DATE,'D',10,1,'FYE',FISQY);
FISQYY/QYY=FIYYQ(START_DATE,'D',10,1,'FYE',FISQYY);
END
TABLE FILE CENTHR
PRINT START_DATE FISYQ FISYYQ FISQY FISQYY
BY LNAME BY FNAME
WHERE LNAME LIKE 'C%'
END
On the output, note that the date November 12, 1998 (1998/11/12) is converted to Q1 1999 because the starting month is October (10), and the FYE numbering convention is used:

<table>
<thead>
<tr>
<th>Last Name</th>
<th>First Name</th>
<th>Starting Date</th>
<th>FISYQ</th>
<th>FISYYQ</th>
<th>FISQY</th>
<th>FISQYY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARNEY</td>
<td>ROSS</td>
<td>1998/09/12</td>
<td>Q4</td>
<td>Q4</td>
<td>Q4</td>
<td>Q4 1998</td>
</tr>
<tr>
<td>CHIEN</td>
<td>CHRISTINE</td>
<td>1997/10/01</td>
<td>Q1</td>
<td>Q1</td>
<td>Q1</td>
<td>Q1 1998</td>
</tr>
<tr>
<td>CLEVELAND</td>
<td>PHILIP</td>
<td>1996/07/30</td>
<td>Q4</td>
<td>Q4</td>
<td>Q4</td>
<td>Q4 1996</td>
</tr>
<tr>
<td>CLINE</td>
<td>STEPHEN</td>
<td>1998/11/12</td>
<td>Q1</td>
<td>Q1</td>
<td>Q1</td>
<td>Q1 1999</td>
</tr>
<tr>
<td>COHEN</td>
<td>DANIEL</td>
<td>1997/10/05</td>
<td>Q1</td>
<td>Q1</td>
<td>Q1</td>
<td>Q1 1998</td>
</tr>
<tr>
<td>CORRIVEAU</td>
<td>RAYMOND</td>
<td>1997/12/05</td>
<td>Q1</td>
<td>Q1</td>
<td>Q1</td>
<td>Q1 1998</td>
</tr>
<tr>
<td>COSSMAN</td>
<td>MARK</td>
<td>1996/12/19</td>
<td>Q1</td>
<td>Q1</td>
<td>Q1</td>
<td>Q1 1997</td>
</tr>
<tr>
<td>CRONIN</td>
<td>CHRIS</td>
<td>1996/12/03</td>
<td>Q1</td>
<td>Q1</td>
<td>Q1</td>
<td>Q1 1997</td>
</tr>
<tr>
<td>CROWDER</td>
<td>WESLEY</td>
<td>1996/09/17</td>
<td>Q4</td>
<td>Q4</td>
<td>Q4</td>
<td>Q4 1996</td>
</tr>
<tr>
<td>CULLEN</td>
<td>DENNIS</td>
<td>1995/09/05</td>
<td>Q4</td>
<td>Q4</td>
<td>Q4</td>
<td>Q4 1995</td>
</tr>
<tr>
<td>CUMMINGS</td>
<td>JAMES</td>
<td>1993/07/11</td>
<td>Q4</td>
<td>Q4</td>
<td>Q4</td>
<td>Q4 1993</td>
</tr>
<tr>
<td>CUTLIP</td>
<td>GREGG</td>
<td>1997/03/26</td>
<td>Q2</td>
<td>Q2</td>
<td>Q2</td>
<td>Q2 1997</td>
</tr>
</tbody>
</table>

**TODAY: Returning the Current Date**

Available Languages: reporting

The TODAY function retrieves the current date from the operating system in the format MM/DD/YY or MM/DD/YYYY. It always returns a date that is current. Therefore, if you are running an application late at night, use TODAY. You can remove the default embedded slashes with the EDIT function.

You can also retrieve the date in the same format (separated by slashes) using the Dialogue Manager system variable &DATE. You can retrieve the date without the slashes using the system variables &YMD, &MDY, and &DMY. The system variable &DATEfmt retrieves the date in a specified format.

**Syntax:** How to Retrieve the Current Date

TODAY(output)

where:

**output**

Alphanumeric, at least A8

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.

The following apply:

- If the format is A8 or A9, TODAY returns the 2-digit year.
If the format is A10 or greater, TODAY returns the 4-digit year.

Example: Retrieving the Current Date

TODAY retrieves the current date and stores it in the DATE field. The request then displays the date in the page heading.

DEFINE FILE EMPLOYEE
DATE/A10 WITH EMP_ID = TODAY(DATE);
END

TABLE FILE EMPLOYEE
SUM CURR_SAL BY DEPARTMENT
HEADING
"PAGE <TABPAGENO "
"SALARY REPORT RUN ON <DATE "
END

The output is:

SALARY REPORT RUN ON 12/13/2006
DEPARTMENT CURR_SAL
---------- --------
MIS $108,002.00
PRODUCTION $114,282.00

Using Legacy Date Functions

The legacy date functions were created for use with dates in integer, packed decimal, or alphanumeric format.

For detailed information on each legacy date function, see:

AYM: Adding or Subtracting Months on page 421
AYMD: Adding or Subtracting Days on page 422
CHGDAT: Changing How a Date String Displays on page 423
DA Functions: Converting a Legacy Date to an Integer on page 426
DMY, MDY, YMD: Calculating the Difference Between Two Dates on page 428
DOWK and DOWKL: Finding the Day of the Week on page 429
DT Functions: Converting an Integer to a Date on page 430
GREGDT: Converting From Julian to Gregorian Format on page 432
JULDAT: Converting From Gregorian to Julian Format on page 434
Using Old Versions of Legacy Date Functions

The functions described in this section are legacy date functions. They were created for use with dates in integer or alphanumeric format. They are no longer recommended for date manipulation. Standard date and date-time functions are preferred.

All legacy date functions support dates for the year 2000 and later.

Using Dates With Two- and Four-Digit Years

Legacy date functions accept dates with two- or four-digit years. Four-digit years that display the century, such as 2000 or 1900, can be used if their formats are specified as I8YYMD, P8YYMD, D8YYMD, F8YYMD, or A8YYMD. Two-digit years can use the DEFCENT and YRTHRESH parameters to assign century values if the field has a length of six (for example, I6YMD). For information on these parameters, see Customizing Your Environment in the TIBCO WebFOCUS® Developing Reporting Applications manual.

Example: Using Four-Digit Years

The EDIT function creates dates with four-digit years. The functions JULDAT and GREGDT then convert these dates to Julian and Gregorian formats.

```
DEFINE FILE EMPLOYEE
DATE/I8YYMD = EDIT('19'|EDIT(HIRE_DATE));
JDATE/I7 = JULDAT(DATE, 'I7');
GDATE/I8 = GREGDT(JDATE, 'I8');
END
TABLE FILE EMPLOYEE
PRINT DATE JDATE GDATE
END
```
### Using Legacy Date Functions

The output is:

<table>
<thead>
<tr>
<th>DATE</th>
<th>JDATE</th>
<th>GDATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980/06/02</td>
<td>1980154</td>
<td>19800602</td>
</tr>
<tr>
<td>1981/07/01</td>
<td>1981182</td>
<td>19810701</td>
</tr>
<tr>
<td>1982/05/01</td>
<td>1982121</td>
<td>19820501</td>
</tr>
<tr>
<td>1982/01/04</td>
<td>1982004</td>
<td>19820104</td>
</tr>
<tr>
<td>1982/08/01</td>
<td>1982213</td>
<td>19820801</td>
</tr>
<tr>
<td>1982/01/04</td>
<td>1982004</td>
<td>19820104</td>
</tr>
<tr>
<td>1982/07/01</td>
<td>1982182</td>
<td>19820701</td>
</tr>
<tr>
<td>1981/07/01</td>
<td>1981182</td>
<td>19810701</td>
</tr>
<tr>
<td>1982/04/01</td>
<td>1982091</td>
<td>19820401</td>
</tr>
<tr>
<td>1982/02/02</td>
<td>1982033</td>
<td>19820202</td>
</tr>
<tr>
<td>1982/04/01</td>
<td>1982091</td>
<td>19820401</td>
</tr>
<tr>
<td>1981/11/02</td>
<td>1981306</td>
<td>19811102</td>
</tr>
<tr>
<td>1982/04/01</td>
<td>1982091</td>
<td>19820401</td>
</tr>
<tr>
<td>1982/05/15</td>
<td>1982135</td>
<td>19820515</td>
</tr>
</tbody>
</table>

**Example:** Using Two-Digit Years

The AYMD function returns an eight-digit date when the input argument has a six-digit legacy date format. Since DEFCENT is 19 and YRTHRESH is 83, year values from 83 through 99 are interpreted as 1983 through 1999, and year values from 00 through 82 are interpreted as 2000 through 2082.

```plaintext
SET DEFCENT=19, YRTHRESH=83

DEFINE FILE EMPLOYEE
NEW_DATE/I8YYMD = AYMD(EFFECT_DATE, 30, 'I8');
END

TABLE FILE EMPLOYEE
PRINT EFFECT_DATE NEW_DATE BY EMP_ID
END
```

The output is:

<table>
<thead>
<tr>
<th>EMP_ID</th>
<th>EFFECT_DATE</th>
<th>NEW_DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>071382660</td>
<td>82/11/01</td>
<td>2082/12/01</td>
</tr>
<tr>
<td>112847612</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117593129</td>
<td>83/03/01</td>
<td>1983/03/31</td>
</tr>
<tr>
<td>119265415</td>
<td>83/01/01</td>
<td>1983/01/31</td>
</tr>
<tr>
<td>119329144</td>
<td>83/01/01</td>
<td>1983/01/31</td>
</tr>
<tr>
<td>123764317</td>
<td>83/03/01</td>
<td>1983/03/31</td>
</tr>
<tr>
<td>126724188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>219984371</td>
<td></td>
<td></td>
</tr>
<tr>
<td>326179357</td>
<td>82/12/01</td>
<td>2082/12/31</td>
</tr>
<tr>
<td>451123478</td>
<td>84/09/01</td>
<td>1984/10/01</td>
</tr>
<tr>
<td>543729165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>818692173</td>
<td>83/05/01</td>
<td>1983/05/31</td>
</tr>
</tbody>
</table>
AYM: Adding or Subtracting Months

Available Languages: reporting, Maintain

The AYM function adds months to or subtracts months from a date in year-month format. You can convert a date to this format using the CHGDAT or EDIT function.

**Syntax:**

How to Add or Subtract Months to or From a Date

\[
AYM(\text{indate}, \text{months}, \text{output})
\]

where:

- **indate**
  - I4, I4YM, I6, or I6YYM
  - Is the legacy date in year-month format, the name of a field that contains the date, or an expression that returns the date. If the date is not valid, the function returns the value 0 (zero).

- **months**
  - Integer
  - Is the number of months you are adding to or subtracting from the date. To subtract months, use a negative number.

- **output**
  - I4YM or I6YYM
  - Is the resulting legacy date. Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.

**Tip:** If the input date is in integer year-month-day format (I6YMD or I8YYMD), divide the date by 100 to convert to year-month format and set the result to an integer. This drops the day portion of the date, which is now after the decimal point.
Example: Adding Months to a Date

The COMPUTE command converts the dates in HIRE_DATE from year-month-day to year-month format and stores the result in HIRE_MONTH. AYM then adds six months to HIRE_MONTH and stores the result in AFTER6MONTHS:

```
TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND COMPUTE
HIRE_MONTH/I4YM = HIRE_DATE/100 ;
AFTER6MONTHS/I4YM = AYM(HIRE_MONTH, 6, AFTER6MONTHS);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS';
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>HIRE_DATE</th>
<th>HIRE_MONTH</th>
<th>AFTER6MONTHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
<td>82/04/01</td>
<td>82/04</td>
<td>82/10</td>
</tr>
<tr>
<td>CROSS</td>
<td>BARBARA</td>
<td>81/11/02</td>
<td>81/11</td>
<td>82/05</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>MARY</td>
<td>82/04/01</td>
<td>82/04</td>
<td>82/10</td>
</tr>
<tr>
<td>JONES</td>
<td>DIANE</td>
<td>82/05/01</td>
<td>82/05</td>
<td>82/11</td>
</tr>
<tr>
<td>MCCOY</td>
<td>JOHN</td>
<td>81/07/01</td>
<td>81/07</td>
<td>82/01</td>
</tr>
<tr>
<td>SMITH</td>
<td>MARY</td>
<td>81/07/01</td>
<td>81/07</td>
<td>82/01</td>
</tr>
</tbody>
</table>

AYMD: Adding or Subtracting Days

Available Languages: reporting, Maintain

The AYMD function adds days to or subtracts days from a date in year-month-day format. You can convert a date to this format using the CHGDAT or EDIT function.

Syntax: How to Add or Subtract Days to or From a Date

```
AYMD(indate, days, output)
```

where:

**indate**

I6, I6YMD, I8, I8YYMD

Is the legacy date in year-month-day format. If the date is not valid, the function returns the value 0 (zero).

**days**

Integer

Is the number of days you are adding to or subtracting from **indate**. To subtract days, use a negative number.
output

I6, I6YMD, I8, or I8YYMD

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks. If \textit{indate} is a field, \textit{output} must have the same format.

If the addition or subtraction of days crosses forward or backward into another century, the century digits of the output year are adjusted.

\textbf{Example: Adding Days to a Date}

AYMD adds 35 days to each value in the HIRE\_DATE field, and stores the result in \texttt{AFTER35DAYS}:

\begin{verbatim}
TABLE FILE EMPLOYEE
PRINT HIRE\_DATE AND COMPUTE
AFTER35DAYS/I6YMD = AYMD(HIRE\_DATE, 35, AFTER35DAYS);
BY LAST\_NAME BY FIRST\_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END
\end{verbatim}

The output is:

\begin{verbatim}
LAST\_NAME        FIRST\_NAME  HIRE\_DATE  AFTER35DAYS
---------        ----------  ---------  -----------
BANNING          JOHN         82/08/01     82/09/05
IRVING           JOAN         82/01/04     82/02/08
MCKNIGHT         ROGER        82/02/02     82/03/09
ROMANS           ANTHONY      82/07/01     82/08/05
SMITH            RICHARD      82/01/04     82/02/08
STEVENS          ALFRED       80/06/02     80/07/07
\end{verbatim}

\textbf{CHGDAT: Changing How a Date String Displays}

Available Languages: reporting, Maintain

The CHGDAT function rearranges the year, month, and day portions of an input character string representing a date. It may also convert the input string from long to short or short to long date representation. Long representation contains all three date components: year, month, and day; short representation omits one or two of the date components, such as year, month, or day. The input and output date strings are described by display options that specify both the order of date components (year, month, day) in the date string and whether two or four digits are used for the year (for example, 04 or 2004). CHGDAT reads an input date character string and creates an output date character string that represents the same date in a different way.

\textbf{Note:} CHGDAT requires a date character string as input, not a date itself. Whether the input is a standard or legacy date, convert it to a date character string (using the EDIT or DATECVT functions, for example) before applying CHGDAT.
The order of date components in the date character string is described by display options comprised of the following characters in your chosen order:

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Day of the month (01 through 31).</td>
</tr>
<tr>
<td>M</td>
<td>Month of the year (01 through 12).</td>
</tr>
<tr>
<td>Y[Y]</td>
<td>Year. Y indicates a two-digit year (such as 94); YY indicates a four-digit year (such as 1994).</td>
</tr>
</tbody>
</table>

To spell out the month rather than use a number in the resulting string, append one of the following characters to the display options for the resulting string:

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Displays the month as a three-letter abbreviation.</td>
</tr>
<tr>
<td>X</td>
<td>Displays the full name of the month.</td>
</tr>
</tbody>
</table>

Display options can consist of up to five display characters. Characters other than those display options are ignored.

For example: The display options 'DMYY' specify that the date string starts with a two digit day, then two digit month, then four digit year.

**Note:** Display options are not date formats.

**Reference:** Short to Long Conversion

If you are converting a date from short to long representation (for example, from year-month to year-month-day), the function supplies the portion of the date missing in the short representation, as shown in the following table:

<table>
<thead>
<tr>
<th>Portion of Date Missing</th>
<th>Portion Supplied by Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day (for example, from YM to YMD)</td>
<td>Last day of the month.</td>
</tr>
<tr>
<td>Month (for example, from Y to YM)</td>
<td>Last month of the year (December).</td>
</tr>
</tbody>
</table>
### Portion of Date Missing | Portion Supplied by Function
--- | ---
Year (for example, from MD to YMD) | The year 99.
Converting year from two-digit to four-digit (for example, from YMD to YYMD) | The century will be determined by the 100-year window defined by DEFCENT and YRTHRESH. See Customizing Your Environment in the TIBCO WebFOCUS® Developing Reporting Applications manual or Working With Cross-Century Dates in the iBase archive for details on DEFCENT and YRTHRESH.

**Syntax:**

How to Change the Date Display String

CHGDAT('in_display_options','out_display_options',date_string,output)

where:

* 'in_display_options'
  - A1 to A5
  - Is a series of up to five display options that describe the layout of date_string. These options can be stored in an alphanumeric field or supplied as a literal enclosed in single quotation marks.

* 'out_display_options'
  - A1 to A5
  - Is a series of up to five display options that describe the layout of the converted date string. These options can be stored in an alphanumeric field or supplied as a literal enclosed in single quotation marks.

* date_string
  - A2 to A8
  - Is the input date character string with date components in the order specified by in_display_options.

Note that if the original date is in numeric format, you must convert it to a date character string. If date_string does not correctly represent the date (the date is invalid), the function returns blank spaces.
**output**

Axx, where xx is a number of characters large enough to fit the date string specified by `out_display_options`. A17 is long enough to fit the longest date string.

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.

**Note:** Since CHGDAT uses a date string (as opposed to a date) and returns a date string with up to 17 characters, use the EDIT or DATECVT functions or any other means to convert the date to or from a date character string.

**Example:** Converting the Date Display From YMD to MDYYX

The EDIT function changes HIRE_DATE from numeric to alphanumeric format. CHGDAT then converts each value in ALPHA_HIRE from displaying the components as YMD to MDYYX and stores the result in HIRE_MDY, which has the format A17. The option X in the output value displays the full name of the month.

```
TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND COMPUTE
ALPHA_HIRE/A17 = EDIT(HIRE_DATE); NOPRINT AND COMPUTE
HIRE_MDY/A17 = CHGDAT('YMD', 'MDYYX', ALPHA_HIRE, 'A17');
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>HIRE_DATE</th>
<th>HIRE_MDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANNING</td>
<td>JOHN</td>
<td>82/08/01</td>
<td>AUGUST 01 1982</td>
</tr>
<tr>
<td>IRVING</td>
<td>JOAN</td>
<td>82/01/04</td>
<td>JANUARY 04 1982</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>ROGER</td>
<td>82/02/02</td>
<td>FEBRUARY 02 1982</td>
</tr>
<tr>
<td>ROMANS</td>
<td>ANTHONY</td>
<td>82/07/01</td>
<td>JULY 01 1982</td>
</tr>
<tr>
<td>SMITH</td>
<td>RICHARD</td>
<td>82/01/04</td>
<td>JANUARY 04 1982</td>
</tr>
<tr>
<td>STEVENS</td>
<td>ALFRED</td>
<td>80/06/02</td>
<td>JUNE 02 1980</td>
</tr>
</tbody>
</table>

**DA Functions: Converting a Legacy Date to an Integer**

**Available Languages:** reporting, Maintain

The DA functions convert a legacy date to the number of days between it and a base date (December 31, 1899). By converting a date to the number of days, you can add and subtract dates and calculate the intervals between them, or you can add to or subtract numbers from the dates to get new dates.

There are six DA functions; each one accepts a date in a different format.
**Syntax:** How to Convert a Date to an Integer

```
function(indate, output)
```

where:

- **function**
  - Is one of the following:
    - **DADMY** converts a date in day-month-year format.
    - **DADYM** converts a date in day-year-month format.
    - **DAMDY** converts a date in month-day-year format.
    - **DAMYD** converts a date in month-year-day format.
    - **DAYDM** converts a date in year-day-month format.
    - **DAYMD** converts a date in year-month-day format.

- **indate**
  - I6xxx or P6xxx, where xxx corresponds to the function DAxxx you are using.
  - Is the legacy date to be converted, or the name of a field that contains the date. The date is truncated to an integer before conversion. If `indate` is a numeric literal, enter only the last two digits of the year; the function assumes the century component. If the date is invalid, the function returns a 0.

- **output**
  - Integer
  - Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks. The format of the date returned depends on the function.

**Example:** Converting Dates and Calculating the Difference Between Them

DAYMD converts the DAT_INC and HIRE_DATE fields to the number of days since December 31, 1899, and the smaller number is then subtracted from the larger number:

```
TABLE FILE EMPLOYEE
PRINT DAT_INC AS 'RAISE_DATE' AND COMPUTE
DAYS_HIRED/I8 = DAYMD(DAT_INC, 'I8') - DAYMD(HIRE_DATE, 'I8');
BY LAST_NAME BY FIRST_NAME
IF DAYS_HIRED NE 0
WHERE DEPARTMENT EQ 'PRODUCTION';
END
```
The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>RAISE DATE</th>
<th>DAYS_HIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRVING</td>
<td>JOAN</td>
<td>82/05/14</td>
<td>130</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>ROGER</td>
<td>82/05/14</td>
<td>101</td>
</tr>
<tr>
<td>SMITH</td>
<td>RICHARD</td>
<td>82/05/14</td>
<td>130</td>
</tr>
<tr>
<td>STEVENS</td>
<td>ALFRED</td>
<td>82/01/01</td>
<td>578</td>
</tr>
<tr>
<td></td>
<td></td>
<td>81/01/01</td>
<td>213</td>
</tr>
</tbody>
</table>

**DMY, MDY, YMD: Calculating the Difference Between Two Dates**

Available Languages: reporting, Maintain

The DMY, MDY, and YMD functions calculate the difference between two legacy dates in integer, alphanumeric, or packed format.

**Syntax:** How to Calculate the Difference Between Two Dates

\[
\text{function}\left(\text{from\_date}, \text{to\_date}\right)
\]

where:

- **function**
  - Is one of the following:
    - **DMY** calculates the difference between two dates in day-month-year format.
    - **MDY** calculates the difference between two dates in month-day-year format.
    - **YMD** calculates the difference between two dates in year-month-day format.

- **from\_date**
  - I, P, or A format with date display options.
  - Is the beginning legacy date, or the name of a field that contains the date.

- **to\_date**
  - I, P, or A format with date display options.I6xxx or I8xxx where xxx corresponds to the specified function (DMY, YMD, or MDY).
  - Is the end date, or the name of a field that contains the date.
**Example:** Calculating the Number of Days Between Two Dates

YMD calculates the number of days between the dates in HIRE_DATE and DAT_INC:

```plaintext
TABLE FILE EMPLOYEE
SUM HIRE_DATE FST.DAT_INC AS 'FIRST PAY, INCREASE' AND COMPUTE
DIFF/I4 = YMD(HIRE_DATE, FST.DAT_INC); AS 'DAYS, BETWEEN'
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS';
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>HIRE_DATE</th>
<th>FIRST PAY</th>
<th>INCREASE</th>
<th>DAYS_BETWEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
<td>82/04/01</td>
<td>82/04/01</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CROSS</td>
<td>BARBARA</td>
<td>81/11/02</td>
<td>82/04/09</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>MARY</td>
<td>82/04/01</td>
<td>82/06/11</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>JONES</td>
<td>DIANE</td>
<td>82/05/01</td>
<td>82/06/01</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>MCCOY</td>
<td>JOHN</td>
<td>81/07/01</td>
<td>82/01/01</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>SMITH</td>
<td>MARY</td>
<td>81/07/01</td>
<td>82/01/01</td>
<td>184</td>
<td></td>
</tr>
</tbody>
</table>

**DOWK and DOWKL:** Finding the Day of the Week

Available Languages: reporting, Maintain

The DOWK and DOWKL functions find the day of the week that corresponds to a date. DOWK returns the day as a three letter abbreviation; DOWKL displays the full name of the day.

**Syntax:** How to Find the Day of the Week

```
{DOWK|DOWKL}(indate, output)
```

where:

**indate**

I6YMD or I8YYMD

Is the legacy date in year-month-day format. If the date is not valid, the function returns spaces. If the date specifies a two digit year and DEFCENT and YRTHRESH values have not been set, the function assumes the 20th century.

**output**

DOWK: A4. DOWKL: A12

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.
Example: Finding the Day of the Week

DOWK determines the day of the week that corresponds to the value in the HIRE_DATE field and stores the result in DATED:

```plaintext
TABLE FILE EMPLOYEE
PRINT EMP_ID AND HIRE_DATE AND COMPUTE
DATED/A4 = DOWK(HIRE_DATE, DATED);
WHERE DEPARTMENT EQ 'PRODUCTION';
END
```

The output is:

<table>
<thead>
<tr>
<th>EMP_ID</th>
<th>HIRE_DATE</th>
<th>DATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>071382660</td>
<td>80/06/02</td>
<td>MON</td>
</tr>
<tr>
<td>119265415</td>
<td>82/01/04</td>
<td>MON</td>
</tr>
<tr>
<td>119329144</td>
<td>82/08/01</td>
<td>SUN</td>
</tr>
<tr>
<td>123764317</td>
<td>82/01/04</td>
<td>MON</td>
</tr>
<tr>
<td>126724188</td>
<td>82/07/01</td>
<td>THU</td>
</tr>
<tr>
<td>451123478</td>
<td>82/02/02</td>
<td>TUE</td>
</tr>
</tbody>
</table>

DT Functions: Converting an Integer to a Date

Available Languages: reporting, Maintain

The DT functions convert an integer representing the number of days elapsed since December 31, 1899 to the corresponding date. They are useful when you are performing arithmetic on a date converted to the number of days. The DT functions convert the result back to a date.

There are six DT functions; each one converts a number into a date of a different format.

Note: When USERFNS is set to LOCAL, DT functions only display a six-digit date.
**Syntax:** How to Convert an Integer to a Date

\[\text{function}(\text{number, output})\]

where:

- **function**
  - Is one of the following:
    - **DTDMY** converts a number to a day-month/year date.
    - **DTDYM** converts a number to a day-year/month date.
    - **DTMDY** converts a number to a month-day/year date.
    - **DTMYD** converts a number to a month/year-day date.
    - **DTYDM** converts a number to a year-day/month date.
    - **DTYMD** converts a number to a year-month/day date.

- **number**
  - Integer
  - Is the number of days since December 31, 1899. The number is truncated to an integer.

- **output**
  - I8xxx, where xxx corresponds to the function DTxxx in the above list.
  - Is the name of the field containing the result or the format of the output value enclosed in single quotation marks. The output format depends on the function being used.

**Example:** Converting an Integer to a Date

DTMDY converts the NEWF field (which was converted to the number of days by DAYMD) to the corresponding date and stores the result in NEW_HIRE_DATE:
THIS PROCEDURE CONVERTS HIRE_DATE, WHICH IS IN I6YMD FORMAT, TO A DATE IN I8MDYY FORMAT.
FIRST IT USES THE DAYMD FUNCTION TO CONVERT HIRE_DATE TO A NUMBER OF DAYS.
THEN IT USES THE DTMDY FUNCTION TO CONVERT THIS NUMBER OF DAYS TO I8MDYY FORMAT.

DEFINE FILE EMPLOYEE
NEWF/I8 WITH EMP_ID = DAYMD(HIRE_DATE, NEWF);
NEW_HIRE_DATE/I8MDYY WITH EMP_ID = DTMDY(NEWF, NEW_HIRE_DATE);
END

TABLE FILE EMPLOYEE
PRINT HIRE_DATE NEW_HIRE_DATE
BY FN BY LN
WHERE DEPARTMENT EQ 'MIS'
END

The output is:

<table>
<thead>
<tr>
<th>FIRST_NAME</th>
<th>LAST_NAME</th>
<th>HIRE_DATE</th>
<th>NEW_HIRE_DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BARBARA</td>
<td>CROSS</td>
<td>81/11/02</td>
<td>11/02/1981</td>
</tr>
<tr>
<td>DIANE</td>
<td>JONES</td>
<td>82/05/01</td>
<td>05/01/1982</td>
</tr>
<tr>
<td>JOHN</td>
<td>MCCOY</td>
<td>81/07/01</td>
<td>07/01/1981</td>
</tr>
<tr>
<td>MARY</td>
<td>GREENSPAN</td>
<td>82/04/01</td>
<td>04/01/1982</td>
</tr>
<tr>
<td>ROSEMARIE</td>
<td>BLACKWOOD</td>
<td>82/04/01</td>
<td>04/01/1982</td>
</tr>
</tbody>
</table>

GREGDT: Converting From Julian to Gregorian Format

Available Languages: reporting, Maintain

The GREGDT function converts a date in Julian format (year-day) to Gregorian format (year-month-day).

A date in Julian format is a five- or seven-digit number. The first two or four digits are the year; the last three digits are the number of the day, counting from January 1. For example, January 1, 1999 in Julian format is either 99001 or 1999001; June 21, 2004 in Julian format is 2004173.

Reference: Format Options for GREGDT

GREGDT converts a Julian date to either YMD or YYMD format using the DEFCENT and YRTHRESH parameter settings to determine the century, if required. GREGDT returns a date as follows:

- If the format is I6 or I7, GREGDT returns the date in YMD format.
- If the format is I8 or greater, GREGDT returns the date in YYMD format.
**Syntax:** How to Convert From Julian to Gregorian Format

\[
\text{GREGDT}(\text{indate}, \text{output})
\]

where:

\textit{indate}

I5 or I7

Is the Julian date, which is truncated to an integer before conversion. Each value must be a five- or seven-digit number after truncation. If the date is invalid, the function returns a 0 (zero).

\textit{output}

I6, I8, I6YMD, or I8YYMD

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.

**Example:** Converting From Julian to Gregorian Format

GREGDT converts the JULIAN field to YYMD (Gregorian) format. It determines the century using the default DEFCENT and YRTHRESH parameter settings.

```plaintext
TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND
COMPUTE JULIAN/I5 = JULDAT(HIRE_DATE, JULIAN); AND
COMPUTE GREG_DATE/I8 = GREGDT(JULIAN, 'I8');
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>HIRE_DATE</th>
<th>JULIAN</th>
<th>GREG_DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANNING</td>
<td>JOHN</td>
<td>82/08/01</td>
<td>82213</td>
<td>19820801</td>
</tr>
<tr>
<td>IRVING</td>
<td>JOAN</td>
<td>82/01/04</td>
<td>82004</td>
<td>19820104</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>ROGER</td>
<td>82/02/02</td>
<td>82033</td>
<td>19820202</td>
</tr>
<tr>
<td>ROMANS</td>
<td>ANTHONY</td>
<td>82/07/01</td>
<td>82182</td>
<td>19820701</td>
</tr>
<tr>
<td>SMITH</td>
<td>RICHARD</td>
<td>82/01/04</td>
<td>82004</td>
<td>19820104</td>
</tr>
<tr>
<td>STEVENS</td>
<td>ALFRED</td>
<td>80/06/02</td>
<td>80154</td>
<td>19800602</td>
</tr>
</tbody>
</table>
JULDAT: Converting From Gregorian to Julian Format

The JULDAT function converts a date from Gregorian format (year-month-day) to Julian format (year-day). A date in Julian format is a five- or seven-digit number. The first two or four digits are the year; the last three digits are the number of the day, counting from January 1. For example, January 1, 1999 in Julian format is either 99001 or 1999001.

Reference: Format Settings for JULDAT

JULDAT converts a Gregorian date to either YYNNN or YYYYNNN format, using the DEFCENT and YRTHRESH parameter settings to determine if the century is required.

JULDAT returns dates as follows:

- If the format is I6, JULDAT returns the date in YYNNN format.
- If the format is I7 or greater, JULDAT returns the date in YYYYNNN format.

Syntax: How to Convert From Gregorian to Julian Format

```
JULDAT(indate, output)
```

where:

`indate`

I6, I8, I6YMD, I8YYMD

Is the legacy date to convert or the name of the field that contains the date in year-month-day format (YMD or YYMD).

`output`

I5 or I7

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.
**Example:** Converting From Gregorian to Julian Format

JULDAT converts the HIRE_DATE field to Julian format. It determines the century using the default DEFCENT and YRTHRESH parameter settings.

```
TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND COMPUTE
JULIAN/7 = JULDAT(HIRE_DATE, JULIAN);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>HIRE_DATE</th>
<th>JULIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANNING</td>
<td>JOHN</td>
<td>82/08/01</td>
<td>1982213</td>
</tr>
<tr>
<td>IRVING</td>
<td>JOAN</td>
<td>82/01/04</td>
<td>1982004</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>ROGER</td>
<td>82/02/02</td>
<td>1982033</td>
</tr>
<tr>
<td>ROMANS</td>
<td>ANTHONY</td>
<td>82/07/01</td>
<td>1982182</td>
</tr>
<tr>
<td>SMITH</td>
<td>RICHARD</td>
<td>82/01/04</td>
<td>1982004</td>
</tr>
<tr>
<td>STEVENS</td>
<td>ALFRED</td>
<td>80/06/02</td>
<td>1980154</td>
</tr>
</tbody>
</table>
```

YM: Calculating Elapsed Months

Available Languages: reporting, Maintain

The YM function calculates the number of months between two dates. The dates must be in year-month format. You can convert a date to this format by using the CHGDAT or EDIT function.

Syntax: How to Calculate Elapsed Months

```
YM(fromdate, todate, output)
```

where:

- `fromdate`
 I4YM or I6YYM
 Is the start date in year-month format (for example, I4YM). If the date is not valid, the function returns the value 0 (zero).

- `todate`
 I4YM or I6YYM
 Is the end date in year-month format. If the date is not valid, the function returns the value 0 (zero).
output

Integer

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.

Tip: If fromdate or todate is in integer year-month-day format (I6YMD or I8YYMD), simply divide by 100 to convert to year-month format and set the result to an integer. This drops the day portion of the date, which is now after the decimal point.

Example: Calculating Elapsed Months

The COMPUTE commands convert the dates from year-month-day to year-month format; then YM calculates the difference between the values in the HIRE_DATE/100 and DAT_INC/100 fields:

```
TABLE FILE EMPLOYEE
PRINT DAT_INC AS 'RAISE DATE' AND COMPUTE
HIRE_MONTH/I4YM = HIRE_DATE/100; NOPRINT AND COMPUTE
MONTH_INC/I4YM = DAT_INC/100; NOPRINT AND COMPUTE
MONTHS_HIRED/I3 = YM(HIRE_MONTH, MONTH_INC, 'I3');
BY LAST_NAME BY FIRST_NAME BY HIRE_DATE
IF MONTHS_HIRED NE 0
WHERE DEPARTMENT EQ 'MIS';
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>HIRE_DATE</th>
<th>RAISE_DATE</th>
<th>MONTHS_HIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROSS</td>
<td>BARBARA</td>
<td>81/11/02</td>
<td>82/04/09</td>
<td>5</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>MARY</td>
<td>82/04/01</td>
<td>82/06/11</td>
<td>2</td>
</tr>
<tr>
<td>JONES</td>
<td>DIANE</td>
<td>82/05/01</td>
<td>82/06/01</td>
<td>1</td>
</tr>
<tr>
<td>MCCOY</td>
<td>JOHN</td>
<td>81/07/01</td>
<td>82/01/01</td>
<td>6</td>
</tr>
<tr>
<td>SMITH</td>
<td>MARY</td>
<td>81/07/01</td>
<td>82/01/01</td>
<td>6</td>
</tr>
</tbody>
</table>
Date-Time functions are for use with timestamps in date-time formats, also known as H formats. A timestamp value refers to internally stored data capable of holding both date and time components with an accuracy of up to a nanosecond.

In this chapter:

- Using Date-Time Functions
- HADD: Incrementing a Date-Time Value
- HCNVRT: Converting a Date-Time Value to Alphanumeric Format
- HDATE: Converting the Date Portion of a Date-Time Value to a Date Format
- HDIFF: Finding the Number of Units Between Two Date-Time Values
- HDTTM: Converting a Date Value to a Date-Time Value
- HEXTR: Extracting Components of a Date-Time Value and Setting Remaining Components to Zero
- HGETC: Storing the Current Local Date and Time in a Date-Time Field
- HGETZ: Storing the Current Coordinated Universal Time in a Date-Time Field
- HHMMSS: Retrieving the Current Time
- HHMS: Converting a Date-Time Value to a Time Value
- HINPUT: Converting an Alphanumeric String to a Date-Time Value
- HMIDNT: Setting the Time Portion of a Date-Time Value to Midnight
- HMASK: Extracting Date-Time Components and Preserving Remaining Components
- HNAME: Retrieving a Date-Time Component in Alphanumeric Format
- HPART: Retrieving a Date-Time Component as a Numeric Value
- HSETPT: Inserting a Component Into a Date-Time Value
- HTIME: Converting the Time Portion of a Date-Time Value to a Number
- HTMTOTS or TIMETOTS: Converting a Time to a Timestamp
- HYYWD: Returning the Year and Week Number From a Date-Time Value
Using Date-Time Functions

The functions described in this section operate on fields in date-time format (sometimes called H format).

Date-Time Parameters

The DATEFORMAT parameter specifies the order of the date components for certain types of date-time values. The WEEKFIRST parameter specifies the first day of the week. The DTSTRICT parameter determines the extent to which date-time values are checked for validity.

Specifying the Order of Date Components

The DATEFORMAT parameter specifies the order of the date components (month/day/year) when date-time values are entered in the formatted string and translated string formats described in Using Date-Time Formats on page 442. It makes the input format of a value independent of the format of the variable to which it is being assigned.

Syntax: How to Specify the Order of Date Components in a Date-Time Field

```
SET DATEFORMAT = option
```

where:

```
option
```

Can be one of the following: MDY, DMY, YMD, or MYD. MDY is the default value for the U.S. English format.

Example: Using the DATEFORMAT Parameter

The following request uses a natural date literal with ambiguous numeric day and month components (APR 04 05) as input to the HINPUT function:

```
SET DATEFORMAT = MYD
DEFINE FILE EMPLOYEE
DTFLDYYMD/HYMDI = HINPUT(9,'APR 04 05', 8, DTFLDYYMD);
END
TABLE FILE EMPLOYEE
SUM CURR_SAL NOPRINT DTFLDYYMD
END
```

With DATEFORMAT set to MYD, the value is interpreted as April 5, 1904:

```
DTFLDYYMD
---------
1904-04-05 00:00
```
Specifying the First Day of the Week for Use in Date-Time Functions

The WEEKFIRST parameter specifies a day of the week as the start of the week. This is used in week computations by the HADD, HDIFF, HNAME, HPART, and HYYWD functions. It is also used by the DTADD, DTDIFF, DTRUNC, and DTPART functions. The default values are different for these functions, as described in *How to Set a Day as the Start of the Week* on page 439. The WEEKFIRST parameter does not change the day of the month that corresponds to each day of the week, but only specifies which day is considered the start of the week.

The HPART, DTPART, HYYWD, and HNAME subroutines can extract a week number from a date-time value. To determine a week number, they can use different definitions. For example, ISO 8601 standard week numbering defines the first week of the year as the first week in January with four or more days. Any preceding days in January belong to week 52 or 53 of the preceding year. The ISO standard also establishes Monday as the first day of the week.

You specify which type of week numbering to use by setting the WEEKFIRST parameter, as described in *How to Set a Day as the Start of the Week* on page 439.

Since the week number returned by HNAME, DTPART, and HPART functions can be in the current year or the year preceding or following, the week number by itself may not be useful. The function HYYWD returns both the year and the week for a given date-time value.

Syntax:

How to Set a Day as the Start of the Week

```
SET WEEKFIRST = value
```

where:

`value` Can be:

- **1 through 7**, representing Sunday through Saturday with non-standard week numbering.
 Week numbering using these values establishes the first week in January with seven days as week number 1. Preceding days in January belong to the last week of the previous year. All weeks have seven days.

- **ISO1 through ISO7**, representing Sunday through Saturday with ISO standard week numbering.
 Note: ISO is a synonym for ISO2.
 Week numbering using these values establishes the first week in January with at least four days as week number 1. Preceding days in January belong to the last week of the previous year. All weeks have seven days.
STD1 through STD7, in which the digit 1 (Sunday) through 7 (Saturday) indicates the starting day of the week.

Note: STD without a digit is equivalent to STD1.

Week numbering using these values is as follows. Week number 1 begins on January 1 and ends on the day preceding the first day of the week. For example, for STD1, the first week ends on the first Saturday of the year. The first and last week may have fewer than seven days.

SIMPLE, which establishes January 1 as the start of week 1, January 8 is the start of week 2, and so on. The first day of the week is, thus, the same as the first day of the year. The last week (week 53) is either one or two days long.

0 (zero), is the value of the WEEKFIRST setting before the user issues an explicit WEEKFIRST setting. The date-time functions HPART, HNAME, HYYWD, HADD, and HDIFF use Saturday as the start of the week, when the WEEKFIRST setting is 0. The simplified functions DTADD, DTDIFF, DTRUNC, and DTPART, as well as printing of dates truncated to weeks, and recognition of date constant strings that contain week numbers, use Sunday as the default value, when the WEEKFIRST setting is 0. If the user explicitly sets WEEKFIRST to another value, that value is used by all of the functions.

Example: Setting Sunday as the Start of the Week

The following designates Sunday as the start of the week, using non-standard week numbering:

```
SET WEEKFIRST = 1
```

Syntax: How to View the Current Setting of WEEKFIRST

```
? SET WEEKFIRST
```

This returns the value that indicates the week numbering algorithm and the first day of the week. For example, the integer 1 represents Sunday with non-standard week numbering.

Controlling Processing of Date-Time Values

Strict processing checks date-time values when they are input by an end user, read from a transaction file, displayed, or returned by a subroutine to ensure that they represent a valid date and time. For example, a numeric month must be between 1 and 12, and the day must be within the number of days for the specified month.
Syntax: How to Enable Strict Processing of Date-Time Values

```
SET DTSTRICT = {ON|OFF}
```

where:

ON

Invokes strict processing. ON is the default value.

Strict processing checks date-time values when they are input by an end user, read from a transaction file, displayed, or returned by a subroutine to ensure that they represent a valid date and time. For example, a numeric month must be between 1 and 12, and the day must be within the number of days for the specified month.

If DTSTRICT is ON and the result would be an invalid date-time value, the function returns the value zero (0).

OFF

Does not invoke strict processing. Date-time components can have any value within the constraint of the number of decimal digits allowed in the field. For example, if the field is a two-digit month, the value can be 12 or 99, but not 115.

Supplying Arguments for Date-Time Functions

Date-time functions may operate on a component of a date-time value. This topic lists the valid component names and abbreviations for use with these functions.

Reference: Arguments for Use With Date and Time Functions

The following component names, valid abbreviations, and values are supported as arguments for the date-time functions that require them:

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Abbreviation</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>year</td>
<td>yy</td>
<td>0001-9999</td>
</tr>
<tr>
<td>quarter</td>
<td>qq</td>
<td>1-4</td>
</tr>
<tr>
<td>month</td>
<td>mm</td>
<td>1-12 or a month name, depending on the function.</td>
</tr>
<tr>
<td>day-of-year</td>
<td>dy</td>
<td>1-366</td>
</tr>
</tbody>
</table>
Component Name

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Abbreviation</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>day or day-of-month</td>
<td>dd</td>
<td>1-31 (The two component names are equivalent.)</td>
</tr>
<tr>
<td>week</td>
<td>wk</td>
<td>1-53</td>
</tr>
<tr>
<td>weekday</td>
<td>dw</td>
<td>1-7 (Sunday-Saturday)</td>
</tr>
<tr>
<td>hour</td>
<td>hh</td>
<td>0-23</td>
</tr>
<tr>
<td>minute</td>
<td>mi</td>
<td>0-59</td>
</tr>
<tr>
<td>second</td>
<td>ss</td>
<td>0-59</td>
</tr>
<tr>
<td>millisecond</td>
<td>ms</td>
<td>0-999</td>
</tr>
<tr>
<td>microsecond</td>
<td>mc</td>
<td>0-999999</td>
</tr>
<tr>
<td>nanosecond</td>
<td>ns</td>
<td>0-999999999999</td>
</tr>
</tbody>
</table>

Note:

- For an argument that specifies a length of eight, ten, or 12 characters, use eight to include milliseconds, ten to include microseconds, and 12 to include nanoseconds in the returned value.

- The last argument is always a USAGE format that indicates the data type returned by the function. The type may be A (alphanumeric), I (integer), D (floating-point double precision), H (date-time), or a date format (for example, YYMD).

Using Date-Time Formats

There are three types of date formats that are valid in date-time values: numeric string format, formatted-string format, and translated-string format. In each format, two-digit years are interpreted using the DEFCENT and YRTHRESH parameters.

Time components are separated by colons and may be followed by A.M., P.M., a.m., or p.m.
The DATEFORMAT parameter specifies the order of the date components (month/day/year) when date-time values are entered in the formatted string and translated string formats. It makes a value’s input format independent of the format of the variable to which it is being assigned.

Numeric String Format

The numeric string format is exactly two, four, six, or eight digits. Four-digit strings are considered to be a year (century must be specified), and the month and day are set to January 1. Six and eight-digit strings contain two or four digits for the year, followed by two for the month, and two for the day. Because the component order is fixed with this format, the DATEFORMAT setting is ignored.

If a numeric-string format longer than eight digits is encountered, it is treated as a combined date-time string in the \textit{Hnn} format.

Example: Using Numeric String Format

The following are examples of numeric string date constants:

<table>
<thead>
<tr>
<th>String</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>January 1, 1999</td>
</tr>
<tr>
<td>1999</td>
<td>January 1, 1999</td>
</tr>
<tr>
<td>19990201</td>
<td>February 1, 1999</td>
</tr>
</tbody>
</table>

Formatted-string Format

The formatted-string format contains a one or two-digit day, a one or two-digit month, and a two or four-digit year, each component separated by a space, slash, hyphen, or period. All three components must be present and follow the DATEFORMAT setting. If any of the three fields is four digits, it is interpreted as the year, and the other two fields must follow the order given by the DATEFORMAT setting.
Using Formatted-string Format

The following are examples of formatted-string date constants and specify May 20, 1999:

1999/05/20
5 20 1999
99.05.20
1999–05–20

Translated-string Format

The translated-string format contains the full or abbreviated month name. The year must also be present in four-digit or two-digit form. If the day is missing, day 1 of the month is assumed; if present, it can have one or two digits. If the string contains both a two-digit year and a two-digit day, they must be in the order given by the DATEFORMAT setting.

Using Translated-string Format

The following date is in translated-string format:

January 6 2000

Time Format

Time components are separated by colons and may be followed by A.M., P.M., a.m., or p.m.

Seconds can be expressed with a decimal point or be followed by a colon. If there is a colon after seconds, the value following it represents milliseconds. There is no way to express microseconds or nanoseconds using this notation.

A decimal point in the seconds value indicates the decimal fraction of a second. Microseconds can be represented using six decimal digits. Nanoseconds can be represented using nine decimal digits.

Using Time Formats

The following are examples of acceptable time formats:

14:30:20:99 (99 milliseconds)
14:30
14:30:20.99 (99/100 seconds)
14:30:20.999999 (999999 microseconds)
02:30:20:500pm
Example: Using Universal Date-Time Input Values

With DTSTANDARD settings of STANDARD and STANDARDU, the following date-time values can be read as input:

<table>
<thead>
<tr>
<th>Input Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:30[:20,99]</td>
<td>Comma separates time components instead of period</td>
</tr>
<tr>
<td>14:30[:20.99]Z</td>
<td>Universal time</td>
</tr>
<tr>
<td>15:30[:20,99]+01</td>
<td>Each of these is the same as above in Central European Time</td>
</tr>
<tr>
<td>15:30[:20,99]+0100</td>
<td>Each of these is the same as above in Central European Time</td>
</tr>
<tr>
<td>15:30[:20,99]+01:00</td>
<td>Each of these is the same as above in Central European Time</td>
</tr>
<tr>
<td>09:30[:20.99]-05</td>
<td>Same as above in Eastern Standard Time</td>
</tr>
</tbody>
</table>

Note that these values are stored identically internally with the STANDARDU setting. With the STANDARD setting, everything following the Z, +, or - is ignored.

Assigning Date-Time Values

A date-time value is a constant in character format assigned by one of the following:

- A sequential data source.
- An expression that defines WHERE or IF criteria or creates a temporary field using the DEFINE or COMPUTE command.

A date-time constant can have blanks at the beginning or end or immediately preceding an am/pm indicator.

Syntax: How to Assign Date-Time Values

In a character file

```
date_string [time_string]
```

or

```
time_string [date_string]
```
In a COMPUTE, DEFINE, or WHERE expression

\[
\text{DT}(\text{date_string} [\text{time_string}])
\]

or

\[
\text{DT}(\text{time_string} [\text{date_string}])
\]

In an IF expression

'\text{date_string} [\text{time_string}]'

or

'\text{time_string} [\text{date_string}]'

where:

\text{time_string}

Is a time string in acceptable format. A time string can have a blank immediately preceding an am/pm indicator.

\text{date_string}

Is a date string in numeric string, formatted-string, or translated-string format.

In an IF criteria, if the value does not contain blanks or special characters, the single quotation marks are not necessary.

\textbf{Note:} The date and time strings must be separated by at least one blank space. Blank spaces are also permitted at the beginning and end of the date-time string.

\textit{Example: Assigning Date-Time Literals}

The DT prefix can be used in a COMPUTE, DEFINE, or WHERE expression to assign a date-time literal to a date-time field. For example:

\[
\begin{align*}
\text{DT2/HYYMDS} &= \text{DT}(20051226 05:45); \\
\text{DT3/HYYMDS} &= \text{DT}(2005 \text{ DEC} 26 05:45); \\
\text{DT4/HYYMDS} &= \text{DT}(\text{December 26 2005} 05:45);
\end{align*}
\]
Example: Assigning a Date-Time Value in a COMPUTE Command

The following uses the DT function in a COMPUTE command to create a new field containing an assigned date-time value.

```plaintext
TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME AND COMPUTE
NEW_SAL/D12.2M = CURR_SAL + (0.1 * CURR_SAL);
RAISETIME/HYYMDIA = DT(20000101 09:00AM);
WHERE CURR_JOBCODE LIKE 'B%'
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>NEWSAL</th>
<th>RAISETIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMITH</td>
<td>MARY</td>
<td>$14,520.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>JONES</td>
<td>DIANE</td>
<td>$20,328.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>ROMANS</td>
<td>ANTHONY</td>
<td>$23,232.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>MCCOY</td>
<td>JOHN</td>
<td>$20,328.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
<td>$23,958.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>ROGER</td>
<td>$17,710.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
</tbody>
</table>

Example: Assigning a Date-Time Value in WHERE Criteria

The following uses the DT function to create a new field containing an assigned date-time value. This value is then used as a WHERE criteria.

```plaintext
DEFINE FILE EMPLOYEE
NEW_SAL/D12.2M = CURR_SAL + (0.1 * CURR_SAL);
RAISETIME/HYYMDIA = DT(20000101 09:00AM);
END

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME NEWSAL RAISETIME
WHERE RAISETIME EQ DT(20000101 09:00AM)
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>NEWSAL</th>
<th>RAISETIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEVENS</td>
<td>ALFRED</td>
<td>$12,100.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>SMITH</td>
<td>MARY</td>
<td>$14,520.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>JONES</td>
<td>DIANE</td>
<td>$20,328.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>SMITH</td>
<td>RICHARD</td>
<td>$10,450.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>BANNING</td>
<td>JOHN</td>
<td>$32,670.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>IRVING</td>
<td>JOAN</td>
<td>$29,548.20</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>ROMANS</td>
<td>ANTHONY</td>
<td>$23,232.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>MCCOY</td>
<td>JOHN</td>
<td>$20,328.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
<td>$23,958.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>ROGER</td>
<td>$17,710.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>MARY</td>
<td>$9,900.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>CROSS</td>
<td>BARBARA</td>
<td>$29,768.20</td>
<td>2000/01/01 9:00AM</td>
</tr>
</tbody>
</table>
Example: Assigning a Date-Time Value in IF Criteria

The following uses the DT function to create a new field containing an assigned date-time value. This value is then used in the IF phrase.

```sql
DEFINE FILE EMPLOYEE
NEWSAL/D12.2M = CURR_SAL + (0.1 * CURR_SAL);
RAISETIME/HYYMDIA = DT(20000101 09:00AM);
END

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME NEWSAL RAISETIME
IF RAISETIME EQ '20000101 09:00AM'
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>NEWSAL</th>
<th>RAISETIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEVENS</td>
<td>ALFRED</td>
<td>$12,100.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>SMITH</td>
<td>MARY</td>
<td>$14,520.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>JONES</td>
<td>DIANE</td>
<td>$20,328.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>SMITH</td>
<td>RICHARD</td>
<td>$10,450.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>BANNING</td>
<td>JOHN</td>
<td>$32,670.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>IRVING</td>
<td>JOAN</td>
<td>$29,548.20</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>ROMANS</td>
<td>ANTHONY</td>
<td>$23,232.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>MCCOY</td>
<td>JOHN</td>
<td>$20,328.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
<td>$23,958.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>ROGER</td>
<td>$17,710.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>MARY</td>
<td>$9,900.00</td>
<td>2000/01/01 9:00AM</td>
</tr>
<tr>
<td>CROSS</td>
<td>BARBARA</td>
<td>$29,768.20</td>
<td>2000/01/01 9:00AM</td>
</tr>
</tbody>
</table>

HADD: Incrementing a Date-Time Value

Available Languages: reporting, Maintain

The HADD function increments a date-time value by a given number of units.

Syntax: How to Increment a Date-Time Value

```
HADD(date_time, 'component', increment, length, output)
```

where:

- **datetime**
 - Date-time

 Is the date-time value to be incremented, the name of a date-time field that contains the value, or an expression that returns the value.
component

Alphanumeric

Is the name of the component to be incremented enclosed in single quotation marks.

Note: WEEKDAY is not a valid component for HADD.

increment

Integer

Is the number of units (positive or negative) by which to increment the component, the name of a numeric field that contains the value, or an expression that returns the value.

length

Integer

Is the number of characters returned. Valid values are:

- **8** indicates a date-time value that includes one to three decimal digits (milliseconds).
- **10** indicates a date-time value that includes four to six decimal digits (microseconds).
- **12** indicates a date-time value that includes seven to nine decimal digits (nanoseconds).

output

Date-time

Is the field that contains the result, or the format of the output value enclosed in single quotation marks. This field must be in date-time format (data type H).

Example: Incrementing the Month Component of a Date-Time Field (Reporting)

HADD adds two months to each value in TRANSDATE and stores the result in ADD_MONTH. If necessary, the day is adjusted so that it is valid for the resulting month.

```
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
ADD_MONTH/HYMD = HADD(TRANSDATE, 'MONTH', 2, 8, 'HYMD');
WHERE DATE EQ 2000;
END
```

The output is:

<table>
<thead>
<tr>
<th>CUSTID</th>
<th>DATE-TIME</th>
<th>ADD_MONTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1237</td>
<td>2000/02/05 03:30</td>
<td>2000/04/05 03:30:00</td>
</tr>
<tr>
<td>1118</td>
<td>2000/06/26 05:45</td>
<td>2000/08/26 05:45:00</td>
</tr>
</tbody>
</table>
Example: Incrementing the Month Component of a Date-Time Field (Maintain)

HADD adds two months to the DT1 field:

```
MAINTAIN FILE DATETIME
FOR 1 NEXT ID DT1 INTO DTSTK
COMPUTE
NEW_DATE/HYYMDS = HADD(DTSTK.DT1, 'MONTH', 2,10, NEW_DATE);
TYPE "DT1 IS: <DTSTK(1).DT1 "
TYPE "NEW_DATE IS: <NEW_DATE "
```

The result is:

```
DT1 IS: 2000/1/1 02:57:25
NEW_DATE IS: 2000/3/1 02:57:25
TRANSACTIONS: COMMITS = 1 ROLLBACKS = 0
SEGSMENTS : INCLUDED = 0 UPDATED = 0 DELETED = 0
```

Example: Converting Unix (Epoch) Time to a Date-Time Value

Unix time (also known as Epoch time) defines an instant in time as the number of seconds that have elapsed since 00:00:00 Coordinated Universal Time (UTC), Thursday, 1 January 1970, not counting leap seconds.

The following DEFINE FUNCTION takes a number representing epoch time and converts it to a date-time value by using the HADD function to add the number of seconds represented by the input value in epoch time to the epoch base date:

```
DEFINE FUNCTION UNIX2GMT(INPUT/I9)
   UNIX2GMT/HYYMDS = HADD(DT(1970 JAN 1),©SECONDS©,INPUT,8,©HYYMDS©);
END
```

The following request uses this DEFINE FUNCTION to convert the epoch time 1449068652 to a date-time value:

```
DEFINE FILE GGSALES
INPUT/I9=1449068652;
OUTDATE/HMTDYYSb = UNIX2GMT(INPUT);
END
TABLE FILE GGSALES
PRINT DATE NOPRINT INPUT OUTDATE
WHERE RECORDLIMIT EQ 1
ON TABLE SET PAGE NOLEAD
END
```
The output is shown in the following image:

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTDATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1449068652</td>
<td>December 02 2015 3:04:12 pm</td>
</tr>
</tbody>
</table>

HCNVRT: Converting a Date-Time Value to Alphanumeric Format

Available Languages: reporting, Maintain

The HCNVRT function converts a date-time value to alphanumeric format for use with operators such as EDIT, CONTAINS, and LIKE.

Syntax:

How to Convert a Date-Time Value to Alphanumeric Format

\[
\text{HCNVRT}(\text{datetime}, '(\text{format})', \text{length}, \text{output})
\]

where:

- **datetime**

 Date-time

 Is the date-time value to be converted, the name of a date-time field that contains the value, or an expression that returns the value.

- **format**

 Alphanumeric

 Is the format of the date-time field enclosed in parentheses and single quotation marks. It must be a date-time format (data type H, up to H23).

- **length**

 Integer

 Is the number of characters in the alphanumeric field that is returned. You can supply the actual value, the name of a numeric field that contains the value, or an expression that returns the value. If \text{length} is smaller than the number of characters needed to display the alphanumeric field, the function returns a blank.

- **output**

 Alphanumeric
Is the field that contains the result, or the format of the output value enclosed in single quotation marks. This field must be in alphanumerical format and must be long enough to contain all of the characters returned.

Example: Converting a Date-Time Field to Alphanumeric Format (Reporting)

HCNVRT converts the TRANSDATE field to alphanumerical format. The first function does not include date-time display options for the field; the second function does for readability. It also specifies the display of seconds in the input field.

```
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
   ALPHA_DATE_TIME1/A20 = HCNVRT(TRANSDATE, '(H17)', 17, 'A20');
   ALPHA_DATE_TIME2/A20 = HCNVRT(TRANSDATE, '(HYYMDS)', 20, 'A20');
WHERE DATE EQ 2000
END
```

The output is:

```
CUSTID  DATE-TIME         ALPHA_DATE_TIME1      ALPHA_DATE_TIME2
------  ---------         ----------------      ----------------
1237    2000/02/05 03:30  2000020503300000000000  2000/02/05 03:30:00
1118    2000/06/26 05:45  2000062605450000000000  2000/06/26 05:45:00
```

Example: Converting a Date-Time Field to Alphanumeric Format (Maintain)

HCNVRT converts the DT1 field to alphanumeric format:

```
MAINTAIN FILE DATETIME
FOR ALL NEXT ID INTO STK;
COMPUTE
   RESULT_HCNVRT/A20 = HCNVRT(STK.DT1,'(HYYMDS)',20, RESULT_HCNVRT);
   TYPE "STK(1).DT1 = "STK(1).DT1;
   TYPE "RESULT_HCNVRT = " RESULT_HCNVRT;
END
```

HDATE: Converting the Date Portion of a Date-Time Value to a Date Format

Available Languages: reporting, Maintain

The **HDATE** function converts the date portion of a date-time value to the date format YYMD. You can then convert the result to other date formats.
Syntax: How to Convert the Date Portion of a Date-Time Value to a Date Format

HDATE(datetime, output)

where:

datetime
Date-time
Is the date-time value to be converted, the name of a date-time field that contains the value, or an expression that returns the value.

output
Date
Is the format in single quotation marks or the field that contains the result.

Example: Converting the Date Portion of a Date-Time Field to a Date Format (Reporting)

HDATE converts the date portion of the TRANSDATE field to the date format YYMD:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
TRANSDATE_DATE/YYMD = HDATE(TRANSDATE, 'YYMD');
WHERE DATE EQ 2000;
END

The output is:

<table>
<thead>
<tr>
<th>CUSTID</th>
<th>DATE-TIME</th>
<th>TRANSDATE_DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1237</td>
<td>2000/02/05 03:30</td>
<td>2000/02/05</td>
</tr>
<tr>
<td>1118</td>
<td>2000/06/26 05:45</td>
<td>2000/06/26</td>
</tr>
</tbody>
</table>

Example: Converting the Date Portion of a Date-Time Field to a Date Format (Maintain)

HDATE converts the date portion of DT1 to date format YYMD:

MAINTAIN FILE DATETIME
FOR 1 NEXT ID INTO STK;
COMPUTE
DT1_DATE/YYMD = HDATE(STK.DT1, DT1_DATE);
TYPE "STK(1).DT1 = <STK(1).DT1";
TYPE "DT1_DATE = <DT1_DATE";
END

The output is:

STK(1).DT1 = 2000/1/1 02:57:25
DT1_DATE = 2000/01/01

Using Functions
HDIFF: Finding the Number of Units Between Two Date-Time Values

Available Languages: reporting, Maintain

The HDIFF function calculates the number of date or time component units between two date-time values.

Reference: Usage Notes for HDIFF

HDIFF does its subtraction differently from DATEDIF, which subtracts date components stored in date fields. The DATEDIF calculation looks for full years or full months. Therefore, subtracting the following two dates and requesting the number of months or years, results in 0:

DATE1 12/25/2014, DATE2 1/5/2015

Performing the same calculation using HDIFF on date-time fields results in a value of 1 month or 1 year as, in this case, the month or year is first extracted from each date-time value, and then the subtraction occurs.

Syntax: How to Find the Number of Units Between Two Date-Time Values

```
HDIFF(end_dt, start_dt, 'component', output)
```

where:

`end_dt`

Date-time

Is the date-time value to subtract from, the name of a date-time field that contains the value, or an expression that returns the value.

`start_dt`

Date-time

Is the date-time value to subtract, the name of a date-time field that contains the value, or an expression that returns the value.

`component`

Alphanumeric

Is the name of the component to be used in the calculation, enclosed in single quotation marks. If the component is a week, the WEEKFIRST parameter setting is used in the calculation.
Floating-point double-precision

Is the field that contains the result, or the format of the output value enclosed in single quotation marks. The format must be floating-point double-precision.

Example: Finding the Number of Days Between Two Date-Time Fields (Reporting)

HDIFF calculates the number of days between the TRANSDATE and ADD_MONTH fields and stores the result in DIFF_PAYS, which has the format D12.2:

```
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
ADD_MONTH/HYYMDS = HADD(TRANSDATE, 'MONTH', 2, 8, 'HYYMDS');
DIFF_DAYS/D12.2 = HDIFF(ADD_MONTH, TRANSDATE, 'DAY', 'D12.2');
WHERE DATE EQ 2000;
END
```

The output is:

```
CUSTID  DATE-TIME         ADD_MONTH               DIFF_DAYS
--------  ---------         ---------               --------
1237     2000/02/05 03:30  2000/04/05 03:30:00     60.00
1118     2000/06/26 05:45  2000/08/26 05:45:00     61.00
```

Example: Finding the Number of Days Between Two Date-Time Fields (Maintain)

HDIFF calculates the number of days between ADD_MONTH and DT1:

```
MAINTAIN FILE DATETIME
FOR 1 NEXT ID INTO STK;
COMPUTE
NEW_DATE/HYYMDS = HADD(STK.DT1, 'MONTH', 2,10, NEW_DATE);
DIFF_DAYS/D12.2 = HDIFF(NEW_DATE,STK.DT1,'DAY', DIFF_DAYS);
TYPE "STK(1).DT1 = "STK(1).DT1;
TYPE "NEW_DATE = "NEW_DATE;
TYPE "DIFF_DAYS = "DIFF_DAYS
END
```

HDTTM: Converting a Date Value to a Date-Time Value

Available Languages: reporting, Maintain

The HDTTM function converts a date value to a date-time value. The time portion is set to midnight.
Syntax: How to Convert a Date Value to a Date-Time Value

HDTTM(date, length, output)

where:

date

Date
Is the date to be converted, the name of a date field that contains the value, or an expression that returns the value. It must be a full component format date. For example, it can be MDYY or YYJUL.

length

Integer
Is the length of the returned date-time value. Valid values are:

- 8 indicates a time value that includes milliseconds.
- 10 indicates a time value that includes microseconds.
- 12 indicates a time value that includes nanoseconds.

output

Date-time
Is the generated date-time value. It can be a field or the format of the output value enclosed in single quotation marks. The value must have a date-time format (data type H).

Example: Converting a Date Field to a Date-Time Field (Reporting)

HDTTM converts the date field TRANSDATE_DATE to a date-time field:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
TRANSDATE_DATE/YYMD = HDATE(TRANSDATE, 'YYMD');
DT2/HYMDIA = HDTTM(TRANSDATE_DATE, 8, 'HYMDIA');
WHERE DATE EQ 2000;
END

The output is:

<table>
<thead>
<tr>
<th>CUSTID</th>
<th>DATE-TIME</th>
<th>TRANSDATE_DATE</th>
<th>DT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1237</td>
<td>2000/02/05 03:30</td>
<td>2000/02/05</td>
<td>2000/02/05 12:00AM</td>
</tr>
<tr>
<td>1118</td>
<td>2000/06/26 05:45</td>
<td>2000/06/26</td>
<td>2000/06/26 12:00AM</td>
</tr>
</tbody>
</table>
Example: Converting a Date Field to a Date-Time Field (Maintain)

HDTTM converts the date field DT1_DATE to a date-time field:

```plaintext
MAINTAIN FILE DATETIME
FOR 1 NEXT ID INTO STK;
COMPUTE
 DT1_DATE/YYMD = HDATE(DT1, DT1_DATE);
 DT2/HYYMDIA = HDTTM(DT1_DATE, 8, DT2);
TYPE "STK(1).DT1 = <STK(1).DT1"
TYPE "DT1_DATE = <DT1_DATE"
TYPE "DT2 = <DT2"
END
```

HEXTR: Extracting Components of a Date-Time Value and Setting Remaining Components to Zero

Available Languages: reporting, Maintain

The HEXTR function extracts one or more components from a date-time value and moves them to a target date-time field with all other components set to zero.

Syntax: How to Extract Multiple Components From a Date-Time Value

```plaintext
HEXTR(datetime, 'componentstring', length, output)
```

where:

- `datetime` Date-time
 - Is the date-time value from which to extract the specified components.
- `componentstring` Alphanumeric
 - Is a string of codes, in any order, that indicates which components are to be extracted and moved to the output date-time field. The following table shows the valid values. The string is considered to be terminated by any character not in this list:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>century (the two high-order digits only of the four-digit year)</td>
</tr>
<tr>
<td>Y</td>
<td>year (the two low-order digits only of the four-digit year)</td>
</tr>
<tr>
<td>YY</td>
<td>Four digit year.</td>
</tr>
</tbody>
</table>
HEXTR: Extracting Components of a Date-Time Value and Setting Remaining Components to Zero

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>month</td>
</tr>
<tr>
<td>D</td>
<td>day</td>
</tr>
<tr>
<td>H</td>
<td>hour</td>
</tr>
<tr>
<td>I</td>
<td>minutes</td>
</tr>
<tr>
<td>S</td>
<td>seconds</td>
</tr>
<tr>
<td>s</td>
<td>milliseconds (the three high-order digits of the six-digit microseconds value)</td>
</tr>
<tr>
<td>u</td>
<td>microseconds (the three low-order digits of the six-digit microseconds value)</td>
</tr>
<tr>
<td>m</td>
<td>All six digits of the microseconds value.</td>
</tr>
<tr>
<td>n</td>
<td>Low order three digits of nine decimal digits.</td>
</tr>
</tbody>
</table>

length

Is the length of the returned date-time value. Valid values are:

- **8** indicates a time value that includes milliseconds.
- **10** indicates a time value that includes microseconds.
- **12** indicates a time value that includes nanoseconds.

output

Is the field that contains the result, or the format of the output value enclosed in single quotation marks. This field must be in date-time format (data type H).

Example:
Extracting Hour and Minute Components Using HEXTR

The VIDEOTR2 data source has a date-time field named TRANSDATE of type HYYMDI. The following request selects all records containing the time 09:18AM, regardless of the value of the remaining components:

```
TABLE FILE VIDEOTR2
PRINT TRANSDATE
BY LASTNAME
BY FIRSTNAME
WHERE HEXTR(TRANSDATE, 'HI', 8, 'HYYMDI') EQ DT(09:18AM)
END
```
The output is:

<table>
<thead>
<tr>
<th>LASTNAME</th>
<th>FIRSTNAME</th>
<th>TRANSDATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIZON</td>
<td>JANET</td>
<td>1999/11/05 09:18</td>
</tr>
<tr>
<td>PETERSON</td>
<td>GLEN</td>
<td>1999/09/09 09:18</td>
</tr>
</tbody>
</table>

HGETC: Storing the Current Local Date and Time in a Date-Time Field

Available Languages: reporting, Maintain

The HGETC function returns the current local date and time in the desired date-time format. If millisecond or microsecond values are not available in your operating environment, the function retrieves the value zero for these components.

Syntax:

How to Store the Current Local Date and Time in a Date-Time Field

\[
\text{HGETC}(\text{length}, \text{output})
\]

where:

\[\text{length}\]

Integer

Is the length of the returned date-time value. Valid values are:

- **8** indicates a time value that includes milliseconds.
- **10** indicates a time value that includes microseconds.
- **12** indicates a time value that includes nanoseconds.

\[\text{output}\]

Date-time

Is the returned date-time value. Can be a field that contains the result, or the format of the output value enclosed in single quotation marks. The format must be in date-time format (data type H).

Example:

Storing the Current Date and Time in a Date-Time Field (Reporting)

HGETC stores the current date and time in DT2:

\[
\begin{align*}
\text{TABLE FILE VIDEOTR2} \\
\text{PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE} \\
\text{DT2/HYYMDm = HGETC(10, 'HYYMDm');} \\
\text{WHERE DATE EQ 2000;} \\
\text{END}
\end{align*}
\]
The output is:

<table>
<thead>
<tr>
<th>CUSTID</th>
<th>DATE-TIME</th>
<th>DT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1237</td>
<td>2000/02/05 03:30</td>
<td>2000/10/03 15:34:24.000000</td>
</tr>
<tr>
<td>1118</td>
<td>2000/06/26 05:45</td>
<td>2000/10/03 15:34:24.000000</td>
</tr>
</tbody>
</table>

Example: Storing the Current Local Date and Time in a Date-Time Field (Maintain)

HGETC stores the current date and time in DT2:

```
MAINTAIN
COMPUTE DT2/HYYMDm = HGETC(10, DT2);
TYPE "DT2 = <DT2";
END
```

HGETZ: Storing the Current Coordinated Universal Time in a Date-Time Field

Available Languages: reporting, Maintain

HGETZ provides the current Coordinated Universal Time (UTC/GMT time, often called Zulu time). UTC is the primary civil time standard by which the world regulates clocks and time.

The value is returned in the desired date-time format. If millisecond or microsecond values are not available in your operating environment, the function retrieves the value zero for these components.

Syntax: How to Store the Current Universal Date and Time in a Date-Time Field

```
HGETZ(length, output)
```

where:

- **length**
 - Integer
 - Is the length of the returned date-time value. Valid values are:
 - **8** indicates a time value that includes milliseconds.
 - **10** indicates a time value that includes microseconds.
 - **12** indicates a time value that includes nanoseconds.
Example: Storing the Current Universal Date and Time in a Date-Time Field (Reporting)

HGETZ stores the current universal date and time in DT2:

```
TABLE FILE VIDEOTRK
PRINT CUSTID AND COMPUTE
DT2/HYYMDm = HGETZ(10, 'HYYMDm');
WHERE CUSTID GE '2000' AND CUSTID LE '3000';
END
```

The output is:

<table>
<thead>
<tr>
<th>CUSTID</th>
<th>2015/05/08 14:43:08.740000</th>
</tr>
</thead>
<tbody>
<tr>
<td>2165</td>
<td></td>
</tr>
<tr>
<td>2187</td>
<td></td>
</tr>
<tr>
<td>2280</td>
<td></td>
</tr>
<tr>
<td>2282</td>
<td></td>
</tr>
<tr>
<td>2884</td>
<td></td>
</tr>
</tbody>
</table>

Example: Calculating the Time Zone

The time zone can be calculated as a positive or negative hourly offset from GMT. Locations to the west of the prime meridian have a negative offset. The following request uses the HGETC function to retrieve the local time, and the HGETZ function to retrieve the GMT time. The HDIFF function calculates the number of boundaries between them in minutes. The zone is found by dividing the minutes by 60:

```
DEFINE FILE EMPLOYEE
LOCALTIME/HYYMDS = HGETC(8, LOCALTIME);
UTCTIME/HYYMDS = HGETZ(8, UTCTIME);
MINUTES/D4 = HDIFF(LOCALTIME, UTCTIME, 'MINUTES', 'D4');
ZONE/P3 = MINUTES/60;
END
```

```
TABLE FILE EMPLOYEE
PRINT EMP_ID NOPRINT OVER
LOCALTIME OVER
UTCTIME OVER
MINUTES OVER
ZONE
IF RECORDLIMIT IS 1
END
```
The output is:

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCALTIME</td>
<td>2015/05/12 12:47:04</td>
</tr>
<tr>
<td>UTCTIME</td>
<td>2015/05/12 16:47:04</td>
</tr>
<tr>
<td>MINUTES</td>
<td>-240</td>
</tr>
<tr>
<td>ZONE</td>
<td>-4</td>
</tr>
</tbody>
</table>

HHMMSS: Retrieving the Current Time

Available Languages: reporting

The HHMMSS function retrieves the current time from the operating system as an eight character string, separating the hours, minutes, and seconds with periods.

A compiled MODIFY procedure must use HHMMSS to obtain the time; it cannot use the &TOD variable, which also returns the time. The &TOD variable is made current only when you execute a MODIFY, SCAN, or FSCAN procedure.

There is also an HHMMSS function available in the Maintain language. For information on this function, see *HHMMSS: Retrieving the Current Time (Maintain)* on page 481.

Syntax: How to Retrieve the Current Time

\[
\text{HHMMSS}(\text{output})
\]

where:

\[\text{output}\]

Alphanumeric, at least A8

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.

Example: Retrieving the Current Time

HHMMSS retrieves the current time and displays it in the page footing:

```
TABLE FILE EMPLOYEE
SUM CURR_SAL AS 'TOTAL SALARIES' AND COMPUTE
NOWTIME/A8 = HHMMSS(NOWTIME); NOPRINT
BY DEPARTMENT
FOOTING
"SALARY REPORT RUN AT TIME <NOWTIME"
END
```
The output is:

<table>
<thead>
<tr>
<th>DEPARTMENT</th>
<th>TOTAL SALARIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIS</td>
<td>$108,002.00</td>
</tr>
<tr>
<td>PRODUCTION</td>
<td>$114,282.00</td>
</tr>
</tbody>
</table>

SALARY REPORT RUN AT TIME 15.21.14

HHMS: Converting a Date-Time Value to a Time Value

Available Languages: reporting

The HHMS function converts a date-time value to a time value.

Syntax: How to Convert a Date-Time Value to a Time Value

HHMS(date-time, length, output)

where:

datetime

Date-time
Is the date-time value to be converted.

length

Numeric
Is the length of the returned time value. Valid values are:

- **8** indicates a time value that includes milliseconds.
- **10** indicates a time value that includes microseconds.
- **12** indicates a time value that includes nanoseconds.

output

Time
Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.
Example: Converting a Date-Time Value to a Time value

The following example converts the date-time field TRANSDATE to a time field with time format HHIS,

```
DEFINE FILE VIDEOTR2
TRANSYEAR/I4 = HPART(TRANSDATE, 'YEAR', 'I4');
END
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
TRANS_TIME/HHIS = HHMS(TRANSDATE, 8, 'HHIS');
WHERE TRANSYEAR EQ 2000;
END
```

The output is:

```
CUSTID  DATE-TIME         TRANS_TIME
------  ---------         ----------
1118    2000/06/26 05:45  05:45:00
1237    2000/02/05 03:30  03:30:00
```

HINPUT: Converting an Alphanumeric String to a Date-Time Value

Available Languages: reporting, Maintain

The HINPUT function converts an alphanumeric string to a date-time value.

Syntax: How to Convert an Alphanumeric String to a Date-Time Value

```
HINPUT(source_length, 'source_string', output_length, output)
```

where:

source_length

Integer

Is the number of characters in the source string to be converted. You can supply the actual value, the name of a numeric field that contains the value, or an expression that returns the value.

source_string

Alphanumeric

Is the string to be converted enclosed in single quotation marks, the name of an alphanumeric field that contains the string, or an expression that returns the string. The string can consist of any valid date-time input value.
output_length

Integer

Is the length of the returned date-time value. Valid values are:

- **8** indicates a time value that includes one to three decimal digits (milliseconds).
- **10** indicates a time value that includes four to six decimal digits (microseconds).
- **12** indicates a time value that includes seven to nine decimal digits (nanoseconds).

output

Date-time

Is the returned date-time value. Is a field that contains the result, or the format of the output value enclosed in single quotation marks. The format must be in date-time format (data type H).

Example: Converting an Alphanumeric String to a Date-Time Value (Reporting)

HCNVRT converts the TRANSDATE field to alphanumeric format, then HINPUT converts the alphanumeric string to a date-time value:

```
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
ALPHA_DATE_TIME/A20 = HCNVRT(TRANSDATE, '(H17)', 17, 'A20');
DT_FROM_ALPHA/HYYMDS = HINPUT(14, ALPHA_DATE_TIME, 8, 'HYYMDS');
WHERE DATE EQ 2000;
END
```

The output is:

<table>
<thead>
<tr>
<th>CUSTID</th>
<th>DATE-TIME</th>
<th>ALPHA_DATE_TIME</th>
<th>DT_FROM_ALPHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1237</td>
<td>2000/02/05 03:30</td>
<td>2000020503300000</td>
<td>2000/02/05 03:30:00</td>
</tr>
<tr>
<td>1118</td>
<td>2000/06/26 05:45</td>
<td>2000062605450000</td>
<td>2000/06/26 05:45:00</td>
</tr>
</tbody>
</table>

Example: Converting an Alphanumeric String to a Date-Time Value (Maintain)

HINPUT converts the DT1 field to alphanumeric format:

```
MAINTAIN FILE DATETIME
COMPUTE
RESULT/HMtDYYmA = HINPUT(20, '1997102913305988999', 10, RESULT);
TYPE RESULT;
END
```
HMIDNT: Setting the Time Portion of a Date-Time Value to Midnight

Available Languages: reporting, Maintain

The HMIDNT function changes the time portion of a date-time value to midnight (all zeros by default). This allows you to compare a date field with a date-time field.

Syntax: How to Set the Time Portion of a Date-Time Value to Midnight

HMIDNT(datetime, length, output)

where:

datetime
Date-time
Is the date-time value whose time is to be set to midnight, the name of a date-time field that contains the value, or an expression that returns the value.

length
Integer
Is the length of the returned date-time value. Valid values are:

- 8 indicates a time value that includes milliseconds.
- 10 indicates a time value that includes microseconds.
- 12 indicates a time value that includes nanoseconds.

output
Date-time
Is the date-time return value whose time is set to midnight and whose date is copied from timestamp. Is the field that contains the result, or the format of the output value enclosed in single quotation marks. The format must be in date-time format (data type H).

Example: Setting the Time to Midnight (Reporting)

HMIDNT sets the time portion of the TRANSDATE field to midnight first in the 24-hour system and then in the 12-hour system:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
TRANSDATE_MID_24/HYYMDS = HMIDNT(TRANSDATE, 8, 'HYYMDS');
TRANSDATE_MID_12/HYYMDSA = HMIDNT(TRANSDATE, 8, 'HYYMDSA');
WHERE DATE EQ 2000;
END
The output is:

<table>
<thead>
<tr>
<th>CUSTID</th>
<th>DATE-TIME</th>
<th>TRANSDATE_MID_24</th>
<th>TRANSDATE_MID_12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1118</td>
<td>2000/06/26 05:45</td>
<td>2000/06/26 00:00:00</td>
<td>2000/06/26 12:00:00AM</td>
</tr>
<tr>
<td>1237</td>
<td>2000/02/05 03:30</td>
<td>2000/02/05 00:00:00</td>
<td>2000/02/05 12:00:00AM</td>
</tr>
</tbody>
</table>

Example: Setting the Time to Midnight (Maintain)

HMIDNT sets the time portion of DT1 to midnight in both the 24-hour and 12-hour systems:

```plaintext
MAINTAIN FILE DATETIME
FOR 1 NEXT ID INTO STK;
COMPUTE
  DT_MID_24/HYYMDS = HMIDNT(STK(1).DT1, 8, DT_MID_24);
  DT_MID_12/HYYMDSA= HMIDNT(STK(1).DT1, 8, DT_MID_12);
  TYPE "STK(1).DT1 = "STK(1).DT1;
  TYPE "DT_MID_24 = <DT_MID_24";
  TYPE "DT_MID_12 = <DT_MID_12";
END
```

HMASK: Extracting Date-Time Components and Preserving Remaining Components

Available Languages: reporting, Maintain

The HMASK function extracts one or more components from a date-time value and moves them to a target date-time field with all other components of the target field preserved.

Syntax: How to Move Multiple Date-Time Components to a Target Date-Time Field

```
HMASK(source, 'componentstring', input, length, output)
```

where:

- **source**
 - Is the date-time value from which the specified components are extracted.

- **componentstring**
 - Is a string of codes, in any order, that indicates which components are to be extracted and moved to the output date-time field. The following table shows the valid values. The string is considered to be terminated by any character not in this list:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>century (the two high-order digits only of the four-digit year)</td>
</tr>
<tr>
<td>Y</td>
<td>year (the two low-order digits only of the four-digit year)</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>YY</td>
<td>Four digit year.</td>
</tr>
<tr>
<td>M</td>
<td>month</td>
</tr>
<tr>
<td>D</td>
<td>day</td>
</tr>
<tr>
<td>H</td>
<td>hour</td>
</tr>
<tr>
<td>I</td>
<td>minutes</td>
</tr>
<tr>
<td>S</td>
<td>seconds</td>
</tr>
<tr>
<td>s</td>
<td>milliseconds (the three high-order digits of the six-digit microseconds value)</td>
</tr>
<tr>
<td>u</td>
<td>microseconds (the three low-order digits of the six-digit microseconds value)</td>
</tr>
<tr>
<td>m</td>
<td>All six digits of the microseconds value.</td>
</tr>
<tr>
<td>n</td>
<td>Low order three digits of nine decimal digits.</td>
</tr>
</tbody>
</table>

input

Is the date-time value that provides all the components for the output that are not specified in the component string.

length

Is the length of the returned date-time value. Valid values are:

- **8** indicates a time value that includes one to three decimal digits (milliseconds).
- **10** indicates a time value that includes four to six decimal digits (microseconds).
- **12** indicates a time value that includes seven to nine decimal digits (nanoseconds).

output

Is the field that contains the result, or the format of the output value enclosed in single quotation marks. This field must be in date-time format (data type H).

Reference: Usage Notes for the HMASK Function

HMASK processing is subject to the DTSTRICT setting. Moving the day (D) component without the month (M) component could lead to an invalid result, which is not permitted if the DTSTRICT setting is ON. Invalid date-time values cause any date-time function to return zeros.
Example: Changing a Date-Time Field Using HMASK

The VIDEOTRK data source has a date-time field named TRANSDATE of format HYYMDI. The following request changes any TRANSDATE value with a time component greater than 11:00 to 8:30 of the following day. First the HEXTR function extracts the hour and minutes portion of the value and compares it to 11:00. If it is greater than 11:00, the HADD function calls HMASK to change the time to 08:30 and adds one day to the date:

```
DEFINE FILE VIDEOTR2
ORIG_TRANSDATE/HYYMDI = TRANSDATE;
TRANSDATE =
IF HEXTR(TRANSDATE, 'HI', 8, 'HHI') GT DT(12:00)
    THEN HADD (HMASK(DT(08:30), 'HISs', TRANSDATE, 8, 'HYYMDI'), 'DAY',
                1,8, 'HYYMDI')
    ELSE TRANSDATE;
END

TABLE FILE VIDEOTR2
PRINT ORIG_TRANSDATE TRANSDATE
BY LASTNAME
BY FIRSTNAME
WHERE ORIG_TRANSDATE NE TRANSDATE
END
```

The output is

<table>
<thead>
<tr>
<th>LASTNAME</th>
<th>FIRSTNAME</th>
<th>ORIG_TRANSDATE</th>
<th>TRANSDATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERTAL</td>
<td>MARCIA</td>
<td>1999/07/29 12:19</td>
<td>1999/07/30 08:30</td>
</tr>
<tr>
<td>GARCIA</td>
<td>JOANN</td>
<td>1998/05/08 12:48</td>
<td>1998/05/09 08:30</td>
</tr>
<tr>
<td>PARKER</td>
<td>GLENDA</td>
<td>1999/11/30 12:12</td>
<td>1999/12/01 08:30</td>
</tr>
<tr>
<td>RATHER</td>
<td>MICHAEL</td>
<td>1998/02/28 12:33</td>
<td>1998/03/01 08:30</td>
</tr>
<tr>
<td>WILSON</td>
<td>KELLY</td>
<td>1999/06/26 12:34</td>
<td>1999/06/27 08:30</td>
</tr>
</tbody>
</table>

HNAME: Retrieving a Date-Time Component in Alphanumeric Format

Available Languages: reporting, Maintain

The HNAME function extracts a specified component from a date-time value and returns it in alphanumeric format.
Syntax:

How to Retrieve a Date-Time Component in Alphanumeric Format

\[
\text{HNAME}(\text{datetime, 'component', output})
\]

where:

\textit{datetime}
Date-time
Is the date-time value from which a component value is to be extracted, the name of a date-time field containing the value that contains the value, or an expression that returns the value.

\textit{component}
Alphanumeric
Is the name of the component to be retrieved enclosed in single quotation marks.

\textit{output}
Alphanumeric, at least A2
Is the field that contains the result, or the format of the output value enclosed in single quotation marks. The format must be in alphanumeric format.

The function converts a month argument to an abbreviation of the month name and converts and all other components to strings of digits only. The year is always four digits, and the hour assumes the 24-hour system.

Example:

Retrieving the Week Component in Alphanumeric Format (Reporting)

HNAME returns the week in alphanumeric format from the TRANSDATE field. Changing the WEEKFIRST parameter setting changes the value of the component.

```
SET WEEKFIRST = 7
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE WEEK_COMPONENT/A10 = HNAME(TRANSDATE, 'WEEK', 'A10');
WHERE DATE EQ 2000;
END
```

When WEEKFIRST is set to seven, the output is:

<table>
<thead>
<tr>
<th>CUSTID</th>
<th>DATE-TIME</th>
<th>WEEK_COMPONENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1237</td>
<td>2000/02/05 03:30</td>
<td>06</td>
</tr>
<tr>
<td>1118</td>
<td>2000/06/26 05:45</td>
<td>26</td>
</tr>
</tbody>
</table>
When WEEKFIRST is set to three, the output is:

<table>
<thead>
<tr>
<th>CUSTID</th>
<th>DATE-TIME</th>
<th>WEEK_COMPONENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1237</td>
<td>2000/02/05 03:30</td>
<td>05</td>
</tr>
<tr>
<td>1118</td>
<td>2000/06/26 05:45</td>
<td>25</td>
</tr>
</tbody>
</table>

For details on WEEKFIRST, see the *TIBCO WebFOCUS® Developing Reporting Applications* manual.

Example: Retrieving the Day Component in Alphanumeric Format (Reporting)

HNAME retrieves the day in alphanumeric format from the TRANSDATE field:

```plaintext
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
DAY_COMPONENT/A2 = HNAME(TRANSDATE, 'DAY', 'A2');
WHERE DATE EQ 2000;
END
```

The output is:

<table>
<thead>
<tr>
<th>CUSTID</th>
<th>DATE-TIME</th>
<th>DAY_COMPONENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1237</td>
<td>2000/02/05 03:30</td>
<td>05</td>
</tr>
<tr>
<td>1118</td>
<td>2000/06/26 05:45</td>
<td>26</td>
</tr>
</tbody>
</table>

Example: Retrieving the Day Component in Alphanumeric Format (Maintain)

HNAME extracts the day in alphanumeric format from DT1:

```plaintext
MAINTAIN FILE DATETIME
FOR 1 NEXT ID INTO STK;
COMPUTE
DAY_COMPONENT/A2 = HNAME(STK.DT1, 'DAY', DAY_COMPONENT);
TYPE "STK(1).DT1 = "STK(1).DT1;
TYPE "DAY_COMPONENT = <DAY_COMPONENT"
END
```

HPART: Retrieving a Date-Time Component as a Numeric Value

Available Languages: reporting, Maintain

The HPART function extracts a specified component from a date-time value and returns it in numeric format.
Syntax: How to Retrieve a Date-Time Component in Numeric Format

\[
\text{HPART} (\text{datetime, 'component', output})
\]

where:

- **datetime**
 Date-time
 Is the date-time value from which the component is to be extracted, the name of a date-time field that contains the value, or an expression that returns the value.

- **component**
 Alphanumeric
 Is the name of the component to be retrieved enclosed in single quotation marks.

- **output**
 Integer
 Is the field that contains the result, or the integer format of the output value enclosed in single quotation marks.

Example: Retrieving the Day Component in Numeric Format (Reporting)

HPART retrieves the day in integer format from the TRANSDATE field:

```plaintext
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
DAY_COMPONENT/I2 = HPART(TRANSDATE, 'DAY', 'I2');
WHERE DATE EQ 2000;
END
```

The output is:

<table>
<thead>
<tr>
<th>CUSTID</th>
<th>DATE-TIME</th>
<th>DAY_COMPONENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1237</td>
<td>2000/02/05 03:30</td>
<td>5</td>
</tr>
<tr>
<td>1118</td>
<td>2000/06/26 05:45</td>
<td>26</td>
</tr>
</tbody>
</table>
Example: Retrieving the Day Component in Numeric Format (Maintain)

HPART extracts the day in integer format from DT1:

```plaintext
MAINTAIN FILE DATETIME
FOR 1 NEXT ID INTO STK;
COMPUTE
DAY_COMPONENT/I2 = HPART(STK.DT1,'DAY',DAY_COMPONENT);
TYPE "STK(1).DT1 = <STK(1).DT1";
TYPE "DAY_COMPONENT = <DAY_COMPONENT";
END
```

HSETPT: Inserting a Component Into a Date-Time Value

Available Languages: reporting, Maintain

The HSETPT function inserts the numeric value of a specified component into a date-time value.

Syntax: How to Insert a Component Into a Date-Time Value

```plaintext
HSETPT(datetime, 'component', value, length, output)
```

where:

- **datetime**
 - Date-time
 - Is the date-time value in which to insert the component, the name of a date-time field that contains the value, or an expression that returns the value.

- **component**
 - Alphanumeric
 - Is the name of the component to be inserted enclosed in single quotation marks.

- **value**
 - Integer
 - Is the numeric value to be inserted for the requested component, the name of a numeric field that contains the value, or an expression that returns the value.
length

Integer

Is the length of the returned date-time value. Valid values are:

- **8** indicates a time value that includes one to three decimal digits (milliseconds).
- **10** indicates a time value that includes four to six decimal digits (microseconds).
- **12** indicates a time value that includes seven to nine decimal digits (nanoseconds).

output

Date-time

Is the returned date-time value whose chosen component is updated. All other components are copied from the source date-time value.

Is the field that contains the result, or the format of the output value enclosed in single quotation marks. The format must be in date-time format (data type H).

Example: **Inserting the Day Component Into a Date-Time Field (Reporting)**

HSETPT inserts the day as 28 into the ADD_MONTH field and stores the result in INSERT_DAY:

```verbatim
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
    ADD_MONTH/HYYMDS = HADD(TRANSDATE, 'MONTH', 2, 8, 'HYYMDS');
    INSERT_DAY/HYYMDS = HSETPT(ADD_MONTH, 'DAY', 28, 8, 'HYYMDS');
    WHERE DATE EQ 2000;
END
```

The output is:

<table>
<thead>
<tr>
<th>CUSTID</th>
<th>DATE-TIME</th>
<th>ADD_MONTH</th>
<th>INSERT_DAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1118</td>
<td>2000/06/26 05:45</td>
<td>2000/08/26 05:45:00</td>
<td>2000/08/28 05:45:00</td>
</tr>
<tr>
<td>1237</td>
<td>2000/02/05 03:30</td>
<td>2000/04/05 03:30:00</td>
<td>2000/04/28 03:30:00</td>
</tr>
</tbody>
</table>
Example: Inserting the Day Component Into a Date-Time Field (Maintain)

HSETPT inserts the day into ADD_MONTH:

```plaintext
MAINTAIN FILE DATETIME
FOR 1 NEXT ID INTO STK;
COMPUTE
ADD_MONTH/HYYMDS = HADD(STK.DT1, 'MONTH', 2, 8, ADD_MONTH);
INSERT_DAY/HYYMDS = HSETPT(ADD_MONTH, 'DAY', 28, 8, INSERT_DAY);
TYPE "STK(1).DT1 = <STK(1).DT1";
TYPE "ADD_MONTH = <ADD_MONTH";
TYPE "INSERT_DAY = <INSERT_DAY";
END
```

HTIME: Converting the Time Portion of a Date-Time Value to a Number

Available Languages: reporting, Maintain

The HTIME function converts the time portion of a date-time value to the number of milliseconds if the length argument is eight, microseconds if the length argument is ten, or nanoseconds if the length argument is 12.

Syntax: How to Convert the Time Portion of a Date-Time Value to a Number

```plaintext
HTIME(length, datetime, output)
```

where:

- **length**
 - Integer
 - Is the length of the input date-time value. Valid values are:
 - 8 indicates a time value that includes one to three decimal digits (milliseconds).
 - 10 indicates a time value that includes four to six decimal digits (microseconds).
 - 12 indicates a time value that includes seven to nine decimal digits (nanoseconds).

- **datetime**
 - Date-time
 - Is the date-time value from which to convert the time, the name of a date-time field that contains the value, or an expression that returns the value.
HTMTOTS or TIMETOTS: Converting a Time to a Timestamp

The HTMTOTS function returns a timestamp using the current date to supply the date components of its value, and copies the time components from its input date-time value.

Note: TIMETOTS is a synonym for HTMTOTS.

Syntax: How to Convert a Time to a Timestamp

```
HTMTOTS(time, length, output)
```

or

```
TIMETOTS(time, length, output)
```
where:

\[\text{time} \]

Date-Time

Is the date-time value whose time will be used. The date portion will be ignored.

\[\text{length} \]

Integer

Is the length of the result. This can be one of the following:

- **8** for input time values including milliseconds.
- **10** for input time values including microseconds.
- **12** for input time values including nanoseconds.

\[\text{output_format} \]

Date-Time

Is the timestamp whose date is set to the current date, and whose time is copied from time.

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.

Example: Converting a Time to a Timestamp

HTMTOTS converts the time portion of the TRANSDATE field to a timestamp, using the current date for the date portion of the returned value:

```plaintext
DEFINE FILE VIDEOTR2
   TSTMPSEC/HYYMDS = HTMTOTS(TRANSDATE, 8, 'HYYMDS');
END
TABLE FILE VIDEOTR2
PRINT TRANSDATE TSTMPSEC
BY LASTNAME BY FIRSTNAME
WHERE DATE EQ '1991'
END
```
The output is:

<table>
<thead>
<tr>
<th>LASTNAME</th>
<th>FIRSTNAME</th>
<th>TRANSDATE</th>
<th>TSTMPSEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRUZ</td>
<td>IVY</td>
<td>1991/06/27</td>
<td>02:45:00</td>
</tr>
<tr>
<td>GOODMAN</td>
<td>JOHN</td>
<td>1991/06/25</td>
<td>01:19:00</td>
</tr>
<tr>
<td>GREEVEN</td>
<td>GEORGIA</td>
<td>1991/06/24</td>
<td>10:27:00</td>
</tr>
<tr>
<td>HANDLER</td>
<td>EVAN</td>
<td>1991/06/20</td>
<td>05:15:00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1991/06/21</td>
<td>07:11:00</td>
</tr>
<tr>
<td>KRAMER</td>
<td>CHERYL</td>
<td>1991/06/21</td>
<td>01:10:00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1991/06/19</td>
<td>07:18:00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1991/06/19</td>
<td>04:11:00</td>
</tr>
<tr>
<td>MONROE</td>
<td>CATHERINE</td>
<td>1991/06/25</td>
<td>01:17:00</td>
</tr>
<tr>
<td></td>
<td>PATRICK</td>
<td>1991/06/27</td>
<td>01:17:00</td>
</tr>
<tr>
<td>SPIVEY</td>
<td>TOM</td>
<td>1991/11/17</td>
<td>11:28:00</td>
</tr>
<tr>
<td>WILLIAMS</td>
<td>KENNETH</td>
<td>1991/06/24</td>
<td>04:43:00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1991/06/24</td>
<td>02:08:00</td>
</tr>
</tbody>
</table>

HYYWD: Returning the Year and Week Number From a Date-Time Value

The week number returned by HNAME and HPART can actually be in the year preceding or following the input date.

The HYYWD function returns both the year and the week number from a given date-time value.

The output is edited to conform to the ISO standard format for dates with week numbers, yyyy-Www-d.

Syntax:

```
HYYWD(dtvalue, output)
```

where:

- **dtvalue**

 Date-time

 Is the date-time value to be edited, the name of a date-time field that contains the value, or an expression that returns the value.
output

Alphanumeric

Is the field that contains the result, or the format of the output value enclosed in single quotation marks.

The output format must be at least 10 characters long. The output is in the following format:

`yyyy-Www-d`

where:

`yyyy`

Is the four-digit year.

`ww`

Is the two-digit week number (01 to 53).

`d`

Is the single-digit day of the week (1 to 7). The d value is relative to the current WEEKFIRST setting. If WEEKFIRST is 2 or ISO2 (Monday), then Monday is represented in the output as 1, Tuesday as 2.

Using the EDIT function, you can extract the individual subfields from this output.

Example: Returning the Year and Week Number From a Date-Time Value

The following request against the VIDEOTR2 data source calls HYYWD to convert the TRANSDATE date-time field to the ISO standard format for dates with week numbers. WEEKFIRST is set to ISO2, which produces ISO standard week numbering:

```
SET WEEKFIRST = ISO2
TABLE FILE VIDEOTR2
SUM TRANSTOT QUANTITY
COMPUTE ISODATE/A10 = HYYWD(TRANSDATE, 'A10');
BY TRANSDATE
WHERE QUANTITY GT 1
END
```
The output is:

<table>
<thead>
<tr>
<th>TRANSDATE</th>
<th>TRANSTOT</th>
<th>QUANTITY</th>
<th>ISODATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991/06/24 04:43</td>
<td>16.00</td>
<td>2</td>
<td>1991-W26-1</td>
</tr>
<tr>
<td>1991/06/25 01:17</td>
<td>2.50</td>
<td>2</td>
<td>1991-W26-2</td>
</tr>
<tr>
<td>1991/06/27 02:45</td>
<td>16.00</td>
<td>2</td>
<td>1991-W26-4</td>
</tr>
<tr>
<td>1996/08/17 05:11</td>
<td>5.18</td>
<td>2</td>
<td>1996-W33-6</td>
</tr>
<tr>
<td>1998/02/04 04:11</td>
<td>12.00</td>
<td>2</td>
<td>1998-W06-3</td>
</tr>
<tr>
<td>1999/01/30 04:16</td>
<td>13.00</td>
<td>2</td>
<td>1999-W04-6</td>
</tr>
<tr>
<td>1999/04/22 06:19</td>
<td>3.75</td>
<td>3</td>
<td>1999-W16-4</td>
</tr>
<tr>
<td>1999/05/06 05:14</td>
<td>1.00</td>
<td>2</td>
<td>1999-W18-4</td>
</tr>
<tr>
<td>1999/08/09 03:17</td>
<td>15.00</td>
<td>2</td>
<td>1999-W32-1</td>
</tr>
<tr>
<td>1999/09/09 09:18</td>
<td>14.00</td>
<td>2</td>
<td>1999-W36-4</td>
</tr>
<tr>
<td>1999/10/16 09:11</td>
<td>5.18</td>
<td>2</td>
<td>1999-W41-6</td>
</tr>
<tr>
<td>1999/11/05 11:12</td>
<td>2.50</td>
<td>2</td>
<td>1999-W44-5</td>
</tr>
<tr>
<td>1999/12/09 09:47</td>
<td>5.18</td>
<td>2</td>
<td>1999-W49-4</td>
</tr>
<tr>
<td>1999/12/15 04:04</td>
<td>2.50</td>
<td>2</td>
<td>1999-W50-3</td>
</tr>
</tbody>
</table>

Example: Extracting a Component From a Date Returned by HYYWD

The following request against the VIDEOTR2 data source calls HYYWD to convert the TRANSDATE date-time field to the ISO standard format for dates with week numbers. It then uses the EDIT function to extract the week component from this date. WEEKFIRST is set to ISO2, which produces ISO standard week numbering:

```
SET WEEKFIRST = ISO2
TABLE FILE VIDEOTR2
SUM TRANSTOT QUANTITY
COMPUTE ISODATE/A10 = HYYWD(TRANSDATE, 'A10');
COMPUTE WEEK/A2 = EDIT(ISODATE, '$$$$$99$$');
BY TRANSDATE
WHERE QUANTITY GT 1 AND DATE EQ 1991
END
```

The output is:

<table>
<thead>
<tr>
<th>TRANSDATE</th>
<th>TRANSTOT</th>
<th>QUANTITY</th>
<th>ISODATE</th>
<th>WEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991/06/24 04:43</td>
<td>16.00</td>
<td>2</td>
<td>1991-W26-1</td>
<td>26</td>
</tr>
<tr>
<td>1991/06/25 01:17</td>
<td>2.50</td>
<td>2</td>
<td>1991-W26-2</td>
<td>26</td>
</tr>
<tr>
<td>1991/06/27 02:45</td>
<td>16.00</td>
<td>2</td>
<td>1991-W26-4</td>
<td>26</td>
</tr>
</tbody>
</table>
Maintain-specific Date and Time Functions

Maintain-specific date and time functions manipulate date and time values. These functions are available only in Maintain Data.

There are additional date and time functions available in both the reporting and Maintain languages. For more information on these functions, see *Date-Time Functions* on page 437.

In this chapter:
- Maintain-specific Standard Date and Time Functions

Maintain-specific Standard Date and Time Functions

Standard date and time functions are for use with non-legacy dates. For a definition of standard dates and times, see *Date-Time Functions* on page 437.

HHMMSS: Retrieving the Current Time (Maintain)

The HHMMSS function retrieves the current time from the operating system as an 8-character string, separating the hours, minutes, and seconds with periods.

To use this function, you must import the function library MNTUWS. For information on importing a function library, see *Calling a Function* on page 61.

There is also an HHMMSS function available in the reporting language. For information on this function, see *HHMMSS: Retrieving the Current Time* on page 462.

Syntax:

How to Retrieve the Current Time

```
HHMMSS()
```
Example: Retrieving the Current Time

HHMMSS retrieves the current time from the operating system:

```
MAINTAIN
Module Import (mntuws);
Case Top
Compute now/a10 = hhmmss();
type "Now = <<now"
EndCase
END
```

The output is:

Now = 14.25.33

Initial_HHMMSS: Returning the Time the Application Was Started

The Initial_HHMMSS function returns the time when the Maintain Data application was started as an 8-character string, with embedded periods separating the hours, minutes, and seconds.

To use this function, you must import the function library MNTUWS. For details on importing this library, see Calling a Function on page 61.

Syntax: How to Retrieve the Initial Time

```
Initial_HHMMSS()
```

Initial_TODAY: Returning the Date the Application Was Started

The Initial_TODAY function returns the date in MM/DD/YY format when the Maintain Data application was started as an 8-character string with embedded slashes.

To use this function, you must import the function library MNTUWS. For details on importing this library, see Calling a Function on page 61.

Syntax: How to Retrieve the Initial Date

```
Initial_TODAY()
```

TODAY: Retrieving the Current Date (Maintain)

The TODAY function retrieves the current date from the system in the format MM/DD/YY. TODAY always returns a date that is current. Therefore, if you are running an application late at night, use TODAY. You can remove the embedded slashes using the EDIT function.
To use this function, you must import the function library MNTUWS. For information on importing this library, see *Calling a Function* on page 61.

There is a version of the TODAY function that is available only in the reporting language. For information on this function, see *HTMTOTS or TIMETOTS: Converting a Time to a Timestamp* on page 476.

Syntax: How to Retrieve the Current Date

TODAY()

Example: Retrieving the Current Date

TODAY retrieves the current date from the system:

```
MAINTAIN
Module Import (mntuws);

Case Top
Compute date1/a8 = today();
type "Date1 = <<date1"
Endcase
END
```

The result is:

Date1 = 07/17/02

TODAY2: Returning the Current Date

The TODAY2 function retrieves the current date from the operating system in the format MM/DD/YYYY. Use format A10 with the TODAY2 function to ensure proper results.

To use this function, you must import the function library MNTUWS. For information on importing this library, see *Calling a Function* on page 61.

Syntax: How to Retrieve the Current Date

TODAY2()
Example: Retrieving the Current Date

TODAY2 retrieves the current date from the system:

MAINTAIN
Module Import (mntuws);

Case Top
Compute date2/a10 = today2();
type "Date2 = <<date2"
Endcase
END

The result is:

Date2 = 07/17/2002

ADD: Adding Days to a Date

The ADD function adds a given number of days to a date.

Syntax: How to Add Days to a Date

ADD(date, value)

or

date.ADD(value)

where:

date
 Is the date to add days to, or a field containing the date.

value
 Is the number of days by which to increase the date.

This function changes the value of date.

Example: Adding Days to a Date

ADD adds 10 days to the each value in the DateVar field:

ADD(DateVar, 10)
The following are sample values for DateVar and the corresponding values for \(\text{ADD(DateVar, 10)} \):

<table>
<thead>
<tr>
<th>DateVar</th>
<th>ADD(DateVar, 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/31/1999</td>
<td>01/10/2000</td>
</tr>
<tr>
<td>01/01/2000</td>
<td>01/11/2000</td>
</tr>
<tr>
<td>01/02/2000</td>
<td>01/12/2000</td>
</tr>
</tbody>
</table>

DAY: Extracting the Day of the Month From a Date

The \(\text{DAY} \) function extracts the day of the month from a date and returns the result as an integer.

Syntax:

How to Extract the Day of the Month From a Date

\[
\text{DAY}(\text{date});
\]

where:

\[\text{date}\]

Is the date (in date format) from which to extract the day of the month, or a field containing the date.

Example:

Extracting the Day of the Month From a Date

\(\text{DAY} \) extracts the day of the month from the DATE field:

\[
\text{DAY(DATE)}
\]

The following are sample values for DATE and the corresponding values for \(\text{DAY(DATE)} \):

<table>
<thead>
<tr>
<th>DATE</th>
<th>DAY(DATE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/01/2000</td>
<td>1</td>
</tr>
<tr>
<td>01/02/2000</td>
<td>2</td>
</tr>
<tr>
<td>01/03/2000</td>
<td>3</td>
</tr>
</tbody>
</table>

JULIAN: Determining How Many Days Have Elapsed in the Year

The \(\text{JULIAN} \) function determines the number of days that have elapsed in the given year up to a given date, and returns the result as an integer.
Syntax:

How to Determine How Many Days Have Elapsed in the Year

\[
\text{JULIAN}(\text{date});
\]

where:

\text{date}

Is the date (in date format) for which to determine the number of days elapsed in the given year, or a field containing the date.

Example:

Determining How Many Days Have Elapsed in the Year

JULIAN determines the number of days that have elapsed up to the date in the DATE field:

\[
\text{JULIAN(DATE)}
\]

The following are sample values for DATE and the corresponding values for JULIAN(DATE):

<table>
<thead>
<tr>
<th>DATE</th>
<th>JULIAN(DATE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/01/2000</td>
<td>1</td>
</tr>
<tr>
<td>02/01/2000</td>
<td>32</td>
</tr>
<tr>
<td>03/01/2000</td>
<td>61</td>
</tr>
</tbody>
</table>

MONTH: Extracting the Month From a Date

The MONTH function extracts the month from a date and returns the result as an integer.

Syntax:

How to Extract the Month From a Date

\[
\text{MONTH}(\text{date});
\]

where:

\text{date}

Is the date (in date format) from which to extract the month, or a field containing the date.

Example:

Extracting the Month From a Date

MONTH extracts the month from each value in the DATE field:

\[
\text{MONTH(DATE)}
\]
The following are sample values for DATE and the corresponding values for MONTH(DATE):

<table>
<thead>
<tr>
<th>DATE</th>
<th>MONTH (DATE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/01/2000</td>
<td>1</td>
</tr>
<tr>
<td>02/01/2000</td>
<td>2</td>
</tr>
<tr>
<td>03/01/2000</td>
<td>3</td>
</tr>
</tbody>
</table>

QUARTER: Determining the Quarter

The QUARTER function determines the quarter of the year in which a date resides, and returns the result as an integer.

Syntax:

How to Determine the Quarter for a Date

```
QUARTER(date);
```

where:

date

Is the date (in date format) for which to determine the quarter, or a field containing the date.

Example:

Determining the Quarter for a Date

QUARTER extracts the quarter component from each value in the DATE field:

```
QUARTER (DATE)
```

The following are sample values for DATE and the corresponding values for QUARTER(DATE):

<table>
<thead>
<tr>
<th>DATE</th>
<th>QUARTER (DATE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/01/2000</td>
<td>1</td>
</tr>
<tr>
<td>04/01/2000</td>
<td>2</td>
</tr>
<tr>
<td>07/01/2000</td>
<td>3</td>
</tr>
</tbody>
</table>

SETMDY: Setting the Value to a Date

The SETMDY function sets a value to a date based on numeric values representing a day, month, and year. SETMDY returns a 0 if the function is successful, and a negative number if the function fails.
Syntax: How to Set a Value to a Date

\[
\text{SETMDY}(\text{date, month, day, year});
\]

or

\[
\text{date}.\text{SETMDY}(\text{month, day, year});
\]

where:

- **date**
 - Is the date, in date format, or a field containing the date.

- **month**
 - Is an integer value representing a month.

- **day**
 - Is an integer value representing the day of the month.

- **year**
 - Is an integer value representing a year.

Example: Setting a Value to a Date

SETMDY sets the value of DateVar, which is formatted as a date that appears as wrMtrDYY (for example, Saturday, January 1, 2000):

\[
\text{SETMDY(DateVar, month, day, year)};
\]

The following are sample values for month, day, and year, and the corresponding dates for DateVar:

<table>
<thead>
<tr>
<th>month</th>
<th>day</th>
<th>year</th>
<th>DateVar</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>05</td>
<td>1965</td>
<td>Monday, April 5, 1965</td>
</tr>
<tr>
<td>02</td>
<td>01</td>
<td>1997</td>
<td>Saturday, February 1, 1997</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>2000</td>
<td>Saturday, January 1, 2000</td>
</tr>
</tbody>
</table>

SUB: Subtracting a Value From a Date

The SUB function subtracts a given number of days from a date.
Syntax: How to Subtract a Value From a Date

```
SUB(date, value)
```

or

```
date.SUB(value)
```

where:

- `date` is the date from which to subtract the value, or a field containing the date.
- `value` is the value to subtract from the date.

Example: Subtracting Days From a Date

`SUB (dateVar, 10)`

The following are sample values for `DateVar` and the corresponding values for `SUB(DateVar, 10)`:

<table>
<thead>
<tr>
<th>DateVar</th>
<th>SUB(DateVar, 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/31/1999</td>
<td>12/21/2000</td>
</tr>
<tr>
<td>01/01/2000</td>
<td>12/22/2000</td>
</tr>
<tr>
<td>01/02/2000</td>
<td>12/23/2000</td>
</tr>
</tbody>
</table>

WEEKDAY: Determining the Day of the Week for a Date

The WEEKDAY function determines the day of the week for a date and returns the result as an integer (1=Monday, 2=Tuesday, and so on).

Syntax: How to Determine the Day of the Week for a Date

```
WEEKDAY(date);
```

where:

- `date` is the date (in date format) for which to determine the weekday, or a field containing the date.
Example: Determining the Day of the Week for a Date

WEEKDAY determines the day of the week for each date in the DATE field, and stores that day as a number corresponding to a weekday:

\[\text{WEEKDAY(DATE)} \]

The following are sample values for DATE and the corresponding values for WEEKDAY(DATE):

<table>
<thead>
<tr>
<th>DATE</th>
<th>WEEKDAY(DATE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/01/2000</td>
<td>6</td>
</tr>
<tr>
<td>01/02/2000</td>
<td>7</td>
</tr>
<tr>
<td>01/03/2000</td>
<td>1</td>
</tr>
</tbody>
</table>

YEAR: Extracting the Year From a Date

The YEAR function extracts the year from a date.

Syntax: How to Extract the Year From a Date

\[\text{YEAR(date)}; \]

where:

\[\text{date} \]

Is the date from which to extract the year, or a field containing the date.

Example: Extracting a Year From a Date

YEAR extracts the year from the DATE field, and stores that year in the YEAR(DATE) field:

\[\text{YEAR(DATE)} \]

The following are sample values for DATE and the corresponding values for YEAR(DATE):

<table>
<thead>
<tr>
<th>DATE</th>
<th>YEAR(DATE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/01/2000</td>
<td>2000</td>
</tr>
<tr>
<td>02/01/2001</td>
<td>2001</td>
</tr>
<tr>
<td>03/01/2002</td>
<td>2002</td>
</tr>
</tbody>
</table>
Simplified conversion functions have streamlined parameter lists, similar to those used by SQL functions. In some cases, these simplified functions provide slightly different functionality than previous versions of similar functions.

The simplified functions do not have an output argument. Each function returns a value that has a specific data type.

When used in a request against a relational data source, these functions are optimized (passed to the RDBMS for processing).

In this chapter:

- **CHAR:** Returning a Character Based on a Numeric Code
- **COMPACTFORMAT:** Displaying Numbers in an Abbreviated Format
- **CTRLCHAR:** Returning a Non-Printable Control Character
- **DT_FORMAT:** Converting a Date or Date-Time Value to an Alphanumeric String
- **FPRINT:** Displaying a Value in a Specified Format
- **HEXTYPE:** Returning the Hexadecimal View of an Input Value
- **PHONETIC:** Returning a Phonetic Key for a String
- **TO_INTEGER:** Converting a Character String to an Integer Value
- **TO_NUMBER:** Converting a Character String to a Numeric Value

CHAR: Returning a Character Based on a Numeric Code

The CHAR function accepts a decimal integer and returns the character identified by that number converted to ASCII or EBCDIC, depending on the operating environment. The output is returned as variable length alphanumeric. If the number is above the range of valid characters, a null value is returned.

For a chart of printable characters and their decimal equivalents, see *Character Chart for ASCII and EBCDIC* on page 53.
Syntax:

How to Return a Character Based on a Numeric Code

```plaintext
CHAR(number_code)
```

where:

- **number_code**
 - Integer

 Is a field, number, or numeric expression whose whole absolute value will be used as a number code to retrieve an output character.

For example, a TAB character is returned by CHAR(9) in ASCII environments, or by CHAR(5) in EBCDIC environments.

Example:

Using the CHAR Function to Insert Control Characters Into a String

The following request defines a field with carriage return (CHAR(13)) and line feed (CHAR(10)) characters inserted between the words HELLO and GOODBYE (in an ASCII environment). To show that these characters were inserted, the output is generated in PDF format and the StyleSheet attribute LINEBREAK='CRLF' is used to have these characters respected and print the field value on two lines.

```plaintext
DEFINE FILE WF_RETAIL_LITE
MYFIELD/A20 WITH COUNTRY_NAME=\'HELLO\' | CHAR(13) | CHAR(10) | \'GOODBYE\';
END
TABLE FILE WF_RETAIL_LITE
SUM MYFIELD
ON TABLE PCHOLD FORMAT PDF
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
TYPE=REPORT,LINEBREAK='CRLF',$
ENDSTYLE
END
```

The output is shown in the following image.

```
<table>
<thead>
<tr>
<th>MYFIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELLO</td>
</tr>
<tr>
<td>GOODBYE</td>
</tr>
</tbody>
</table>
```

COMPACTFORMAT: Displaying Numbers in an Abbreviated Format

COMPACTFORMAT displays numbers in a compact format where:

- **K** is an abbreviation for thousands.
M is an abbreviation for millions.

B is an abbreviation for billions.

T is an abbreviation for trillions.

COMPACTFORMAT computes which abbreviation to use, based on the order of magnitude of the largest value in the column. The returned value is an alphanumeric string. Attempting to output this value to a numeric format will result in a format error, and the value zero (0) will be displayed.

Syntax:

How to Display Numbers in an Abbreviated Format

COMPACTFORMAT(*input*)

where:

input

Is the name of a numeric field.

Example:

Displaying Numbers in an Abbreviated Format

The following example uses the COMPACTFORMAT function to abbreviate the display of the summed values of the DAYSDELAYED, QUANTITY_SOLD, and COGS_US fields.

```plaintext
TABLE FILE WF_RETAIL_LITE
SUM DAYSDELAYED QUANTITY_SOLD COGS_US
COMPUTE
CDAYS/A30= COMPACTFORMAT(DAYSDELAYED);
CQUANT/A30= COMPACTFORMAT(QUANTITY_SOLD);
CCOGS/A30= COMPACTFORMAT(COGS_US);
ON TABLE SET PAGE NOPAGE
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

The output is shown in the following image.
CTRLCHAR: Returning a Non-Printable Control Character

The CTRLCHAR function returns a nonprintable control character specific to the running operating environment, based on a supported list of keywords. The output is returned as variable length alphanumeric.

Syntax:

How to Return a Non-Printable Control Character

```
CTRLCHAR(ctrl_char)
```

where:

- `ctrl_char`
 - Is one of the following keywords.
 - NUL returns a null character.
 - SOH returns a start of heading character.
 - STX returns a start of text character.
 - ETX returns an end of text character.
 - EOT returns an end of transmission character.
 - ENQ returns an enquiry character.
 - ACK returns an acknowledge character.
 - BEL returns a bell or beep character.
 - BS returns a backspace character.
 - TAB or HT returns a horizontal tab character.
 - LF returns a line feed character.
 - VT returns a vertical tab character.
 - FF returns a form feed (top of page) character.
 - CR returns a carriage control character.
 - SO returns a shift out character.
 - SI returns a shift in character.
 - DLE returns a data link escape character.
- **DC1** or **XON** returns a device control 1 character.
- **DC2** returns a device control 2 character.
- **DC3** or **XOFF** returns a device control 3 character.
- **DC4** returns a device control 4 character.
- **NAK** returns a negative acknowledge character.
- **SYN** returns a synchronous idle character.
- **ETB** returns an end of transmission block character.
- **CAN** returns a cancel character.
- **EM** returns an end of medium character.
- **SUB** returns a substitute character.
- **ESC** returns an escape, prefix, or altmode character.
- **FS** returns a file separator character.
- **GS** returns a group separator character.
- **RS** returns a record separator character.
- **US** returns a unit separator character.
- **DEL** returns a delete, rubout, or interrupt character.
Example: Using the CTRLCHAR Function to Insert Control Characters Into a String

The following request defines a field with carriage return (CTRLCHAR(CR)) and line feed (CTRLCHAR(LF)) characters inserted between the words HELLO and GOODBYE. To show that these characters were inserted, the output is generated in PDF format and the StyleSheet attribute LINEBREAK='CRLF' is used to have these characters respected and print the field value on two lines.

```define file WF_RETAIL_LITE
MYFIELD/A20 WITH COUNTRY_NAME='HELLO' | CTRLCHAR(CR) | CTRLCHAR(LF) | 'GOODBYE';
end
```

```
table file WF_RETAIL_LITE
sum MYFIELD
on table PCHOLD format pdf
on table set page nolead
on table set style *
type=report, linebreak='CRLF',$
endstyle
end
```

The output is shown in the following image.

```
MYFIELD
HELLO
GOODBYE
```

DT_FORMAT: Converting a Date or Date-Time Value to an Alphanumeric String

DT_FORMAT converts a date or date-time value to an alphanumeric string in a specified date or date-time format. For information about date and date-time formats, see the Describing Data With TIBCO WebFOCUS® Language manual. For information about date and date-time formats, see the Describing Data With TIBCO WebFOCUS® Language manual.

Syntax: How to Convert a Date Value to an Alphanumeric String in a Specified Date Format

```
DT_FORMAT(date,'date_format')
```

where:

- **date**
 - Numeric, date, or date-time
 - Is the date or date-time field or value to be converted.

- **'date_format'**
 - Alphanumeric literal
Is a date or date-time format that fits the input date format type, enclosed in single quotation marks.

Example: Converting Date and Date_Time Values to Alphanumeric Format

The following request converts date and date-time values to alphanumeric values with specified date and date-time formats.

```
DEFINE FILE VIDEOTRK
NEWDT1/A12 = DT_FORMAT(TRANSDAT,'YYMD');
NEWDT2/A30 = DT_FORMAT(DT_CURRENT_DATETIME(SECOND),'HYYMTDs');
NEWDT3/A30= DT_FORMAT('April 1, 2019','YYMDTr');
END
```

TABLE FILE VIDEOTRK
PRINT NEWDT1 NEWDT2 NEWDT3
BY TRANSDAT
WHERE OUTPUTLIMIT EQ 1
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
END

The output is shown in the following image.

<table>
<thead>
<tr>
<th>TRANSDATE</th>
<th>NEWDT1</th>
<th>NEWDT2</th>
<th>NEWDT3</th>
</tr>
</thead>
<tbody>
<tr>
<td>91/06/17</td>
<td>1991/06/17</td>
<td>2019 December 17 11:36:45.000</td>
<td>2019, APRIL 1</td>
</tr>
</tbody>
</table>

FPRINT: Displaying a Value in a Specified Format

Given an output format, the simplified conversion function FPRINT converts a value to alphanumeric format for display.

Note: A legacy FPRINT function also exists and is still supported. For information, see *FPRINT: Converting Fields to Alphanumeric Format* on page 508. The legacy function has an additional argument for the name or format of the returned value.

Syntax: How to Display a Value in a Specified Format

```
FPRINT(value, 'out_format')
```

where:

- `value`
 - Any data type

 Is the value to be converted.
'out_format'

Fixed length alphanumeric

Is the display format. For information about valid display formats, see the Describing Data With TIBCO WebFOCUS® Language manual.

Example: Displaying a Value in a Specified Format

The following request displays COGS_US as format 'D9M', and TIME_DATE as format 'YYMtrD', by converting them to alphanumeric using FPRINT.

```plaintext
DEFINE FILE WF_RETAIL_LITE
COGS_A/A25 = FPRINT(COGS_US, 'D9M');
DATE1/A25 = FPRINT(TIME_DATE, 'YYMtrD');
END
TABLE FILE WF_RETAIL_LITE
PRINT LST.COGS_US COGS_A DATE1
BY TIME_DATE
WHERE RECORDLIMIT EQ 10
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Sale Date</th>
<th>LST Cost of Goods</th>
<th>COGS_A</th>
<th>DATE1</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/03/2009</td>
<td>$234.00</td>
<td>$234</td>
<td>2009, January 3</td>
</tr>
<tr>
<td></td>
<td>$46.00</td>
<td>$46</td>
<td>2009, January 3</td>
</tr>
<tr>
<td></td>
<td>$380.00</td>
<td>$380</td>
<td>2009, January 3</td>
</tr>
<tr>
<td></td>
<td>$374.00</td>
<td>$374</td>
<td>2009, January 3</td>
</tr>
<tr>
<td></td>
<td>$310.00</td>
<td>$310</td>
<td>2009, January 3</td>
</tr>
<tr>
<td></td>
<td>$83.00</td>
<td>$83</td>
<td>2009, January 3</td>
</tr>
<tr>
<td></td>
<td>$312.00</td>
<td>$312</td>
<td>2009, January 3</td>
</tr>
<tr>
<td></td>
<td>$548.00</td>
<td>$548</td>
<td>2009, January 3</td>
</tr>
<tr>
<td></td>
<td>$400.00</td>
<td>$400</td>
<td>2009, January 3</td>
</tr>
<tr>
<td></td>
<td>$131.00</td>
<td>$131</td>
<td>2009, January 3</td>
</tr>
</tbody>
</table>

498
HEXTYPE: Returning the Hexadecimal View of an Input Value

The HEXTYPE function returns the hexadecimal view of an input value of any data type. The result is returned as variable length alphanumeric. The alphanumeric field to which the hexadecimal value is returned must be large enough to hold two characters for each input character. The value returned depends on the running operating environment.

Syntax: How to Returning the Hexadecimal View of an Input Value

\[
\text{HEXTYPE}(\text{in_value})
\]

where:

\[
\text{in_value}
\]

Is an alphanumeric or integer field, constant, or expression.

Example: Returning a Hexadecimal View

The following request returns a hexadecimal view of the country names and the sum of the days delayed.

```
DEFINE FILE WF_RETAIL_LITE
Days/I8 = DAYSDELAYED;
Country/A20 = COUNTRY_NAME;
HexCountry/A30 = HEXTYPE(Country);
END
TABLE FILE WF_RETAIL_LITE
SUM COUNTRY_NAME NOPRINT Country HexCountry Days
COMPUTE HexDays/A40 = HEXTYPE(Days);
BY COUNTRY_NAME NOPRINT
WHERE COUNTRY_NAME LT 'P'
ON TABLE SET PAGE NOPAGE
END
```
The output is shown in the following image.

<table>
<thead>
<tr>
<th>Country</th>
<th>HexCountry</th>
<th>Days</th>
<th>HexDays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>417267656E74696E6120</td>
<td>84</td>
<td>000000054</td>
</tr>
<tr>
<td>Australia</td>
<td>41757377472615C69612</td>
<td>27</td>
<td>0000001B</td>
</tr>
<tr>
<td>Austria</td>
<td>4175737472695120</td>
<td>758</td>
<td>0000031E</td>
</tr>
<tr>
<td>Belgium</td>
<td>42656E769756D20</td>
<td>14</td>
<td>0000000E</td>
</tr>
<tr>
<td>Brazil</td>
<td>4272617A696C20</td>
<td>204</td>
<td>000000CC</td>
</tr>
<tr>
<td>Canada</td>
<td>43616E61646120</td>
<td>584</td>
<td>00000248</td>
</tr>
<tr>
<td>Chile</td>
<td>4368696C6520</td>
<td>45</td>
<td>0000002D</td>
</tr>
<tr>
<td>China</td>
<td>4368696E6120</td>
<td>1</td>
<td>00000001</td>
</tr>
<tr>
<td>Colombia</td>
<td>436F6C6F6D62696120</td>
<td>114</td>
<td>00000072</td>
</tr>
<tr>
<td>Denmark</td>
<td>44656E5D61736B20</td>
<td>0</td>
<td>00000000</td>
</tr>
<tr>
<td>Egypt</td>
<td>45677970742020</td>
<td>3</td>
<td>00000003</td>
</tr>
<tr>
<td>Finland</td>
<td>46696E5C616E6420</td>
<td>3</td>
<td>00000003</td>
</tr>
<tr>
<td>France</td>
<td>4672616E63652020</td>
<td>49</td>
<td>00000031</td>
</tr>
<tr>
<td>Germany</td>
<td>4765726D616E7920</td>
<td>498</td>
<td>000001F2</td>
</tr>
<tr>
<td>Greece</td>
<td>47726565636520</td>
<td>9</td>
<td>00000009</td>
</tr>
<tr>
<td>Hungary</td>
<td>48756E761727920</td>
<td>7</td>
<td>00000007</td>
</tr>
<tr>
<td>India</td>
<td>496E64696120</td>
<td>23</td>
<td>00000017</td>
</tr>
<tr>
<td>Ireland</td>
<td>4972656C616E6420</td>
<td>7</td>
<td>00000007</td>
</tr>
<tr>
<td>Israel</td>
<td>49737261656C20</td>
<td>2</td>
<td>00000002</td>
</tr>
<tr>
<td>Italy</td>
<td>4974616C7920</td>
<td>7</td>
<td>00000007</td>
</tr>
<tr>
<td>Japan</td>
<td>4A6170616E20</td>
<td>12</td>
<td>0000000C</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>4C7578656D626F75726</td>
<td>0</td>
<td>00000000</td>
</tr>
<tr>
<td>Malaysia</td>
<td>4D616E617973696120</td>
<td>20</td>
<td>00000014</td>
</tr>
<tr>
<td>Mexico</td>
<td>4D657896306E20</td>
<td>170</td>
<td>000000AA</td>
</tr>
<tr>
<td>Netherlands</td>
<td>4E65746865726C616E647320</td>
<td>8</td>
<td>00000008</td>
</tr>
<tr>
<td>Norway</td>
<td>4E6F7277617920</td>
<td>0</td>
<td>00000000</td>
</tr>
</tbody>
</table>
PHONETIC: Returning a Phonetic Key for a String

PHONETIC calculates a phonetic key for a string, or a null value on failure. Phonetic keys are useful for grouping alphanumeric values, such as names, that may have spelling variations. This is done by generating an index number that will be the same for the variations of the same name based on pronunciation. One of two phonetic algorithms can be used for indexing, Metaphone and Soundex. Metaphone is the default algorithm, except on z/OS where the default is Soundex.

You can set the algorithm to use with the following command.

```sql
SET PHONETIC_ALGORITHM = {METAPHONE|SOUNDEX}
```

Most phonetic algorithms were developed for use with the English language. Therefore, applying the rules to words in other languages may not give a meaningful result.

Metaphone is suitable for use with most English words, not just names. Metaphone algorithms are the basis for many popular spell checkers.

Note: Metaphone is not optimized in generated SQL. Therefore, if you need to optimize the request for an SQL DBMS, the SOUNDEX setting should be used.

Soundex is a legacy phonetic algorithm for indexing names by sound, as pronounced in English.

Syntax: How to Return a Phonetic Key

```sql
PHONETIC(string)
```

where:

- **string**
 - Alphanumeric

 Is a string for which to create the key. A null value will be returned on failure.
Example: Generating a Phonetic Key

The following request changes the spelling of the last name for MARY SMITH to SMYTHE and generates a phonetic key for each last name.

```
DEFINE FILE EMPLOYEE
LAST_NAME2/A16 = IF LAST_NAME EQ 'SMITH' AND FIRST_NAME EQ 'MARY' THEN 'SMYTHE' ELSE LAST_NAME;
PKEY/A10 = PHONETIC(LAST_NAME2);
END
TABLE FILE EMPLOYEE
PRINT FIRST_NAME LAST_NAME2
BY PKEY
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

The output is shown in the following image. Note that the two spellings for SMITH are assigned the same index number.
TO_INTEGER: Converting a Character String to an Integer Value

TO_INTEGER converts a character string that contains a valid number consisting of digits and an optional decimal point to an integer value. If the value contains a decimal point, the value after the decimal point is truncated. If the value does not represent a valid number, zero (0) is returned.

Syntax: How to Convert a Character String to an Integer

\[
\text{TO_INTEGER}(\text{string})
\]

where:

\text{string}

Is a character string enclosed in single quotation marks or a character field that represents a number containing digits and an optional decimal point.

Example: Converting a Character String to an Integer Value

The following request converts character strings to integers. Digits following the decimal point are truncated.

\begin{verbatim}
DEFINE FILE WF_RETAIL_LITE
INT1/I8 = TO_INTEGER('56.78');
INT2/I8 = TO_INTEGER('.5678');
INT3/I8 = TO_INTEGER('5678');
END
TABLE FILE WF_RETAIL_LITE
PRINT INT1 INT2 INT3
BY BUSINESS_REGION AS Region
WHERE READLIMIT EQ 1
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
\end{verbatim}

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Region</th>
<th>INT1</th>
<th>INT2</th>
<th>INT3</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMEA</td>
<td>56</td>
<td>0</td>
<td>5678</td>
</tr>
</tbody>
</table>
TO_NUMBER: Converting a Character String to a Numeric Value

TO_NUMBER converts a character string that contains a valid number consisting of digits and an optional decimal point to the numeric format most appropriate to the context. If the value does not represent a valid number, zero (0) is returned.

Syntax: How to Convert a Character String to a Number

```
TO_NUMBER(string)
```

where:

```
string
```

Is a character string enclosed in single quotation marks or a character field that represents a number containing digits and an optional decimal point. This string will be converted to a double-precision floating point number.

Example: Converting a Character String to a Number

The following request converts character strings to double-precision floating point numbers.

```
DEFINE FILE WF_RETAIL_LITE
NUM1/D12.1 = TO_NUMBER('56.78');
NUM2/D12.2 = TO_NUMBER('0.5678');
END
TABLE FILE WF_RETAIL_LITE
PRINT NUM1 NUM2
BY BUSINESS_REGION AS Region
WHERE READLIMIT EQ 1
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF, $
ENDSTYLE
END
```

The output is shown in the following image.

```
Region  NUM1  NUM2
EMEA    56.8  .57
```
Format Conversion Functions

Format conversion functions convert fields from one format to another.

For information on field formats see the *Describing Data With TIBCO WebFOCUS*® *Language* manual.

For many functions, the *output* argument can be supplied either as a field name or as a format enclosed in single quotation marks. However, if a function is called from a Dialogue Manager command, this argument must always be supplied as a format, and if a function is called from a Maintain Data procedure, this argument must always be supplied as a field name.

In this chapter:

- ATODBL: Converting an Alphanumeric String to Double-Precision Format
- EDIT: Converting the Format of a Field
- FPRINT: Converting Fields to Alphanumeric Format
- FTOA: Converting a Number to Alphanumeric Format
- HEXBYT: Converting a Decimal Integer to a Character
- ITONUM: Converting a Large Binary Integer to Double-Precision Format
- ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format
- ITOZ: Converting a Number to Zoned Format
- PCKOUT: Writing a Packed Number of Variable Length
- PTOA: Converting a Packed-Decimal Number to Alphanumeric Format
- TSTOPACK: Converting an MSSQL or Sybase Timestamp Column to Packed Decimal
- UFMT: Converting an Alphanumeric String to Hexadecimal
- XTPACK: Writing a Packed Number With Up to 31 Significant Digits to an Output File

ATODBL: Converting an Alphanumeric String to Double-Precision Format

Available Languages: reporting, Maintain
The ATOBL function converts a number in alphanumeric format to decimal (double-precision) format.

Syntax:

How to Convert an Alphanumeric String to Double-Precision Format

$$\text{ATOBL}(source_string, \ length, \ output)$$

where:

- **source_string**
 - Alphanumeric
 - Is the string consisting of digits and, optionally, one sign and one decimal point to be converted, or a field or variable that contains the string.

- **length**
 - Alphanumeric
 - Is the two-character length of the source string in bytes. This can be a numeric constant, or a field or variable that contains the value. If you specify a numeric constant, enclose it in single quotation marks, for example '12'.

- **output**
 - Double precision floating-point
 - Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.

Example:

Converting an Alphanumeric Field to Double-Precision Format

ATODBL converts the EMP_ID field into double-precision format and stores the result in D_EMP_ID:

```plaintext
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND FIRST_NAME AND EMP_ID AND
COMPUTE D_EMP_ID/D12.2 = ATODBL(EMP_ID, '09', D_EMP_ID);
WHERE DEPARTMENT EQ 'MIS';
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>EMP_ID</th>
<th>D_EMP_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMITH</td>
<td>MARY</td>
<td>112847612</td>
<td>112,847,612.00</td>
</tr>
<tr>
<td>JONES</td>
<td>DIANE</td>
<td>117593129</td>
<td>117,593,129.00</td>
</tr>
<tr>
<td>MCCOY</td>
<td>JOHN</td>
<td>219984371</td>
<td>219,984,371.00</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
<td>326179357</td>
<td>326,179,357.00</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>MARY</td>
<td>543729165</td>
<td>543,729,165.00</td>
</tr>
<tr>
<td>CROSS</td>
<td>BARBARA</td>
<td>818692173</td>
<td>818,692,173.00</td>
</tr>
</tbody>
</table>
EDIT: Converting the Format of a Field

Available Languages: reporting

The EDIT function converts an alphanumeric field that contains numeric characters to numeric format or converts a numeric field to alphanumeric format.

This function is useful for manipulating a field in an expression that performs an operation that requires operands in a particular format.

When EDIT assigns a converted value to a new field, the format of the new field must correspond to the format of the returned value. For example, if EDIT converts a numeric field to alphanumeric format, you must give the new field an alphanumeric format:

```
DEFINE ALPHAPRICE/A6 = EDIT(PRICE);
```

EDIT deals with a symbol in the following way:

- When an alphanumeric field is converted to numeric format, a sign or decimal point in the field is stored as part of the numeric value.
 - Any other non-numeric characters are invalid, and EDIT returns the value zero.

- When converting a floating-point or packed-decimal field to alphanumeric format, EDIT removes the sign, the decimal point, and any number to the right of the decimal point. It then right-justifies the remaining digits and adds leading zeros to achieve the specified field length. Converting a number with more than nine significant digits in floating-point or packed-decimal format may produce an incorrect result.

Syntax: How to Convert the Format of a Field

```
EDIT(fieldname);
```

where:

```
fieldname
    Alphanumeric or Numeric
    Is the field name.
```
Example: Converting From Numeric to Alphanumeric Format

EDIT converts HIRE_DATE (a legacy date format) to alphanumeric format. CHGDAT is then able to use the field, which it expects in alphanumeric format:

```
TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND COMPUTE
ALPHA_HIRE/A17 = EDIT(HIRE_DATE); NOPRINT AND COMPUTE
HIRE_MDY/A17 = CHGDAT('YMD', 'MDYYX', ALPHA_HIRE, 'A17');
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS';
END
```

The output is:

```
LAST_NAME  FIRST_NAME  HIRE_DATE  HIRE_MDY
---------  ----------  ---------  --------
BLACKWOOD  ROSEMARIE   82/04/01   APRIL 01 1982
CROSS      BARBARA     81/11/02   NOVEMBER 02 1981
GREENSPAN  MARY        82/04/01   APRIL 01 1982
JONES      DIANE       82/05/01   MAY 01 1982
MCCOY      JOHN        81/07/01   JULY 01 1981
SMITH      MARY        81/07/01   JULY 01 1981
```

FPRINT: Converting Fields to Alphanumeric Format

The FPRINT function converts any type of field except for a text field to its alphanumeric equivalent for display. The alphanumeric representation will include any display options that are specified in the format of the original field.

Available Languages: reporting

Syntax: How to Convert Fields Using FPRINT

```
FPRINT(in_value, 'usageformat', output)
```

where:

- **in_value**
 - Any format except TX
 - Is the value to be converted.

- **usageformat**
 - Alphanumeric
 - Is the usage format of the value to be converted, including display options. The format must be enclosed in single quotation marks.
Alphanumeric

Is the name of the output field or its format enclosed in single quotation marks.

The output format must be long enough to hold the converted number itself, with a sign and decimal point, plus any additional characters generated by display options, such as commas, a currency symbol, or a percent sign.

For example, D12.2 format is converted to A14 because it outputs two decimal digits, a decimal point, a possible minus sign, up to eight integer digits, and two commas. If the output format is not large enough, excess right-hand characters may be truncated.

Reference: Usage Notes for the FPRINT Function

- The USAGE format must match the actual data in the field.
- The output of FPRINT for numeric values is right-justified within the area required for the maximum number of characters corresponding to the supplied format. This ensures that all possible values are aligned vertically along the decimal point or units digit.
- By default, the column title is left justified for alphanumeric fields. To right justify the column title, use the /R reformatting option for the field.
- Maintain Data does not support the FPRINT function. However, you can do the same type of conversion in Maintain Data using the COMPUTE command.

Example: Converting Numeric Fields to Alphanumeric Format

The following request against the EMPLOYEE data source uses FPRINT to convert the CURR_SAL, ED_HRS, and BANK_ACCT fields to alphanumeric for display on the report output. Then, the STRREP function replaces the blanks in the alphanumeric representation of CURR_SAL with asterisks. CURR_SAL has format D12.2M, so the alphanumeric representation has format A15. The ED_HRS field has format F6.2, so the alphanumeric representation has format A6. The BANK_ACCT field has format I9S, so the alphanumeric representation has format A9. The alphanumeric representations of the numeric fields are right-justified. The /R options in the PRINT command cause the column titles to be right-justified over the values:
DEFINE FILE EMPLOYEE
ASAL/A15 = FPRINT(CURR_SAL, 'D12.2M', ASAL);
ASAL/A15 = STREP(15, ASAL, 1, ' ', 1, '* ', 15, ASAL);
AED/A6 = FPRINT(ED_HRS, 'F6.2', AED);
ABANK/A9 = FPRINT(BANK_ACCT, 'I9S', ABANK);
END
TABLE FILE EMPLOYEE
PRINT CURR_SAL ASAL
ED_HRS AED/R
BANK_ACCT ABANK/R
WHERE BANK_NAME NE ' '
ON TABLE SET PAGE NOPAGE
END

The output is:

<table>
<thead>
<tr>
<th>CURR_SAL</th>
<th>ASAL</th>
<th>ED_HRS</th>
<th>AED</th>
<th>BANK_ACCT</th>
<th>ABANK</th>
</tr>
</thead>
<tbody>
<tr>
<td>$18,480.00</td>
<td>*****$18,480.00</td>
<td>50.00</td>
<td>50.00</td>
<td>40950036</td>
<td>40950036</td>
</tr>
<tr>
<td>$29,700.00</td>
<td>*****$29,700.00</td>
<td>.00</td>
<td>.00</td>
<td>160633</td>
<td>160633</td>
</tr>
<tr>
<td>$26,862.00</td>
<td>*****$26,862.00</td>
<td>30.00</td>
<td>30.00</td>
<td>819000702</td>
<td>819000702</td>
</tr>
<tr>
<td>$21,780.00</td>
<td>*****$21,780.00</td>
<td>75.00</td>
<td>75.00</td>
<td>122850108</td>
<td>122850108</td>
</tr>
<tr>
<td>$16,100.00</td>
<td>*****$16,100.00</td>
<td>50.00</td>
<td>50.00</td>
<td>136500120</td>
<td>136500120</td>
</tr>
<tr>
<td>$27,062.00</td>
<td>*****$27,062.00</td>
<td>45.00</td>
<td>45.00</td>
<td>163800144</td>
<td>163800144</td>
</tr>
</tbody>
</table>

Example: Converting Alphanumeric and Numeric Date Fields to Alphanumeric Format

The following request against the EMPLOYEE data source converts the HIRE_DATE field to alphanumeric format. It also creates an alphanumeric date field named ADATE and converts it to its alphanumeric representation. The HIRE_DATE field has format I6YMD and the ADATE field has format A6YMD, so the alphanumeric representations have format A8 to account for the slashes between the date components. The /R option right-justifies the column titles over the field values:

DEFINE FILE EMPLOYEE
AHDATE/A8 = FPRINT(HIRE_DATE, 'I6YMD', AHDATE);
ADATE/A6YMD = EDIT(HIRE_DATE);
AADATE/A8 = FPRINT(ADATE, 'A6YMD', AADATE);
END
TABLE FILE EMPLOYEE
PRINT HIRE_DATE AHDATE/R
ADATE ADATE/R
ON TABLE SET PAGE NOPAGE
END

The output is:
HIRE_DATE AHDATE ADATE AADATE
--------- -------- ----- --------
80/06/02 80/06/02 80/06/02 80/06/02
81/07/01 81/07/01 81/07/01 81/07/01
82/05/01 82/05/01 82/05/01 82/05/01
82/01/04 82/01/04 82/01/04 82/01/04
82/08/01 82/08/01 82/08/01 82/08/01
82/01/04 82/01/04 82/01/04 82/01/04
82/07/01 82/07/01 82/07/01 82/07/01
81/07/01 81/07/01 81/07/01 81/07/01
82/04/01 82/04/01 82/04/01 82/04/01
82/02/02 82/02/02 82/02/02 82/02/02
82/04/01 82/04/01 82/04/01 82/04/01
81/11/02 81/11/02 81/11/02 81/11/02

Example: Converting a Date Field to Alphanumeric Format

The following request against the VIDEOTRK data source converts the TRANSDATE (YMD) field to alphanumeric format. The alphanumeric representation has format A8 to account for the slashes between the date components:

```sql
DEFINE FILE VIDEOTRK
ALPHA_DATE/A8 = FPRINT(TRANSDATE,'YMD', ALpha_DATE);
END

TABLE FILE VIDEOTRK
PRINT TRANSDATE ALPHA_DATE
WHERE TRANSDATE LE '91/06/20'
ON TABLE SET PAGE NOPAGE
END
```

The output is:

<table>
<thead>
<tr>
<th>TRANSDATE</th>
<th>ALPHA_DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>91/06/19</td>
<td>91/06/19</td>
</tr>
<tr>
<td>91/06/17</td>
<td>91/06/17</td>
</tr>
<tr>
<td>91/06/20</td>
<td>91/06/20</td>
</tr>
<tr>
<td>91/06/19</td>
<td>91/06/19</td>
</tr>
<tr>
<td>91/06/18</td>
<td>91/06/18</td>
</tr>
<tr>
<td>91/06/17</td>
<td>91/06/17</td>
</tr>
<tr>
<td>91/06/17</td>
<td>91/06/17</td>
</tr>
<tr>
<td>91/06/20</td>
<td>91/06/20</td>
</tr>
<tr>
<td>91/06/19</td>
<td>91/06/19</td>
</tr>
<tr>
<td>91/06/18</td>
<td>91/06/18</td>
</tr>
<tr>
<td>91/06/19</td>
<td>91/06/19</td>
</tr>
<tr>
<td>91/06/18</td>
<td>91/06/18</td>
</tr>
<tr>
<td>91/06/20</td>
<td>91/06/20</td>
</tr>
<tr>
<td>91/06/18</td>
<td>91/06/18</td>
</tr>
<tr>
<td>91/06/20</td>
<td>91/06/20</td>
</tr>
<tr>
<td>91/06/19</td>
<td>91/06/19</td>
</tr>
<tr>
<td>91/06/17</td>
<td>91/06/17</td>
</tr>
</tbody>
</table>
Example: Converting a Date-Time Field to Alphanumeric Format and Creating a HOLD File

The following request against the VIDEOTR2 data source converts the TRANSDATE (HYYMDI) field to alphanumeric format. The alphanumeric representation has format A16 to account for a four-digit year, two-digit month, two-digit day, two slashes between the date components, a space between the date and time, a two-digit hour, a colon between the hour and minute components, and a two-digit minute:

```
DEFINE FILE VIDEOTR2
DATE/I4 = HPART(TRANSDATE, 'YEAR', 'I4');
ALPHA_DATE/A16 = FPRINT(TRANSDATE, 'HYYMDI', ALPHA_DATE);
END
TABLE FILE VIDEOTR2
PRINT TRANSDATE ALPHA_DATE/R
WHERE DATE EQ '1991'
ON TABLE SET PAGE NOPAGE
END
```

The output is:

```
TRANSDATE       ALPHA_DATE
---------         ----------------
1991/06/27 02:45  1991/06/27 02:45
1991/06/20 05:15  1991/06/20 05:15
1991/06/21 07:11  1991/06/21 07:11
1991/06/21 01:10  1991/06/21 01:10
1991/06/19 07:18  1991/06/19 07:18
1991/06/19 04:11  1991/06/19 04:11
1991/06/25 01:19  1991/06/25 01:19
1991/06/24 04:43  1991/06/24 04:43
1991/06/24 02:08  1991/06/24 02:08
1991/06/25 01:17  1991/06/25 01:17
1991/06/27 01:17  1991/06/27 01:17
1991/06/24 10:27  1991/06/24 10:27
```

If you hold the output in a comma-delimited or other alphanumeric output file, you can see that while the original field propagates only the numeric representation of the value, the converted field propagates the display options as well:

```
DEFINE FILE VIDEOTR2
DATE/I4 = HPART(TRANSDATE, 'YEAR', 'I4');
ALPHA_DATE/A16 = FPRINT(TRANSDATE, 'HYYMDI', ALPHA_DATE);
END
TABLE FILE VIDEOTR2
PRINT TRANSDATE ALPHA_DATE/R
WHERE DATE EQ '1991'
ON TABLE HOLD FORMAT COMMA
END
```

The HOLD file follows. The first field represents the original data, and the second field contains the converted values with display options:
FTOA: Converting a Number to Alphanumeric Format

Available Languages: reporting, Maintain

The FTOA function converts a number up to 16 digits long from numeric format to alphanumeric format. It retains the decimal positions of the number and right-justifies it with leading spaces. You can also add edit options to a number converted by FTOA.

When using FTOA to convert a number containing decimals to a character string, you must specify an alphanumeric format large enough to accommodate both the integer and decimal portions of the number. For example, a D12.2 format is converted to A14. If the output format is not large enough, decimals are truncated.

Syntax: How to Convert a Number to Alphanumeric Format

FTOA(number, '(format)', output)

where:

number

Numeric F or D (single and double precision floating-point)

Is the number to be converted, or the name of the field that contains the number.

format

Alphanumeric

Is the format of the number to be converted enclosed in parentheses. Only floating point single-precision and double-precision formats are supported. Include any edit options that you want to appear in the output. The D (floating-point double-precision) format automatically supplies commas.

If you use a field name for this argument, specify the name without quotation marks or parentheses. If you specify a format, the format must be enclosed in single quotation marks and parentheses.
output

Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks. The length of this argument must be greater than the length of `number` and must account for edit options and a possible negative sign.

Example: Converting From Numeric to Alphanumeric Format

FTOA converts the GROSS field from floating point double-precision to alphanumeric format and stores the result in ALPHA_GROSS:

```
TABLE FILE EMPLOYEE
PRINT GROSS AND COMPUTE
ALPHA_GROSS/A15 = FTOA(GROSS, '(D12.2)', ALPHA_GROSS);
BY HIGHEST 1 PAY_DATE NOPRINT
BY LAST_NAME
WHERE (GROSS GT 800) AND (GROSS LT 2300);
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>GROSS</th>
<th>ALPHA_GROSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLACKWOOD</td>
<td>$1,815.00</td>
<td>1,815.00</td>
</tr>
<tr>
<td>CROSS</td>
<td>$2,255.00</td>
<td>2,255.00</td>
</tr>
<tr>
<td>IRVING</td>
<td>$2,238.50</td>
<td>2,238.50</td>
</tr>
<tr>
<td>JONES</td>
<td>$1,540.00</td>
<td>1,540.00</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>$1,342.00</td>
<td>1,342.00</td>
</tr>
<tr>
<td>ROMANS</td>
<td>$1,760.00</td>
<td>1,760.00</td>
</tr>
<tr>
<td>SMITH</td>
<td>$1,100.00</td>
<td>1,100.00</td>
</tr>
<tr>
<td>STEVENS</td>
<td>$916.67</td>
<td>916.67</td>
</tr>
</tbody>
</table>

HEXBYT: Converting a Decimal Integer to a Character

Available Languages: reporting, Maintain

The HEXBYT function obtains the ASCII, EBCDIC, or Unicode character equivalent of a decimal integer, depending on your configuration and operating environment. The decimal value you specify must be the value associated with the character on the configured code page. HEXBYT returns a single alphanumeric character in the ASCII, EBCDIC, or Unicode character set. You can use this function to produce characters that are not on your keyboard, similar to the CTRAN function.

In Unicode configurations, this function uses values in the range:

- 0 to 255 for 1-byte characters.
- 256 to 65535 for 2-byte characters.
65536 to 16777215 for 3-byte characters.

16777216 to 4294967295 for 4-byte characters (primarily for EBCDIC).

The display of special characters depends on your software and hardware; not all special characters may appear.

Syntax:

How to Convert a Decimal Integer to a Character

HEXBYT(decimal_value, output)

where:

decimal_value

Integer

Is the decimal integer to be converted to a single character. In non-Unicode environments, a value greater than 255 is treated as the remainder of `decimal_value` divided by 256. The decimal value you specify must be the value associated with the character on the configured code page.

output

Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks (').

Example:

Converting a Decimal Integer to a Character in ASCII and Unicode

The following request uses HEXBYT to convert the decimal integer value 130 to the comma character on ASCII code page 1252. The comma is then concatenated between LAST_NAME and FIRST_NAME to create the NAME field:

```
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND
COMPUTE COMMA1/A1 = HEXBYT(130, COMMA1); NOPRINT
COMPUTE NAME/A40 = LAST_NAME || COMMA1 | ' ' | FIRST_NAME;
BY LAST_NAME NOPRINT
BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS';
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
HEXBYT: Converting a Decimal Integer to a Character

The output is shown in the following image.

```
FIRST_NAME   LAST_NAME       NAME
ROSEMARIE    BLACKWOOD      BLACKWOOD, ROSEMARIE
BARBARA      CROSS           CROSS, BARBARA
MARY         GREENSPAN       GREENSPAN, MARY
DIANE        JONES           JONES, DIANE
JOHN         MCCOY           MCCOY, JOHN
MARY         SMITH           SMITH, MARY
```

To produce the same output in a Unicode environment configured for code page 65001, replace the COMPUTE command for the field COMMA1 with the following syntax, in which the call to HEXBYT converts the integer value 14844058 to the comma character:

```
COMPUTE COMMA1/A1 = HEXBYT(14844058, COMMA1); NOPRINT
```

Example: Converting a Decimal Integer to a Character

HEXBYT converts LAST_INIT_CODE to its character equivalent and stores the result in LAST_INIT:

```
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND
COMPUTE LAST_INIT_CODE/I3 = BYTVAL(LAST_NAME, 'I3');
COMPUTE LAST_INIT/A1 = HEXBYT(LAST_INIT_CODE, LAST_INIT);
WHERE DEPARTMENT EQ 'MIS';
END
```

The output for an ASCII platform is:

```
LAST_NAME LAST_INIT_CODE LAST_INIT
SMITH 83 S
JONES 74 J
MCCOY 77 M
BLACKWOOD 66 B
GREENSPAN 71 G
CROSS 67 C
```
The output for an EBCDIC platform is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>LAST_INIT_CODE</th>
<th>LAST_INIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMITH</td>
<td>226</td>
<td>S</td>
</tr>
<tr>
<td>JONES</td>
<td>209</td>
<td>J</td>
</tr>
<tr>
<td>MCCOY</td>
<td>212</td>
<td>M</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>194</td>
<td>B</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>199</td>
<td>G</td>
</tr>
<tr>
<td>CROSS</td>
<td>195</td>
<td>C</td>
</tr>
</tbody>
</table>

ITONUM: Converting a Large Binary Integer to Double-Precision Format

Available Languages: reporting, Maintain

The ITONUM function converts a large binary integer in a non-FOCUS data source to double-precision format.

Some programming languages and some non-FOCUS data storage systems use large binary integer formats. However, large binary integers (more than 4 bytes in length) are not supported in the Master File so they require conversion to double-precision format.

You must specify how many of the right-most bytes in the input field are significant. The result is an 8-byte double-precision field.

Syntax:

How to Convert a Large Binary Integer to Double-Precision Format

\[
\text{ITONUM}(\text{maxbytes}, \text{infield}, \text{output})
\]

where:

- **maxbytes**
 Numeric
 Is the maximum number of bytes in the 8-byte binary input field that have significant numeric data, including the binary sign. Valid values are:

 - 5 ignores the left-most 3 bytes.
 - 6 ignores the left-most 2 bytes.
 - 7 ignores the left-most byte.

- **infield**
 A8
 Is the field that contains the binary number. Both the USAGE and ACTUAL formats of the field must be A8.
output

Double precision floating-point (Dn)

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks. The format must be Dn.

Example: Convert a Large Binary Integer to Double-Precision Format

Suppose a binary number in an external file has the following COBOL format:

```
PIC 9(8)V9(4) COMP
```

It is defined in the EUROCAR Master File as a field named BINARYFLD. Its field formats are USAGE=A8 and ACTUAL=A8, since its length is greater than 4 bytes.

The following request converts the field to double-precision format:

```
DEFINE FILE EUROCAR
MYFLD/D14 = ITONUM(6, BINARYFLD, MYFLD);
END
TABLE FILE EUROCAR
PRINT MYFLD BY CAR
END
```

ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format

Available Languages: reporting, Maintain

The ITOPACK function converts a large binary integer in a non-FOCUS data source to packed-decimal format.

Some programming languages and some non-FOCUS data storage systems use double-word binary integer formats. These are similar to the single-word binary integers used by FOCUS, but they allow larger numbers. However, large binary integers (more than 4 bytes in length) are not supported in the Master File so they require conversion to packed-decimal format.

You must specify how many of the right-most bytes in the input field are significant. The result is an 8-byte packed-decimal field of up to 15 significant numeric positions (for example, P15 or P16.2).

Limit: For a field defined as 'PIC 9(15) COMP' or the equivalent (15 significant digits), the maximum number that can be converted is 167,744,242,712,576.
Syntax: How to Convert a Large Binary Integer to Packed-Decimal Format

ITOPACK(maxbytes, infield, output)

where:

maxbytes

Numeric

Is the maximum number of bytes in the 8-byte binary input field that have significant numeric data, including the binary sign.

Valid values are:

- 5 ignores the left-most 3 bytes (up to 11 significant positions).
- 6 ignores the left-most 2 bytes (up to 14 significant positions).
- 7 ignores the left-most byte (up to 15 significant positions).

infield

A8

Is the field that contains the binary number. Both the USAGE and ACTUAL formats of the field must be A8.

output

Numeric

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks. The format must be Pn or Pn.d.

Example: Converting a Large Binary Integer to Packed-Decimal Format

Suppose a binary number in an external file has the following COBOL format:

PIC 9(8)V9(4) COMP

It is defined in the EUROCAR Master File as a field named BINARYFLD. Its field formats are USAGE=A8 and ACTUAL=A8, since its length is greater than 4 bytes.
The following request converts the field to packed-decimal format:

```plaintext
DEFINE FILE EUROCAR
PACKFLD/P14.4 = ITOPACK(6, BINARYFLD, PACKFLD);
END
TABLE FILE EUROCAR
PRINT PACKFLD BY CAR
END
```

ITOZ: Converting a Number to Zoned Format

Available Languages: reporting, Maintain

The ITOZ function converts a number in numeric format to zoned-decimal format. Although a request cannot process zoned numbers, it can write zoned fields to an extract file for use by an external program.

Syntax:

How to Convert a Number to Zoned Format

```
ITOZ(length, in_value, output)
```

where:

- **length**
 - Integer
 - Is the length of `in_value` in bytes. The maximum number of bytes is 15. The last byte includes the sign.

- **in_value**
 - Numeric
 - Is the number to be converted, or the field that contains the number. The number is truncated to an integer before it is converted.

- **output**
 - Alphanumeric
 - Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.
Example: Converting a Number to Zoned Format

The following request creates an extract file containing employee IDs and salaries in zoned format for a COBOL program:

```cobol
DEFINE FILE EMPLOYEE
ZONE_SAL/A8 = ITOZ(8, CURR_SAL, ZONE_SAL);
END

TABLE FILE EMPLOYEE
PRINT CURR_SAL ZONE_SAL BY EMP_ID
ON TABLE SAVE AS SALARIES
END
```

The resulting extract file is:

NUMBER OF RECORDS IN TABLE= 12 LINES= 12

<table>
<thead>
<tr>
<th>ALPHANUMERIC RECORD NAMED SALARIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIELDNAME</td>
</tr>
<tr>
<td>EMP_ID</td>
</tr>
<tr>
<td>CURR_SAL</td>
</tr>
<tr>
<td>ZONE_SAL</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

PCKOUT: Writing a Packed Number of Variable Length

Available Languages: reporting, Maintain

The PCKOUT function writes a packed-decimal number of variable length to an extract file. When a request saves a packed number to an extract file, it typically writes it as an 8- or 16-byte field regardless of its format specification. With PCKOUT, you can vary the field's length between 1 to 16 bytes.

Syntax: How to Write a Packed Number of Variable Length

```cobol
PCKOUT(in_value, length, output)
```

where:

- **in_value**
 Numeric
 Is the input field that contains the values. It can be in packed, integer, single- or double-precision floating point format. If it is not in integer format, it is rounded to the nearest whole number.

- **length**
 Numeric
Is the length of the output value, from 1 to 16 bytes.

output

Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks. The function returns the field as alphanumeric although it contains packed data.

Example: Writing a Packed Number of Variable Length

PCKOUT converts the CURR_SAL field to a 5-byte packed field and stores the result in SHORT_SAL:

```plaintext
DEFINE FILE EMPLOYEE
SHORT_SAL/A5 = PCKOUT(CURR_SAL, 5, SHORT_SAL);
END
TABLE FILE EMPLOYEE
PRINT LAST_NAME SHORT_SAL HIRE_DATE
ON TABLE SAVE
END
```

The resulting extract file is:

```plaintext
NUMBER OF RECORDS IN TABLE=       12 LINES=     12
ALPHANUMERIC RECORD NAMED SAVE
FIELDNAME                          ALIAS         FORMAT          LENGTH
LAST_NAME                          LN            A15               15
SHORT_SAL                                        A5                 5
HIRE_DATE                          HDT           I6YMD              6
TOTAL                                                              26
```

PTOA: Converting a Packed-Decimal Number to Alphanumeric Format

Available Languages: reporting, Maintain

The PTOA function converts a packed-decimal number from numeric format to alphanumeric format. It retains the decimal positions of the number and right-justifies it with leading spaces. You can also add edit options to a number converted by PTOA.

When using PTOA to convert a number containing decimals to a character string, you must specify an alphanumeric format large enough to accommodate both the integer and decimal portions of the number. For example, a P12.2C format is converted to A14. If the output format is not large enough, the right-most characters are truncated.
Syntax: How to Convert a Packed-Decimal Number to Alphanumeric Format

PTOA(number, '(format)', output)

where:

number
Numeric P (packed-decimal)
Is the number to be converted, or the name of the field that contains the number.

format
Alphanumeric
Is the format of the number enclosed in both single quotation marks and parentheses.
Only packed-decimal format is supported. Include any edit options that you want to display in the output.
The format value does not require the same length or number of decimal places as the original field. If you change the number of decimal places, the result is rounded. If you make the length too short to hold the integer portion of the number, asterisks appear instead of the number.
If you use a field name for this argument, specify the name without quotation marks or parentheses. However, parentheses must be included around the format stored in this field. For example:
FMT/A10 = '(P12.2C)';

You can then use this field as the format argument when using the function in your request:
COMPUTE ALPHA_GROSS/A20 = PTOA(PGROSS, FMT, ALPHA_GROSS);

output
Alphanumeric
Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks. The length of this argument must be greater than the length of number and must account for edit options and a possible negative sign.
Example: Converting From Packed to Alphanumeric Format

PTOA is called twice to convert the PGROSS field from packed-decimal to alphanumeric format. The format specified in the first call to the function is stored in a virtual field named FMT. The format specified in the second call to the function does not include decimal places, so the value is rounded when it appears:

DEFINE FILE EMPLOYEE
PGROSS/P18.2=GROSS;
FMT/A10='(P14.2C)';
END

TABLE FILE EMPLOYEE PRINT PGROSS NOPRINT
COMPUTE AGROSS/A17 = PTOA(PGROSS, FMT, AGROSS); AS ' <- THIS AMOUNT IS | |
PTOA(PGROSS, '(P5C)', 'A6') | ' WHEN ROUNDED'; AS '' IN +1
BY HIGHEST 1 PAY_DATE NOPRINT
BY LAST_NAME NOPRINT
END

The output is:

2,475.00 <- THIS AMOUNT IS 2,475 WHEN ROUNDED
1,815.00 <- THIS AMOUNT IS 1,815 WHEN ROUNDED
2,255.00 <- THIS AMOUNT IS 2,255 WHEN ROUNDED
750.00 <- THIS AMOUNT IS 750 WHEN ROUNDED
2,238.50 <- THIS AMOUNT IS 2,239 WHEN ROUNDED
1,540.00 <- THIS AMOUNT IS 1,540 WHEN ROUNDED
1,540.00 <- THIS AMOUNT IS 1,540 WHEN ROUNDED
1,540.00 <- THIS AMOUNT IS 1,540 WHEN ROUNDED
1,342.00 <- THIS AMOUNT IS 1,342 WHEN ROUNDED
1,760.00 <- THIS AMOUNT IS 1,760 WHEN ROUNDED
1,100.00 <- THIS AMOUNT IS 1,100 WHEN ROUNDED
791.67 <- THIS AMOUNT IS 792 WHEN ROUNDED
916.67 <- THIS AMOUNT IS 917 WHEN ROUNDED

TSTOPACK: Converting an MSSQL or Sybase Timestamp Column to Packed Decimal

This function applies to the Microsoft SQL Server and Sybase adapters only.

Microsoft SQL Server and Sybase have a data type called TIMESTAMP. Rather than containing an actual timestamp, columns with this data type contain a number that is incremented for each record inserted or updated in the data source. This timestamp comes from a common area, so no two tables in the database have the same timestamp column value. The value is stored in Binary(8) or Varbinary(8) format in the table, but is returned as a double wide alphanumeric column (A16). You can use the TSTOPACK function to convert the timestamp value to packed decimal.

Syntax: How to Convert an MSSQL or Sybase Timestamp Column to Packed Decimal

TSTOPACK(tscol, output);
where:

tscol

A16

Is the timestamp column to be converted.

output

P21

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks (').

Example: Converting a Microsoft SQL Server Timestamp Column to Packed Decimal

The following CREATE TABLE command creates a SQL Server table name TSTEST that contains an integer counter column named I and a timestamp column named TS:

```sql
CREATE TABLE TSTEST (I INT, TS timestamp) ;
```

The Master File for the TSTEST data source follows. The field TS represents the TIMESTAMP column:

```plaintext
FILENAME=TSTEST, SUFFIX=SQLMSS , 
SEGMENT=TSTEST, SEGTYPE=S0, 
    FIELDNAME=I, ALIAS=I, USAGE=I11, ACTUAL=I4, 
    MISSING=ON, 
    FIELDNAME=TS, ALIAS=TS, USAGE=A16, ACTUAL=A16, FIELDTYPE=R, 
```

Note: When you generate a synonym for a table with a TIMESTAMP column, the TIMESTAMP column is created as read-only (FIELDTYPE=R).

TSTOPACK converts the timestamp column TS to packed decimal:

```plaintext
DEFINE FILE TSTEST
TSNUM/P21=TSTOPACK(TS,'P21');
END
TABLE FILE TEST64
PRINT I TS TSNUM
END
```
UFMT: Converting an Alphanumeric String to Hexadecimal

Available Languages: reporting, Maintain

The UFMT function converts characters in an alphanumeric source string to their hexadecimal representation. This function is useful for examining data of unknown format. As long as you know the length of the data, you can examine its content.

Syntax: How to Convert an Alphanumeric String to Hexadecimal

UFMT(source_string, length, output)

where:

source_string

Alphanumeric

Is the alphanumeric string to convert enclosed in single quotation marks (''), or the field that contains the string.

length

Integer

Is the number of characters in source_string.
output

Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks (''). The format of output must be alphanumeric and its length must be twice that of length.

Example: Converting an Alphanumeric String to Hexadecimal

UFMT converts each value in JOBCODE to its hexadecimal representation and stores the result in HEXCODE:

DEFINE FILE JOBFILE
HEXCODE/A6 = UFMT(JOBCODE, 3, HEXCODE);
END TABLE FILE JOBFILE
PRINT JOBCODE HEXCODE
END

The output is:

<table>
<thead>
<tr>
<th>JOBCODE</th>
<th>HEXCODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>C1F0F1</td>
</tr>
<tr>
<td>A02</td>
<td>C1F0F2</td>
</tr>
<tr>
<td>A07</td>
<td>C1F0F7</td>
</tr>
<tr>
<td>A12</td>
<td>C1F1F2</td>
</tr>
<tr>
<td>A14</td>
<td>C1F1F4</td>
</tr>
<tr>
<td>A15</td>
<td>C1F1F5</td>
</tr>
<tr>
<td>A16</td>
<td>C1F1F6</td>
</tr>
<tr>
<td>A17</td>
<td>C1F1F7</td>
</tr>
<tr>
<td>B01</td>
<td>C2F0F1</td>
</tr>
<tr>
<td>B02</td>
<td>C2F0F2</td>
</tr>
<tr>
<td>B03</td>
<td>C2F0F3</td>
</tr>
<tr>
<td>B04</td>
<td>C2F0F4</td>
</tr>
<tr>
<td>B14</td>
<td>C2F1F4</td>
</tr>
</tbody>
</table>

XTPACK: Writing a Packed Number With Up to 31 Significant Digits to an Output File

The XTPACK function stores packed numbers with up to 31 significant digits in an alphanumeric field, retaining decimal data. This permits writing a short or long packed field of any length, 1 to 16 bytes, to an output file.
Syntax: How to Store Packed Values in an Alphanumeric Field

\[
\text{XTPACK}(\text{in_value}, \text{outlength}, \text{outdec}, \text{output})
\]

where:

infield
- Numeric
- Is the packed value.

outlength
- Numeric
- Is the length of the alphanumeric field that will hold the converted packed field. Can be from 1 to 16.

outdec
- Numeric
- Is the number of decimal positions for output.

output
- Alphanumeric
- Is the name of the field to contain the result or the format of the field enclosed in single quotation marks.

Example: Writing a Long Packed Number to an Output File

The following request creates a long packed decimal field named LONGPCK. ALPHAPCK (format A13) is the result of applying XTPACK to the long packed field. PCT_INC, LONGPCK, and ALPHAPCK are then written to a SAVE file named XTOUT.

```
DEFINE FILE EMPLOYEE
LONGPCK/F25.2 = PCT\_INC + 11111111111111111111;
ALPHAPCK/A13 = XTPACK(LONGPCK,13,2,'A13');
END
TABLE FILE EMPLOYEE
PRINT PCT\_INC LONGPCK ALPHAPCK
WHERE PCT\_INC GT 0
    ON TABLE SAVE AS XTOUT
END
```
The SAVE file has the following fields and formats:

<table>
<thead>
<tr>
<th>FIELDNAME</th>
<th>ALIAS</th>
<th>FORMAT</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCT_INC</td>
<td>PI</td>
<td>F6.2</td>
<td>6</td>
</tr>
<tr>
<td>LONGPCK</td>
<td>P25.2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>ALPHAPCK</td>
<td>A13</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>44</td>
</tr>
</tbody>
</table>

SAVED...
Light update support functions retrieve WebFOCUS parameter or variable data implicitly from within a Maintain Data procedure.

In this chapter:

- IWC.FindAppCGIValue: Retrieving a TIBCO WebFOCUS Parameter or Variable Value
- IWC.GetAppCGIValue: Importing a TIBCO WebFOCUS Parameter or Variable

IWC.FindAppCGIValue: Retrieving a TIBCO WebFOCUS Parameter or Variable Value

The IWC.FindAppCGIValue function retrieves WebFOCUS parameter or variable values by pairing the WebFOCUS parameter or variable name with the Maintain Data variable name to which the value is assigned.

Note: Unlike Maintain variables, WebFOCUS parameters and variables are case-sensitive.

Syntax: How to Retrieve a TIBCO WebFOCUS Parameter or Variable Value

```
IWC.FindAppCGIValue(parm, mnt_var);
```

where:

- `parm`
 Is the WebFOCUS parameter or variable whose value you are retrieving. This value is case-sensitive, and must be alphanumeric.

- `mnt_var`
 Is the Maintain Data variable that receives the value of the WebFOCUS parameter or variable.
Example: Retrieving a TIBCO WebFOCUS Variable Value From a Launch Form

IWC.findAppCgiValue retrieves the user name and password from the IBIC_user and IBIC_pass variables, respectively:

```
Maintain
COMPUTE username/A8;
COMPUTE password/A8;
IWC.findAppCgiValue("IBIC_user", username);
IWC.findAppCgiValue("IBIC_pass", password);
```

Example: Retrieving Parameterized Data From Excel

IWC.findAppCgiValue retrieves the values for fields listed in an Excel file:

```
MAINTAIN FILE car
MODULE IMPORT (webbase2 errors);
Case Top
compute xlsRetail_Cost/a0;
Infer car.ORIGIN.COUNTRY car.COMP.CAR car.CARREC.MODEL
car.BODY.BODYTYPE car.BODY.RETAIL_COST into car_stack;
car_stack.FocCount=1;
car_stack.FocIndex=1;
iwc.findAppCgiValue("COUNTRY",car_stack.country);
iwc.findAppCgiValue("CAR",car_stack.car);
iwc.findAppCgiValue("MODEL",car_stack.model);
iwc.findAppCgiValue("BODYTYPE",car_stack.bodytype);
iwc.findAppCgiValue("RETAIL_COST",xlsRetail_Cost);
car_stack.retail_cost = xlsRetail_Cost;
update car.BODY.RETAIL_COST from car_stack;
EndCase
END
```

IWC.GetAppCGIValue: Importing a TIBCO WebFOCUS Parameter or Variable

The IWC.GetAppCGIValue function imports the value of a WebFOCUS parameter or variable into a Maintain Data variable. IWC.GetAppCGIValue returns a value from the HTTP request header if the name of the variable or parameter is passed. If the name is not found, the function returns a null value. Therefore, you can check for errors by looking for a null value, then handle the error as needed.

Note: Unlike Maintain variables, WebFOCUS parameters and variables are case-sensitive.
Syntax:

How to Import a TIBCO WebFOCUS Parameter

```plaintext
Declare mnt_var/type_length = IWC.GetAppCGIValue(parm);
```

where:

- `mnt_var` is the Maintain Data variable that receives the ASCII return value of the WebFOCUS parameter or variable. The value should be unescaped before being passed to the Maintain variable.

- `type_length` is the selected type and length of the Maintain Data variable.

- `parm` is the WebFOCUS parameter or variable to import. This value is case-sensitive, and must be alphanumeric.

Example:

Importing a TIBCO WebFOCUS Parameter

IWC.getAppCGIValue imports the WebFOCUS parameter PRODUCT_ID to Maintain Data:

```plaintext
Maintain File GGPRODS
Infer Product_ID into prodstk;
Declare pcode/a4=IWC.getAppCGIValue("PRODUCT_ID");
For 1 next Product_ID into prodstk where Product_ID eq pcode;
```
Chapter 18

Simplified Numeric Functions

Numeric functions have been developed that make it easier to understand and enter the required arguments. These functions have streamlined parameter lists, similar to those used by SQL functions. In some cases, these simplified functions provide slightly different functionality than previous versions of similar functions.

The simplified functions do not have an output argument. Each function returns a value that has a specific data type.

When used in a request against a relational data source, these functions are optimized (passed to the RDBMS for processing).

Note:

- The simplified numeric functions are supported in Dialogue Manager.
- The simplified numeric functions are not supported in Maintain Data.

In this chapter:

- **ASCII**: Returning the ASCII Code for the Leftmost Character in a String
- **CEILING**: Returning the Smallest Integer Value Greater Than or Equal to a Value
- **EXPONENT**: Raising e to a Power
- **FLOOR**: Returning the Largest Integer Less Than or Equal to a Value
- **LOG10**: Calculating the Base 10 Logarithm
- **MOD**: Calculating the Remainder From a Division
- **POWER**: Raising a Value to a Power
- **ROUND**: Rounding a Number to a Given Number of Decimal Places
- **SIGN**: Returning the Sign of a Number
- **TRUNCATE**: Truncating a Number to a Given Number of Decimal Places
ASCII: Returning the ASCII Code for the Leftmost Character in a String

ASCII takes a character string and returns the ASCII code in integer format for the leftmost character in the string.

Syntax:

How to Return the ASCII Code for the Leftmost Character in a String

\[
\text{ASCII} (\text{charexp})
\]

where:

\[
\text{charexp}
\]

Is any character string.

Example: Returning the ASCII Code for the Leftmost Character in a String

In the following request, ASCII returns the ASCII code for the leftmost character in the CATEGORY field.

```
TABLE FILE GGSALES
SUM DOLLARS NOPRINT
AND COMPUTE
ASCII_CODE/I9 = ASCII(CATEGORY);
BY CATEGORY
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Category</th>
<th>ASCII_CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coffee</td>
<td>67</td>
</tr>
<tr>
<td>Food</td>
<td>70</td>
</tr>
<tr>
<td>Gifts</td>
<td>71</td>
</tr>
</tbody>
</table>

CEILING: Returning the Smallest Integer Value Greater Than or Equal to a Value

CEILING returns the smallest integer value that is greater than or equal to a number.

Syntax:

How to Return the Smallest Integer Greater Than or Equal to a Number

\[
\text{CEILING} (\text{number})
\]
where:

number

Numeric

Is the number whose ceiling will be returned. The output data type is the same as the input data type.

Example: Returning the Ceiling of a Number

In the following request, CEILING returns the smallest integer greater than or equal to the GROSS_PROFIT_US value.

```plaintext
DEFINE FILE WF_RETAIL_LITE
CEIL1/D7.2= CEILING(GROSS_PROFIT_US);
END
TABLE FILE WF_RETAIL_LITE
PRINT GROSS_PROFIT_US/D9.2  CEIL1
ON TABLE SET PAGE NOPAGE
END
```
The partial output follows. Note that even though the value returned is an integer, it is returned with the same format as the CEIL1 field (D7.2):

<table>
<thead>
<tr>
<th>Gross Profit</th>
<th>CEIL1</th>
</tr>
</thead>
<tbody>
<tr>
<td>165.00</td>
<td>165.00</td>
</tr>
<tr>
<td>13.99</td>
<td>14.00</td>
</tr>
<tr>
<td>60.99</td>
<td>61.00</td>
</tr>
<tr>
<td>225.98</td>
<td>226.00</td>
</tr>
<tr>
<td>79.99</td>
<td>80.00</td>
</tr>
<tr>
<td>44.59</td>
<td>45.00</td>
</tr>
<tr>
<td>94.30</td>
<td>95.00</td>
</tr>
<tr>
<td>238.50</td>
<td>239.00</td>
</tr>
<tr>
<td>199.99</td>
<td>200.00</td>
</tr>
<tr>
<td>68.99</td>
<td>69.00</td>
</tr>
<tr>
<td>63.58</td>
<td>64.00</td>
</tr>
<tr>
<td>129.99</td>
<td>130.00</td>
</tr>
<tr>
<td>37.49</td>
<td>38.00</td>
</tr>
<tr>
<td>75.99</td>
<td>76.00</td>
</tr>
<tr>
<td>13.99</td>
<td>14.00</td>
</tr>
<tr>
<td>119.00</td>
<td>119.00</td>
</tr>
<tr>
<td>-30.01</td>
<td>-30.00</td>
</tr>
<tr>
<td>54.99</td>
<td>55.00</td>
</tr>
<tr>
<td>189.98</td>
<td>190.00</td>
</tr>
<tr>
<td>44.59</td>
<td>45.00</td>
</tr>
<tr>
<td>91.98</td>
<td>92.00</td>
</tr>
<tr>
<td>89.00</td>
<td>89.00</td>
</tr>
<tr>
<td>59.50</td>
<td>60.00</td>
</tr>
<tr>
<td>129.99</td>
<td>130.00</td>
</tr>
<tr>
<td>54.00</td>
<td>54.00</td>
</tr>
<tr>
<td>109.98</td>
<td>110.00</td>
</tr>
<tr>
<td>98.99</td>
<td>99.00</td>
</tr>
<tr>
<td>98.99</td>
<td>99.00</td>
</tr>
<tr>
<td>99.99</td>
<td>100.00</td>
</tr>
<tr>
<td>44.59</td>
<td>45.00</td>
</tr>
</tbody>
</table>

EXPONENT: Raising e to a Power

EXPONENT raises the constant e to a power.

Syntax: How to Raise the Constant e to a Power

```plaintext
EXPONENT(power)
```

where:

- `power`
 Numeric

Is the power to which to raise e. The output data type is numeric.
Example:

Raising e to a Power

The following request prints the value of e and the value of e raised to the fifth power.

```plaintext
DEFINE FILE WF_RETAIL_LITE
EXP1/D12.5 = EXPONENT(1);
EXP2/D12.5 = EXPONENT(5);
END
TABLE FILE WF_RETAIL_LITE
PRINT EXP1 EXP2
BY BUSINESS_REGION AS Region
WHERE BUSINESS_REGION EQ 'EMEA'
WHERE RECORDLIMIT EQ 1
ON TABLE SET PAGE NOPAGE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Region</th>
<th>EXP1</th>
<th>EXP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMEA</td>
<td>2.71828</td>
<td>148.41316</td>
</tr>
</tbody>
</table>

FLOOR: Returning the Largest Integer Less Than or Equal to a Value

FLOOR returns the largest integer value that is less than or equal to a number.

Syntax:

How to Return the Largest Integer Less Than or Equal to a Number

```plaintext
FLOOR(number)
```

where:

- `number`

 Numeric

 Is the number whose floor will be returned. The output data type is the same as the input data type.
Example: Returning the Floor of a Number

In the following request, FLOOR returns the largest integer less than or equal to the GROSS_PROFIT_US value.

```
DEFINE FILE WF_RETAIL_LITE
FLOOR1/D7.2= FLOOR(GROSS_PROFIT_US);
END
TABLE FILE WF_RETAIL_LITE
PRINT GROSS_PROFIT_US/D9.2  FLOOR1
ON TABLE SET PAGE NOPAGE
END
```

Partial output follows. Note that even though the value returned is an integer, it is returned with the same format as the FLOOR1 field (D7.2):

<table>
<thead>
<tr>
<th>Gross Profit</th>
<th>FLOOR1</th>
</tr>
</thead>
<tbody>
<tr>
<td>165.00</td>
<td>165.00</td>
</tr>
<tr>
<td>13.99</td>
<td>13.00</td>
</tr>
<tr>
<td>60.99</td>
<td>60.00</td>
</tr>
<tr>
<td>225.98</td>
<td>225.00</td>
</tr>
<tr>
<td>79.99</td>
<td>79.00</td>
</tr>
<tr>
<td>44.59</td>
<td>44.00</td>
</tr>
<tr>
<td>94.30</td>
<td>94.00</td>
</tr>
<tr>
<td>238.50</td>
<td>238.00</td>
</tr>
<tr>
<td>199.99</td>
<td>199.00</td>
</tr>
<tr>
<td>68.99</td>
<td>68.00</td>
</tr>
<tr>
<td>63.58</td>
<td>63.00</td>
</tr>
<tr>
<td>129.99</td>
<td>129.00</td>
</tr>
<tr>
<td>37.49</td>
<td>37.00</td>
</tr>
<tr>
<td>75.99</td>
<td>75.00</td>
</tr>
<tr>
<td>13.99</td>
<td>13.00</td>
</tr>
<tr>
<td>119.00</td>
<td>119.00</td>
</tr>
<tr>
<td>-30.01</td>
<td>-31.00</td>
</tr>
<tr>
<td>54.99</td>
<td>54.00</td>
</tr>
<tr>
<td>189.98</td>
<td>189.00</td>
</tr>
<tr>
<td>44.59</td>
<td>44.00</td>
</tr>
<tr>
<td>91.98</td>
<td>91.00</td>
</tr>
<tr>
<td>89.00</td>
<td>89.00</td>
</tr>
<tr>
<td>59.50</td>
<td>59.00</td>
</tr>
<tr>
<td>129.99</td>
<td>129.00</td>
</tr>
<tr>
<td>54.00</td>
<td>54.00</td>
</tr>
<tr>
<td>109.98</td>
<td>109.00</td>
</tr>
<tr>
<td>98.99</td>
<td>98.00</td>
</tr>
<tr>
<td>98.99</td>
<td>98.00</td>
</tr>
<tr>
<td>99.99</td>
<td>99.00</td>
</tr>
<tr>
<td>44.59</td>
<td>44.00</td>
</tr>
</tbody>
</table>

LOG10: Calculating the Base 10 Logarithm

LOG10 returns the base-10 logarithm of a numeric expression.
Syntax: How to Calculate the Base 10 Logarithm

\[
\text{LOG10} (\text{num_exp})
\]

where:

\text{num_exp}

Numeric

Is the numeric value for which to calculate the base 10 logarithm.

Example: Calculating the Base 10 Logarithm

The following request calculates the base 10 logarithm of current salaries.

```
TABLE FILE EMPLOYEE
PRINT CURR_SAL AND COMPUTE
  \text{LOG\_CURR\_SAL/D12.6 = LOG10(CURR\_SAL);}
BY LAST\_NAME BY FIRST\_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,\$
ENDSTYLE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>CURR_SAL</th>
<th>LOG_CURR_SAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANNING</td>
<td>JOHN</td>
<td>$29,700.00</td>
<td>4.472756</td>
</tr>
<tr>
<td>IRVING</td>
<td>JOAN</td>
<td>$26,862.00</td>
<td>4.429138</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>ROGER</td>
<td>$16,100.00</td>
<td>4.206826</td>
</tr>
<tr>
<td>ROMANS</td>
<td>ANTHONY</td>
<td>$21,120.00</td>
<td>4.324694</td>
</tr>
<tr>
<td>SMITH</td>
<td>RICHARD</td>
<td>$9,500.00</td>
<td>3.977724</td>
</tr>
<tr>
<td>STEVENS</td>
<td>ALFRED</td>
<td>$11,000.00</td>
<td>4.041393</td>
</tr>
</tbody>
</table>

MOD: Calculating the Remainder From a Division

MOD calculates the remainder from a division. The output data type is the same as the input data type.

Syntax: How to Calculate the Remainder From a Division

\[
\text{MOD} (\text{dividend, divisor})
\]
where:

dividend

Numeric

Is the value to divide.

Note: The sign of the returned value will be the same as the sign of the dividend.

divisor

Numeric

Is the value to divide by.

If the divisor is zero (0), the dividend is returned.

Example: Calculating the Remainder From a Division

In the following request, MOD returns the remainder of PRICE_DOLLARS divided by DAYSDELAYED:

```
DEFINE FILE WF_RETAIL_LITE
MOD1/D7.2 = MOD(PRICE_DOLLARS, DAYSDELAYED);
END
TABLE FILE WF_RETAIL_LITE
PRINT PRICE_DOLLARS/D7.2 DAYSDELAYED/I5 MOD1
WHERE DAYSDELAYED GT 1
ON TABLE SET PAGE NOPAGE
ON TABLE PCHOLD FORMAT WP
END
```

Partial output follows:

<table>
<thead>
<tr>
<th>Price Dollars</th>
<th>Days Delayed</th>
<th>MOD1</th>
</tr>
</thead>
<tbody>
<tr>
<td>399.00</td>
<td>3</td>
<td>.00</td>
</tr>
<tr>
<td>489.99</td>
<td>3</td>
<td>.99</td>
</tr>
<tr>
<td>786.50</td>
<td>2</td>
<td>.50</td>
</tr>
<tr>
<td>599.99</td>
<td>4</td>
<td>3.99</td>
</tr>
<tr>
<td>29.99</td>
<td>4</td>
<td>1.99</td>
</tr>
<tr>
<td>169.00</td>
<td>2</td>
<td>1.00</td>
</tr>
<tr>
<td>219.99</td>
<td>2</td>
<td>1.99</td>
</tr>
<tr>
<td>280.00</td>
<td>3</td>
<td>1.00</td>
</tr>
<tr>
<td>79.99</td>
<td>4</td>
<td>3.99</td>
</tr>
<tr>
<td>145.99</td>
<td>2</td>
<td>1.99</td>
</tr>
<tr>
<td>399.99</td>
<td>3</td>
<td>.99</td>
</tr>
<tr>
<td>349.99</td>
<td>3</td>
<td>1.99</td>
</tr>
<tr>
<td>169.00</td>
<td>3</td>
<td>1.00</td>
</tr>
</tbody>
</table>
POWER: Raising a Value to a Power

POWER raises a base value to a power.

Syntax: How to Raise a Value to a Power

\[
\text{POWER} (\text{base}, \text{power})
\]

where:

\text{base}

Numeric

Is the value to raise to a power. The output value has the same data type as the base value. If the base value is integer, negative power values will result in truncation.

\text{power}

Numeric

Is the power to which to raise the base value.

Example: Raising a Base Value to a Power

In the following request, POWER returns the value COGS_US/20.00 raised to the power stored in DAYSDELAYED:

```
DEFINE FILE WF_RETAIL_LITE
BASE=COGS_US/20.00;
POWER1= POWER(COGS_US/20.00,DAYSDELAYED);
END
TABLE FILE WF_RETAIL_LITE
PRINT BASE IN 15 DAYSDELAYED POWER1
BY PRODUCTCATEGORY
WHERE PRODUCTCATEGORY EQ 'Computers'
WHERE DAYSDELAYED NE 0
ON TABLE SET PAGE NOPAGE
END
```
Partial output follows:

<table>
<thead>
<tr>
<th>Product Category</th>
<th>BASE</th>
<th>Delayed</th>
<th>POWER1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computers</td>
<td>12.15</td>
<td>3</td>
<td>1,793.61</td>
</tr>
<tr>
<td>16.70</td>
<td>2</td>
<td>278.89</td>
<td></td>
</tr>
<tr>
<td>8.35</td>
<td>1</td>
<td>8.35</td>
<td></td>
</tr>
<tr>
<td>8.10</td>
<td>2</td>
<td>65.61</td>
<td></td>
</tr>
<tr>
<td>4.05</td>
<td>1</td>
<td>4.05</td>
<td></td>
</tr>
<tr>
<td>4.05</td>
<td>2</td>
<td>16.40</td>
<td></td>
</tr>
<tr>
<td>4.05</td>
<td>4</td>
<td>269.04</td>
<td></td>
</tr>
<tr>
<td>8.35</td>
<td>1</td>
<td>8.35</td>
<td></td>
</tr>
<tr>
<td>16.70</td>
<td>1</td>
<td>16.70</td>
<td></td>
</tr>
<tr>
<td>8.35</td>
<td>3</td>
<td>582.18</td>
<td></td>
</tr>
<tr>
<td>8.35</td>
<td>1</td>
<td>8.35</td>
<td></td>
</tr>
<tr>
<td>4.05</td>
<td>1</td>
<td>4.05</td>
<td></td>
</tr>
<tr>
<td>4.05</td>
<td>4</td>
<td>4,861.23</td>
<td></td>
</tr>
<tr>
<td>8.35</td>
<td>-1</td>
<td>.12</td>
<td></td>
</tr>
<tr>
<td>8.35</td>
<td>1</td>
<td>8.35</td>
<td></td>
</tr>
<tr>
<td>8.35</td>
<td>3</td>
<td>582.18</td>
<td></td>
</tr>
</tbody>
</table>

ROUND: Rounding a Number to a Given Number of Decimal Places

Given a numeric expression and an integer count, ROUND returns the numeric expression rounded to that number of decimal places. If the number of decimal places is negative, it rounds to the left of the decimal point.

Syntax:

How to Round a Number to a Given Number of Decimal Places

ROUND(\textit{num_exp}, \textit{count})

where:

\textit{num_exp} \hspace{1cm} Numeric

Is the numeric expression to be rounded.

\textit{count} \hspace{1cm} Numeric

Is the number of decimal places to which the numeric expression is to be rounded. If the number of decimal places is negative, ROUND rounds to the left of the decimal point.
Example: Rounding a Number to a Given Number of Decimal Places

The following request rounds the LISTPR field to zero decimal places and the NEWLISTPR field 1 decimal place and to -2 decimal places.

\[
\begin{align*}
\text{TAB FILE MOVIES} & \\
\text{PRINT LISTPR} & \\
\text{AND COMPUTE} & \\
\text{NEWLISTPR/D12.3 = LISTPR * 99;} & \\
\text{ROUND_ZERO/D12.3 = ROUND(LISTPR, 0);} & \\
\text{ROUND_PLUS1/D12.3 = ROUND(NEWLISTPR, 1);} & \\
\text{ROUND_MINUS1/D12.3 = ROUND(NEWLISTPR, -2);} & \\
\text{BY MOVIECODE} & \\
\text{WHERE RECORDLIMIT EQ 3} & \\
\text{ON TABLE SET PAGE NOLEAD} & \\
\text{ON TABLE SET STYLE *} & \\
\text{GRID=OFF,$} & \\
\text{ENDSTYLE} & \\
\text{END} & \\
\end{align*}
\]

The output is shown in the following image.

```
<table>
<thead>
<tr>
<th>MOVIECODE</th>
<th>LISTPR</th>
<th>NEWLISTPR</th>
<th>ROUND_ZERO</th>
<th>ROUND_PLUS1</th>
<th>ROUND_MINUS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>001MCA</td>
<td>19.95</td>
<td>1,975.050</td>
<td>20.000</td>
<td>1,975.100</td>
<td>2,000.000</td>
</tr>
<tr>
<td>005WAR</td>
<td>24.98</td>
<td>2,473.020</td>
<td>25.000</td>
<td>2,473.000</td>
<td>2,500.000</td>
</tr>
<tr>
<td>020TUR</td>
<td>39.99</td>
<td>3,959.010</td>
<td>40.000</td>
<td>3,959.000</td>
<td>4,000.000</td>
</tr>
</tbody>
</table>
```

SIGN: Returning the Sign of a Number

SIGN takes a numeric argument and returns the value -1 if the number is negative, 0 (zero) if the number is zero, and 1 if the number is positive.

Syntax: How to Return the Sign of a Number

\[
\text{SIGN(number)}
\]

where:

\[
\text{number}
\]

Is a field containing a numeric value or a number.
Example: Returning the Sign of a Number

The following request returns the sign of positive numbers, negative numbers, and zero (0).

```plaintext
TABLE FILE GGSALES
SUM DOLLARS NOPRINT AND COMPUTE
PLUSDOLL/I9 = IF DOLLARS GT 12000000 THEN DOLLARS ELSE 0;
SIGN1/I5 = SIGN(PLUSDOLL);
NEGDOBLL/I9 = IF DOLLARS LT 12000000 THEN 0 ELSE -DOLLARS;
SIGN2/I5 = SIGN(NEGDOBLL);
BY CATEGORY
ON TABLE SET PAGE NOLEAD
ENDSTYLE
END
```

The output is shown in the following image.

![Output Table](image)

TRUNCATE: Truncating a Number to a Given Number of Decimal Places

Given a numeric expression and an integer count, TRUNCATE returns the numeric expression truncated to that number of decimal places. If the number of decimal places is negative, it truncates to the left of the decimal point.

Syntax: How to Truncate a Number to a Given Number of Decimal Places

```plaintext
TRUNCATE(num_exp, count)
```

where:

- **num_exp**
 - Numeric
 - Is the numeric expression to be truncated.

- **count**
 - Numeric
 - Is the number of decimal places to which the numeric expression is to be truncated. If the number of decimal places is negative, TRUNCATE truncates to the left of the decimal point.
Example: Truncating a Number to a Given Number of Decimal Places

The following request truncates the LISTPR field to 1 decimal place and to -1 decimal places.

```
TABLE FILE MOVIES
PRINT LISTPR
AND COMPUTE
TRUNCATE_PLUS1/D12.3 = TRUNCATE(LISTPR, 1);
TRUNCATE_MINUS1/D12.3 = TRUNCATE(LISTPR, -1);
BY MOVIECODE
WHERE RECORDLIMIT EQ 3
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>MOVIECODE</th>
<th>LISTPR</th>
<th>TRUNCATE_PLUS1</th>
<th>TRUNCATE_MINUS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>001MCA</td>
<td>19.95</td>
<td>19.900</td>
<td>10.000</td>
</tr>
<tr>
<td>005WAR</td>
<td>24.98</td>
<td>24.900</td>
<td>20.000</td>
</tr>
<tr>
<td>020TUR</td>
<td>39.99</td>
<td>39.900</td>
<td>30.000</td>
</tr>
</tbody>
</table>
TRUNCATE: Truncating a Number to a Given Number of Decimal Places
Numeric functions perform calculations on numeric constants and fields.

For many functions, the output argument can be supplied either as a field name or as a format enclosed in single quotation marks. However, if a function is called from a Dialogue Manager command, this argument must always be supplied as a format, and if a function is called from a Maintain Data procedure, this argument must always be supplied as a field name. For detailed information about calling a function and supplying arguments, see Accessing and Calling a Function on page 61.

Note: With CDN ON, numeric arguments must be delimited by a comma followed by a space.

In this chapter:

- **ABS:** Calculating Absolute Value
- **ASIS:** Distinguishing Between a Blank and a Zero
- **BAR:** Producing a Bar Chart
- **CHKPCK:** Validating a Packed Field
- **DMOD, FMOD, and IMOD:** Calculating the Remainder From a Division
- **EXP:** Raising e to the Nth Power
- **EXPN:** Evaluating a Number in Scientific Notation
- **FMLCAP:** Retrieving FML Hierarchy Captions
- **FMLFOR:** Retrieving FML Tag Values
- **FMLINFO:** Returning FOR Values
- **FMLLIST:** Returning an FML Tag List
- **INT:** Finding the Greatest Integer
- **LOG:** Calculating the Natural Logarithm
- **MAX and MIN:** Finding the Maximum or Minimum Value
- **MIRR:** Calculating the Modified Internal Return Rate
- **NORMSDST and NORMSINV:** Calculating Normal Distributions
- **PRDNOR and PRDUNI:** Generating Reproducible Random Numbers
- **RDNORM and RDUNIF:** Generating Random Numbers
- **SQRT:** Calculating the Square Root
- **XIRR:** Calculating the Modified Internal Return Rate (Periodic or Non-Periodic)
ABS: Calculating Absolute Value

Available Languages: reporting, Maintain

The ABS function returns the absolute value of a number.

Syntax: How to Calculate Absolute Value

\[\text{ABS}(\text{in_value}) \]

where:

\(\text{in_value} \)

Numeric

Is the value for which the absolute value is returned, the name of a field that contains the value, or an expression that returns the value. If you use an expression, use parentheses as needed to ensure the correct order of evaluation.

Example: Calculating Absolute Value

The COMPUTE command creates the DIFF field, then ABS calculates the absolute value of DIFF:

```
TABLE FILE SALES
PRINT UNIT_SOLD AND DELIVER_AMT AND
COMPUTE DIFF/I5 = DELIVER_AMT - UNIT_SOLD; AND
COMPUTE ABS_DIFF/I5 = \text{ABS}(\text{DIFF}); BY PROD_CODE
WHERE DATE LE '1017';
END
```

The output is:

```
PROD_CODE  UNIT_SOLD  DELIVER_AMT  DIFF  ABS_DIFF
---------  ---------  -----------  ----  --------
B10        30        30          0    0
B17        20        40          20   20
B20        15        30          15   15
C17        12        10          -2   2
D12        20        30          10   10
E1         30        25          -5   5
E3         35        25          -10  10
```

ASIS: Distinguishing Between a Blank and a Zero

Available Languages: reporting

The ASIS function distinguishes between a blank and a zero in Dialogue Manager. It differentiates between a numeric string constant or variable defined as a numeric string, and a field defined simply as numeric.
For details on ASIS, see *ASIS: Distinguishing Between Space and Zero* on page 199.

BAR: Producing a Bar Chart

Available Languages: reporting, Maintain

The BAR function produces a horizontal bar chart using repeating characters to form each bar. Optionally, you can create a scale to clarify the meaning of a bar chart by replacing the title of the column containing the bar with a scale.

Syntax: How to Produce a Bar Chart

```plaintext
BAR(barlength, infield, maxvalue, 'char', output)
```

where:

- **barlength**
 Numeric
 Is the maximum length of the bar, in characters. If this value is less than or equal to 0, the function does not return a bar.

- **infield**
 Numeric
 Is the data field plotted as a bar chart.

- **maxvalue**
 Numeric
 Is the maximum value of a bar. This value must be greater than the maximum value stored in **infield**. If **infield** is larger than **maxvalue**, the function uses **maxvalue** and returns a bar of maximum length.

- **'char'**
 Alphanumeric
 Is the repeating character that creates the bars enclosed in single quotation marks. If you specify more than one character, only the first character is used.

- **output**
 Alphanumeric
 Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks. The output field must be large enough to contain a bar of maximum length as defined by **barlength**.
Example: Producing a Bar Chart

BAR creates a bar chart for the CURR_SAL field, and stores the output in SAL_BAR. The bar created can be no longer than 30 characters long, and the value it represents can be no greater than 30,000.

```sql
TABLE FILE EMPLOYEE
PRINT CURR_SAL AND COMPUTE
SAL_BAR/A30 = BAR(30, CURR_SAL, 30000, '=', SAL_BAR);BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>CURR_SAL</th>
<th>SAL_BAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANNING</td>
<td>JOHN</td>
<td>$29,700.00</td>
<td>==</td>
</tr>
<tr>
<td>IRVING</td>
<td>JOAN</td>
<td>$26,862.00</td>
<td>==</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>ROGER</td>
<td>$16,100.00</td>
<td>==</td>
</tr>
<tr>
<td>ROMANS</td>
<td>ANTHONY</td>
<td>$21,120.00</td>
<td>==</td>
</tr>
<tr>
<td>SMITH</td>
<td>RICHARD</td>
<td>$9,500.00</td>
<td>==</td>
</tr>
<tr>
<td>STEVENS</td>
<td>ALFRED</td>
<td>$11,000.00</td>
<td>==</td>
</tr>
</tbody>
</table>

Example: Creating a Bar Chart With a Scale

BAR creates a bar chart for the CURR_SAL field. The request then replaces the field name SAL_BAR with a scale using the AS phrase.

To run this request on a platform for which the default font is proportional, use a non-proportional font or issue SET STYLE=OFF.

```sql
SET STYLE=OFF
TABLE FILE EMPLOYEE
HEADING
"CURRENT SALARIES OF EMPLOYEES IN PRODUCTION DEPARTMENT"
"GRAPHED IN THOUSANDS OF DOLLARS"
""
PRINT CURR_SAL AS 'CURRENT SALARY'
AND COMPUTE
    SAL_BAR/A30 = BAR(30, CURR_SAL, 30000, '=', SAL_BAR);
    AS ' 5 10 15 20 25 30,-----------------------------------'
BY LAST_NAME AS 'LAST NAME'
BY FIRST_NAME AS 'FIRST NAME'
WHERE DEPARTMENT EQ 'PRODUCTION';
ON TABLE SET PAGE-NUM OFF
ON TABLE SET STYLE * GRID=OFF, $
END
```
The output is:

CURRENT SALARIES OF EMPLOYEES IN PRODUCTION DEPARTMENT
GRAPHED IN THOUSANDS OF DOLLARS

<table>
<thead>
<tr>
<th>LAST NAME</th>
<th>FIRST NAME</th>
<th>CURRENT SALARY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BANNING</td>
<td>JOHN</td>
<td>$29,700.00</td>
<td>5</td>
</tr>
<tr>
<td>IRVING</td>
<td>JOAN</td>
<td>$26,862.00</td>
<td>10</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>ROGER</td>
<td>$16,100.00</td>
<td>15</td>
</tr>
<tr>
<td>ROMANS</td>
<td>ANTHONY</td>
<td>$21,120.00</td>
<td>20</td>
</tr>
<tr>
<td>SMITH</td>
<td>RICHARD</td>
<td>$9,500.00</td>
<td>25</td>
</tr>
<tr>
<td>STEVENS</td>
<td>ALFRED</td>
<td>$11,000.00</td>
<td>30</td>
</tr>
</tbody>
</table>

CHKPCK: Validating a Packed Field

Available Languages: reporting, Maintain

The CHKPCK function validates the data in a field described as packed format (if available on your platform). The function prevents a data exception from occurring when a request reads a field that is expected to contain a valid packed number but does not.

To use CHKPCK:

1. Ensure that the Master File (USAGE and ACTUAL attributes) defines the field as alphanumeric, not packed. This does not change the field data, which remains packed, but it enables the request to read the data without a data exception.

2. Call CHKPCK to examine the field. The function returns the output to a field defined as packed. If the value it examines is a valid packed number, the function returns the value; if the value is not packed, the function returns an error code.

Syntax: How to Validate a Packed Field

CHKPCK(length, in_value, error, output)

where:

length

 Numeric

 Is the length of the packed field. It can be between 1 and 16 bytes.

infield

 Alphanumeric

 Is the name of the packed field or the value to be verified as packed decimal. The value must be described as alphanumeric, not packed.
error

Numeric

Is the error code that the function returns if a value is not packed. Choose an error code outside the range of data. The error code is first truncated to an integer, then converted to packed format. However, it may appear on a report with a decimal point depending on the output format.

output

Packed-decimal

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.

Example: Validating Packed Data

1. Prepare a data source that includes invalid packed data. The following example creates TESTPACK, which contains the PACK_SAL field. PACK_SAL is defined as alphanumeric but actually contains packed data. The invalid packed data is stored as AAA.

   ```
   DEFINE FILE EMPLOYEE
   PACK_SAL/A8 = IF EMP_ID CONTAINS '123'
       THEN 'AAA' ELSE PCKOUT(CURR_SAL, 8, 'A8');
   END
   
   TABLE FILE EMPLOYEE
   PRINT DEPARTMENT PACK_SAL BY EMP_ID
   ON TABLE SAVE AS TESTPACK
   END
   ```

 The output is:

   ```
   NUMBER OF RECORDS IN TABLE= 12 LINES= 12
   ALPHANUMERIC RECORD NAMED TESTPACK
   FIELDFIELDNAME ALIAS FORMAT LENGTH
   EMP_ID EID A9 9
   DEPARTMENT DPT A10 10
   PACK_SAL PS A8 8
   TOTAL 27
   ```

2. Create a Master File for the TESTPACK data source. Define the PACK_SAL field as alphanumeric in the USAGE and ACTUAL attributes.

   ```
   FILE = TESTPACK, SUFFIX = FIX
   FIELD = EMP_ID ALIAS = EID, USAGE = A9, ACTUAL = A9,
   FIELD = DEPARTMENT, ALIAS = DPT, USAGE = A10, ACTUAL = A10,
   FIELD = PACK_SAL, ALIAS = PS, USAGE = A8, ACTUAL = A8,
   ```

3. Create a request that uses CHKPCK to validate the values in the PACK_SAL field, and store the result in the GOOD_PACK field. Values not in packed format return the error code -999. Values in packed format appear accurately.
DEFINE FILE TESTPACK
GOOD_PACK/P8CM = CHKPK(8, PACK_SAL, -999, GOOD_PACK);
END

TABLE FILE TESTPACK
PRINT DEPARTMENT GOOD_PACK BY EMP_ID
END

The output is:

<table>
<thead>
<tr>
<th>EMP_ID</th>
<th>DEPARTMENT</th>
<th>GOOD_PACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>071382660</td>
<td>PRODUCTION</td>
<td>$11,000</td>
</tr>
<tr>
<td>112847612</td>
<td>MIS</td>
<td>$13,200</td>
</tr>
<tr>
<td>117593129</td>
<td>MIS</td>
<td>$18,480</td>
</tr>
<tr>
<td>119265415</td>
<td>PRODUCTION</td>
<td>$9,500</td>
</tr>
<tr>
<td>119329144</td>
<td>PRODUCTION</td>
<td>$29,700</td>
</tr>
<tr>
<td>123764317</td>
<td>PRODUCTION</td>
<td>-$999</td>
</tr>
<tr>
<td>126724188</td>
<td>PRODUCTION</td>
<td>$21,120</td>
</tr>
<tr>
<td>219984371</td>
<td>MIS</td>
<td>$18,480</td>
</tr>
<tr>
<td>326179357</td>
<td>MIS</td>
<td>$21,780</td>
</tr>
<tr>
<td>451123478</td>
<td>PRODUCTION</td>
<td>-$999</td>
</tr>
<tr>
<td>543729165</td>
<td>MIS</td>
<td>$9,000</td>
</tr>
<tr>
<td>818692173</td>
<td>MIS</td>
<td>$27,062</td>
</tr>
</tbody>
</table>

DMOD, FMOD, and IMOD: Calculating the Remainder From a Division

Available Languages: reporting, Maintain

The MOD functions calculate the remainder from a division. Each function returns the remainder in a different format.

The functions use the following formula.

\[
\text{remainder} = \text{dividend} - \text{INT} (\text{dividend} / \text{divisor}) \times \text{divisor}
\]

- **DMOD** returns the remainder as a decimal number.
- **FMOD** returns the remainder as a floating-point number.
- **IMOD** returns the remainder as an integer.
Syntax: How to Calculate the Remainder From a Division

\[\text{function}(\text{dividend}, \text{divisor}, \text{output}) \]

where:

\[\text{function} \]
\[\text{Is one of the following:} \]
\[\text{DMOD} \text{ returns the remainder as a decimal number.} \]
\[\text{FMOD} \text{ returns the remainder as a floating-point number.} \]
\[\text{IMOD} \text{ returns the remainder as an integer.} \]

\[\text{dividend} \]
\[\text{Numeric} \]
\[\text{Is the number being divided.} \]

\[\text{divisor} \]
\[\text{Numeric} \]
\[\text{Is the number dividing the dividend.} \]

\[\text{output} \]
\[\text{Numeric} \]
\[\text{Is the result whose format is determined by the function used. Can be the name of the} \]
\[\text{field that contains the result, or the format of the output value enclosed in single quotation} \]
\[\text{marks.} \]
\[\text{If the divisor is zero (0), the dividend is returned.} \]

Example: Calculating the Remainder From a Division

IMOD divides ACCTNUMBER by 1000 and returns the remainder to LAST3_ACCT:

```
TABLE FILE EMPLOYEE
PRINT ACCTNUMBER AND COMPUTE
LAST3_ACCT/I3L = IMOD(ACCTNUMBER, 1000, LAST3_ACCT);
BY LAST_NAME BY FIRST_NAME
WHERE (ACCTNUMBER NE 000000000) AND (DEPARTMENT EQ 'MIS');
END
```
The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>ACCTNUMBER</th>
<th>LAST3_ACCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
<td>122850108</td>
<td>108</td>
</tr>
<tr>
<td>CROSS</td>
<td>BARBARA</td>
<td>163800144</td>
<td>144</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>MARY</td>
<td>150150302</td>
<td>302</td>
</tr>
<tr>
<td>JONES</td>
<td>DIANE</td>
<td>040950036</td>
<td>036</td>
</tr>
<tr>
<td>MCCOY</td>
<td>JOHN</td>
<td>109200096</td>
<td>096</td>
</tr>
<tr>
<td>SMITH</td>
<td>MARY</td>
<td>027300024</td>
<td>024</td>
</tr>
</tbody>
</table>

EXP: Raising e to the Nth Power

Available Languages: reporting, Maintain

The EXP function raises the value "e" (approximately 2.72) to a specified power. This function is the inverse of the LOG function, which returns the logarithm of the argument.

EXP calculates the result by adding terms of an infinite series. If a term adds less than .000001 percent to the sum, the function ends the calculation and returns the result as a double-precision number.

Syntax:

How to Raise e to the Nth Power

\[\text{EXP(} \text{power, output} \) \]

where:

- **power**
 - Numeric
 - Is the power to which "e" is raised.

- **output**
 - Double-precision floating-point
 - Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.
Example: Raising e to the Nth Power

EXP raises "e" to the power designated by the &POW variable, specified here as 3. The result is then rounded to the nearest integer with the .5 rounding constant and returned to the variable &RESULT. The format of the output value is D15.3.

```
-SET &POW = '3';
-SET &RESULT = EXP(&POW, 'D15.3') + 0.5;
-HTMLFORM BEGIN
  <HTML>
  <BODY>
  E TO THE &POW POWER IS APPROXIMATELY &RESULT
  </BODY>
  </HTML>
-HTMLFORM END
```

The output is:

E TO THE 3 POWER IS APPROXIMATELY 20

EXPN: Evaluating a Number in Scientific Notation

The EXPN function evaluates a numeric literal or Dialogue Manager variable expressed in scientific notation.

Syntax: How to Evaluate a Number in Scientific Notation

```
EXPN(n.nn {E|D} {+|-} p)
```

where:

- **n.nn**
 Numeric
 Is a numeric literal that consists of a whole number component, followed by a decimal point, followed by a fractional component.

- **E, D**
 Denotes scientific notation. E and D are interchangeable.

- **+,-**
 Indicates if p is positive or negative.

- **p**
 Integer
 Is the power of 10 to which to raise n.nn.
Note: EXPN does not use an output argument. The format of the result is floating-point double precision.

Example: Evaluating a Number in Scientific Notation

EXPN evaluates 1.03E+2.

```plaintext
EXPN(1.03E+2)
```

The result is 103.

FMLCAP: Retrieving FML Hierarchy Captions

Available Languages: reporting

The FMLCAP function returns the caption value for each row in an FML hierarchy request. In order to retrieve caption values, the Master File must define an FML hierarchy and the request must use the GET CHILDREN, ADD, or WITH CHILDREN option to retrieve hierarchy data. If the FOR field in the request does not have a caption field defined, FMLCAP returns a blank string.

FMLCAP is supported for COMPUTE but is not recommended for use with DEFINE.

Syntax: How to Retrieve Captions in an FML Request Using the FMLCAP Function

```plaintext
FMLCAP(fieldname|'format')
```

where:

- `fieldname`
 - Is the name of the caption field.

- `'format'`
 - Is the format of the caption field enclosed in single quotation marks.

Example: Retrieving FML Hierarchy Captions Using FMLCAP

The following request retrieves and aggregates the FML hierarchy that starts with the parent value 2000. FMLCAP retrieves the captions, while the actual account numbers appear as the FOR values.

```plaintext
SET FORMULTIPLE = ON
TABLE FILE CENTSTMT
SUM ACTUAL_AMT
COMPUTE CAP1/A30= FMLCAP(GL_ACCOUNT_CAPTION);
FOR GL_ACCOUNT
2000 WITH CHILDREN 2 ADD
END
```
The output is:

<table>
<thead>
<tr>
<th></th>
<th>Actual</th>
<th>CAP1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>313,611,852.</td>
<td>Gross Margin</td>
</tr>
<tr>
<td>2100</td>
<td>187,087,470.</td>
<td>Sales Revenue</td>
</tr>
<tr>
<td>2200</td>
<td>98,710,368.</td>
<td>Retail Sales</td>
</tr>
<tr>
<td>2300</td>
<td>13,798,832.</td>
<td>Mail Order Sales</td>
</tr>
<tr>
<td>2400</td>
<td>12,215,780.</td>
<td>Internet Sales</td>
</tr>
<tr>
<td>2500</td>
<td>100,885,159.</td>
<td>Cost Of Goods Sold</td>
</tr>
<tr>
<td>2600</td>
<td>54,877,250.</td>
<td>Variable Material Costs</td>
</tr>
<tr>
<td>2700</td>
<td>6,176,900.</td>
<td>Direct Labor</td>
</tr>
<tr>
<td>2800</td>
<td>3,107,742.</td>
<td>Fixed Costs</td>
</tr>
</tbody>
</table>

FMLFOR: Retrieving FML Tag Values

Available Languages: reporting

FMLFOR retrieves the tag value associated with each row in an FML request. If the FML row was generated as a sum of data records using the OR phrase, FMLFOR returns the first value specified in the list. If the OR phrase was generated by an FML Hierarchy ADD command, FMLFOR returns the tag value associated with the parent specified in the ADD command.

The FMLFOR function is supported for COMPUTE but not for DEFINE. Attempts to use it in a DEFINE result in blank values.

Syntax: How to Retrieve FML Tag Values

FMLFOR(output)

where:

output

Is name of the field that will contain the result, or the format of the output value enclosed in single quotation marks.

Example: Retrieving FML Tag Values With FMLFOR

```
SET FORMULTIPLE = ON
TABLE FILE LEDGER
SUM AMOUNT
COMPUTE RETURNEDFOR/A8 = FMLFOR('A8');
FOR ACCOUNT
  1010 OVER
  1020 OVER
  1030 OVER
  BAR OVER
  1030 OR 1020 OR 1010
END
```
The output is:

<table>
<thead>
<tr>
<th>AMOUNT</th>
<th>RETURNED FOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1010</td>
<td>8,784</td>
</tr>
<tr>
<td>1020</td>
<td>4,494</td>
</tr>
<tr>
<td>1030</td>
<td>7,961</td>
</tr>
<tr>
<td>1010</td>
<td>21,239</td>
</tr>
</tbody>
</table>

FMLINFO: Returning FOR Values

Available Languages: reporting

The FMLINFO function returns the FOR value associated with each row in an FML report. With FMLINFO, you can use the appropriate FOR value in a COMPUTE command to do drill-downs and sign changes for each row in the report, even when the row is a summary row created using an OR list or a Financial Modeling Language (FML) Hierarchy ADD command.

Note: You can use the SET parameter FORMULTIPLE=ON to enable an incoming record to be used on more than one line in an FML report.

Syntax: How to Retain FOR Values in an FML Request

FMLINFO('FORVALUE', output)

where:

'FORVALUE'
Alphanumeric

Returns the FOR value associated with each row in an FML report. If the FML row was generated as a sum of data records using the OR phrase, FMLINFO returns the first FOR value specified in the list of values. If the OR phrase was generated by an FML Hierarchy ADD command, FMLINFO returns the FOR value associated with the parent specified in the ADD command.

output
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.
Example: Retrieving FOR Values for FML Hierarchy Rows

The following request creates a field called PRINT_AMT that is the negative of the NAT_AMOUNT field for account numbers less than 2500 in the CENTSYSF data source. The CENTGL data source contains the hierarchy information for CENTSYSF. Therefore, CENTGL is joined to CENTSYSF for the request:

```
SET FORMULTIPLE = ON
JOIN SYS_ACCOUNT IN CENTGL TO ALL SYS_ACCOUNT IN CENTSYSF
TABLE FILE CENTGL
SUM NAT_AMOUNT/D10 IN 30
COMPUTE PRINT_AMT/D10 = IF FMLINFO('FORVALUE','A7') LT '2500'
THEN 0-NAT_AMOUNT ELSE NAT_AMOUNT;
COMPUTE FORV/A4 = FMLINFO('FORVALUE', 'A4');
COMPUTE ACTION/A9 = IF FORV LT '2500'
THEN 'CHANGED' ELSE 'UNCHANGED';
FOR GL_ACCOUNT
2000 WITH CHILDREN 2 ADD AS CAPTION
END
```

Note: The parent value specified in the WITH CHILDREN ADD command (2000) is returned for the first row on the report. Each subsequent row is also a consolidated subsection of the hierarchy with a parent value that is returned by FMLINFO:

<table>
<thead>
<tr>
<th>Month</th>
<th>Actual</th>
<th>PRINT_AMT</th>
<th>FORV</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Margin</td>
<td>-25,639,223</td>
<td>25,639,223</td>
<td>2000</td>
<td>CHANGED</td>
</tr>
<tr>
<td>Sales Revenue</td>
<td>-62,362,490</td>
<td>62,362,490</td>
<td>2100</td>
<td>CHANGED</td>
</tr>
<tr>
<td>Retail Sales</td>
<td>-49,355,184</td>
<td>49,355,184</td>
<td>2200</td>
<td>CHANGED</td>
</tr>
<tr>
<td>Mail Order Sales</td>
<td>-6,899,416</td>
<td>6,899,416</td>
<td>2300</td>
<td>CHANGED</td>
</tr>
<tr>
<td>Internet Sales</td>
<td>-6,107,890</td>
<td>6,107,890</td>
<td>2400</td>
<td>CHANGED</td>
</tr>
<tr>
<td>Cost Of Goods Sold</td>
<td>36,723,267</td>
<td>36,723,267</td>
<td>2500</td>
<td>UNCHANGED</td>
</tr>
<tr>
<td>Variable Material Costs</td>
<td>27,438,625</td>
<td>27,438,625</td>
<td>2600</td>
<td>UNCHANGED</td>
</tr>
<tr>
<td>Direct Labor</td>
<td>6,176,900</td>
<td>6,176,900</td>
<td>2700</td>
<td>UNCHANGED</td>
</tr>
<tr>
<td>Fixed Costs</td>
<td>3,107,742</td>
<td>3,107,742</td>
<td>2800</td>
<td>UNCHANGED</td>
</tr>
</tbody>
</table>

Example: Using FMLINFO With an OR Phrase

The FOR value printed for the summary line is 1010, but FMLINFO returns the first value specified in the OR list, 1030:

```
SET FORMULTIPLE = ON
TABLE FILE LEDGER
SUM AMOUNT
COMPUTE RETURNEDFOR/A8 = FMLINFO('FORVALUE', 'A8');
FOR ACCOUNT
1010 OVER
1020 OVER
1030 OVER
BAR OVER
1030 OR 1020 OR 1010 END
```
The output is:

<table>
<thead>
<tr>
<th>AMOUNT</th>
<th>RETURNEDFOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1010</td>
<td>8,784</td>
</tr>
<tr>
<td>1020</td>
<td>4,494</td>
</tr>
<tr>
<td>1030</td>
<td>7,961</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>21,239</td>
</tr>
</tbody>
</table>

FMLLIST: Returning an FML Tag List

Available Languages: reporting

FMLLIST returns a string containing the complete tag list for each row in an FML request. If a row has a single tag value, that value is returned.

The FMLLIST function is supported for COMPUTE but not for DEFINE. Attempts to use it in a DEFINE result in blank values.

Syntax: How to Retrieve an FML Tag List

FMLLIST('A4096V')

where:

'A4096V'

Is the required argument.

Example: Retrieving an FML Tag List With FMLLIST

```
SET FORMULTIPLE=ON
TABLE FILE LEDGER
HEADING
"TEST OF FMLLIST"
""
SUM AMOUNT
COMPUTE LIST1/A36 = FMLLIST('A4096V');
FOR ACCOUNT
  '1010' OVER
  '1020' OVER
  '1030' OVER
  BAR OVER
  '1030' OR '1020' OR '1010'
END
```
The output is:

<table>
<thead>
<tr>
<th>AMOUNT</th>
<th>LIST1</th>
<th>------</th>
</tr>
</thead>
<tbody>
<tr>
<td>1010</td>
<td>8,784</td>
<td>1010</td>
</tr>
<tr>
<td>1020</td>
<td>4,494</td>
<td>1020</td>
</tr>
<tr>
<td>1030</td>
<td>7,961</td>
<td>1030</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>1010</td>
<td>21,239</td>
<td>1010 OR 1020 OR 1030</td>
</tr>
</tbody>
</table>

INT: Finding the Greatest Integer

Available Languages: reporting, Maintain

The INT function returns the integer component of a number.

Syntax:

`INT(in_value)`

where:

- `in_value` Numeric

Is the value for which the integer component is returned, the name of a field that contains the value, or an expression that returns the value. If you supply an expression, use parentheses as needed to ensure the correct order of evaluation.

Example:

INT finds the greatest integer in the DED_AMT field and stores it in INT_DED_AMT:

```sql
TABLE FILE EMPLOYEE
SUM DED_AMT AND COMPUTE
INT_DED_AMT/I9 = INT(DED_AMT); BY LAST_NAME BY FIRST_NAME
WHERE (DEPARTMENT EQ 'MIS') AND (PAY_DATE EQ 820730);
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>DED_AMT</th>
<th>INT_DED_AMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
<td>$1,261.40</td>
<td>1261</td>
</tr>
<tr>
<td>CROSS</td>
<td>BARBARA</td>
<td>$1,668.69</td>
<td>1668</td>
</tr>
<tr>
<td>GREGREENSPAN</td>
<td>MARY</td>
<td>$127.50</td>
<td>127</td>
</tr>
<tr>
<td>JONES</td>
<td>DIANE</td>
<td>$725.34</td>
<td>725</td>
</tr>
<tr>
<td>SMITH</td>
<td>MARY</td>
<td>$334.10</td>
<td>334</td>
</tr>
</tbody>
</table>

LOG: Calculating the Natural Logarithm

Available Languages: reporting, Maintain
The LOG function returns the natural logarithm of a number.

Syntax:

How to Calculate the Natural Logarithm

\[\text{LOG}(\text{in_value}) \]

where:

\[\text{in_value} \]

Numeric

Is the value for which the natural logarithm is calculated, the name of a field that contains the value, or an expression that returns the value. If you supply an expression, use parentheses as needed to ensure the correct order of evaluation. If \(\text{in_value} \) is less than or equal to 0, LOG returns 0.

Example:

Calculating the Natural Logarithm

LOG calculates the logarithm of the CURR_SAL field:

TABLE FILE EMPLOYEE
PRINT CURR_SAL AND COMPUTE
LOG_CURR_SAL/D12.2 = LOG(CURR_SAL); BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>CURR_SAL</th>
<th>LOG_CURR_SAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANNING</td>
<td>JOHN</td>
<td>$29,700.00</td>
<td>10.30</td>
</tr>
<tr>
<td>IRVING</td>
<td>JOAN</td>
<td>$26,862.00</td>
<td>10.20</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>ROGER</td>
<td>$16,100.00</td>
<td>9.69</td>
</tr>
<tr>
<td>ROMANS</td>
<td>ANTHONY</td>
<td>$21,120.00</td>
<td>9.96</td>
</tr>
<tr>
<td>SMITH</td>
<td>RICHARD</td>
<td>$9,500.00</td>
<td>9.16</td>
</tr>
<tr>
<td>STEVENS</td>
<td>ALFRED</td>
<td>$11,000.00</td>
<td>9.31</td>
</tr>
</tbody>
</table>

MAX and MIN: Finding the Maximum or Minimum Value

Available Languages: reporting, Maintain

The MAX and MIN functions return the maximum or minimum value, respectively, from a list of values.
Syntax: How to Find the Maximum or Minimum Value

\(\{\text{MAX}|\text{MIN}\}(\text{value1}, \text{value2}, ...)\)

where:

\(\text{MAX}\)

Returns the maximum value.

\(\text{MIN}\)

Returns the minimum value.

\(\text{value1, value2}\)

Numeric

Are the values for which the maximum or minimum value is returned, the name of a field that contains the values, or an expression that returns the values. If you supply an expression, use parentheses as needed to ensure the correct order of evaluation.

Example: Determining the Minimum Value

MIN returns either the value of the ED_HRS field or the constant 30, whichever is lower:

```
TABLE FILE EMPLOYEE
PRINT ED_HRS AND COMPUTE
MIN_EDHRS_30/D12.2 = MIN(ED_HRS, 30);BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS';
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>ED_HRS</th>
<th>MIN_EDHRS_30</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
<td>75.00</td>
<td>30.00</td>
</tr>
<tr>
<td>CROSS</td>
<td>BARBARA</td>
<td>45.00</td>
<td>30.00</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>MARY</td>
<td>25.00</td>
<td>25.00</td>
</tr>
<tr>
<td>JONES</td>
<td>DIANE</td>
<td>50.00</td>
<td>30.00</td>
</tr>
<tr>
<td>MCCOY</td>
<td>JOHN</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>SMITH</td>
<td>MARY</td>
<td>36.00</td>
<td>30.00</td>
</tr>
</tbody>
</table>

MIRR: Calculating the Modified Internal Return Rate

Available languages: reporting

The MIRR function calculates the modified internal rate of return for a series of periodic cash flows.
Syntax: How to Calculate the Modified Internal Rate of Return

```plaintext
TABLE FILE ...
{PRINT|SUM}  field ... COMPUTE rrate/fmt = MIRR(cashflow, finrate, reinvrate, output);
WITHIN {sort_field|TABLE}
```

where:

- `field ...`
 Are fields that appear in the report output.

- `rrate`
 Is the field that contains the calculated return rate.

- `fmt`
 Is the format of the return rate. The data type must be D.

- `cashflow`
 Is a numeric field. Each value represents either a payment (negative value) or income (positive value) for one period. The values must be in the correct sequence in order for the sequence of cash flows to be calculated correctly. The dates corresponding to each cash flow should be equally spaced and sorted in chronological order. The calculation requires at least one negative value and one positive value in the `cashflow` field. If the values are all positive or all negative, a zero result is returned.

- `finrate`
 Is a finance rate for negative cash flows. This value must be expressed as a non-negative decimal fraction between 0 and 1. It must be constant within each sort group for which a return rate is calculated, but it can change between sort groups.

- `reinvrate`
 Is the reinvestment rate for positive cash flows. This value must be expressed as a non-negative decimal fraction between 0 and 1. It must be constant within each sort group but can change between sort groups. It must be constant within each sort group for which a return rate is calculated, but it can change between sort groups.

- `output`
 Is the name of the field that contains the return rate, or its format enclosed in single quotation marks.
sort_field

Is a field that sorts the report output and groups it into subsets of rows on which the function can be calculated separately. To calculate the function using every row of the report output, use the WITHIN TABLE phrase. A WITHIN phrase is required.

Reference: Usage Notes for the MIRR Function

- This function is only supported in a COMPUTE command with the WITHIN phrase.
- The cash flow field must contain at least one negative value and one positive value.
- Dates must be equally spaced.
- Missing cash flows or dates are not supported.

Example: Calculating the Modified Internal Rate of Return

The following request calculates modified internal return rates for categories of products. It assumes a finance charge of ten percent and a reinvestment rate of ten percent. The request is sorted by date so that the correct cash flows are calculated. The rate returned by the function is multiplied by 100 in order to express it as a percent rather than a decimal value. Note that the format includes the % character. This causes a percent symbol to display, but it does not calculate a percent.

In order to create one cash flow value per date, the values are summed. NEWDOLL is defined in order to create negative values in each category as required by the function:

```
DEFINE FILE GGSales
SDATE/YYM = DATE;
SYEAR/Y = SDATE;
NEWDOLL/D12.2 = IF DATE LT '19970401' THEN -1 * DOLLARS ELSE DOLLARS;
END
TABLE FILE GGSales
SUM NEWDOLL
COMPUTE RRATE/D7.2% = MIRR(NEWDOLL, .1, .1, RRATE) * 100;
WITHIN CATEGORY
  BY CATEGORY
  BY SDATE
  WHERE SYEAR EQ 97
END
```
A separate rate is calculated for each category because of the WITHIN CATEGORY phrase. A portion of the output is shown:

<table>
<thead>
<tr>
<th>Category</th>
<th>SDATE</th>
<th>NEWDOLL</th>
<th>RRATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coffee</td>
<td>1997/01</td>
<td>-801,123.00</td>
<td>15.11%</td>
</tr>
<tr>
<td></td>
<td>1997/02</td>
<td>-682,340.00</td>
<td>15.11%</td>
</tr>
<tr>
<td></td>
<td>1997/03</td>
<td>-765,078.00</td>
<td>15.11%</td>
</tr>
<tr>
<td></td>
<td>1997/04</td>
<td>691,274.00</td>
<td>15.11%</td>
</tr>
<tr>
<td></td>
<td>1997/05</td>
<td>720,444.00</td>
<td>15.11%</td>
</tr>
<tr>
<td></td>
<td>1997/06</td>
<td>742,457.00</td>
<td>15.11%</td>
</tr>
<tr>
<td></td>
<td>1997/07</td>
<td>747,253.00</td>
<td>15.11%</td>
</tr>
<tr>
<td></td>
<td>1997/08</td>
<td>655,896.00</td>
<td>15.11%</td>
</tr>
<tr>
<td></td>
<td>1997/09</td>
<td>730,317.00</td>
<td>15.11%</td>
</tr>
<tr>
<td></td>
<td>1997/10</td>
<td>724,412.00</td>
<td>15.11%</td>
</tr>
<tr>
<td></td>
<td>1997/11</td>
<td>620,264.00</td>
<td>15.11%</td>
</tr>
<tr>
<td></td>
<td>1997/12</td>
<td>762,328.00</td>
<td>15.11%</td>
</tr>
<tr>
<td>Food</td>
<td>1997/01</td>
<td>-672,727.00</td>
<td>16.24%</td>
</tr>
<tr>
<td></td>
<td>1997/02</td>
<td>-699,073.00</td>
<td>16.24%</td>
</tr>
<tr>
<td></td>
<td>1997/03</td>
<td>-642,802.00</td>
<td>16.24%</td>
</tr>
<tr>
<td></td>
<td>1997/04</td>
<td>718,514.00</td>
<td>16.24%</td>
</tr>
<tr>
<td></td>
<td>1997/05</td>
<td>660,740.00</td>
<td>16.24%</td>
</tr>
<tr>
<td></td>
<td>1997/06</td>
<td>734,705.00</td>
<td>16.24%</td>
</tr>
<tr>
<td></td>
<td>1997/07</td>
<td>760,586.00</td>
<td>16.24%</td>
</tr>
</tbody>
</table>

To calculate one modified internal return rate for all of the report data, use the WITHIN TABLE phrase. In this case, the data does not have to be sorted by CATEGORY:

```plaintext
DEFINE FILE GGSALES
SDATE/YYM = DATE;
SYEAR/Y = SDATE;
NEWDOLL/D12.2 = IF DATE LT '19970401' THEN -1 * DOLLARS ELSE DOLLARS;
END

TABLE FILE GGSALES
SUM NEWDOLL
COMPUTE RRATE/D7.2% = MIRR(NEWDOLL, .1, .1, RRATE) * 100;
WITHIN TABLE
BY SDATE
WHERE SYEAR EQ 97
END
```
The output is:

<table>
<thead>
<tr>
<th>SDATE</th>
<th>NEWDOLL</th>
<th>RRATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997/01</td>
<td>-1,864,129.00</td>
<td>15.92%</td>
</tr>
<tr>
<td>1997/02</td>
<td>-1,861,639.00</td>
<td>15.92%</td>
</tr>
<tr>
<td>1997/03</td>
<td>-1,874,439.00</td>
<td>15.92%</td>
</tr>
<tr>
<td>1997/04</td>
<td>1,829,838.00</td>
<td>15.92%</td>
</tr>
<tr>
<td>1997/05</td>
<td>1,899,494.00</td>
<td>15.92%</td>
</tr>
<tr>
<td>1997/06</td>
<td>1,932,630.00</td>
<td>15.92%</td>
</tr>
<tr>
<td>1997/07</td>
<td>2,005,402.00</td>
<td>15.92%</td>
</tr>
<tr>
<td>1997/08</td>
<td>1,838,863.00</td>
<td>15.92%</td>
</tr>
<tr>
<td>1997/09</td>
<td>1,893,944.00</td>
<td>15.92%</td>
</tr>
<tr>
<td>1997/10</td>
<td>1,933,705.00</td>
<td>15.92%</td>
</tr>
<tr>
<td>1997/11</td>
<td>1,865,982.00</td>
<td>15.92%</td>
</tr>
<tr>
<td>1997/12</td>
<td>2,053,923.00</td>
<td>15.92%</td>
</tr>
</tbody>
</table>

NORMSDST and NORMSINV: Calculating Normal Distributions

The NORMSDST and NORMSINV functions perform calculations on a standard normal distribution curve. NORMSDST calculates the percentage of data values that are less than or equal to a normalized value; NORMSINV is the inverse of NORMSDST, calculates the normalized value that forms the upper boundary of a percentile in a standard normal distribution curve.

NORMSDST: Calculating Standard Cumulative Normal Distribution

The NORMSDST function performs calculations on a standard normal distribution curve, calculating the percentage of data values that are less than or equal to a normalized value. A normalized value is a point on the X-axis of a standard normal distribution curve in standard deviations from the mean. This is useful for determining percentiles in normally distributed data.

The NORMSINV function is the inverse of NORMSDST. For information about NORMSINV, see **NORMSINV: Calculating Inverse Cumulative Normal Distribution** on page 573.

The results of NORMSDST are returned as double-precision and are accurate to 6 significant digits.

A standard normal distribution curve is a normal distribution that has a mean of 0 and a standard deviation of 1. The total area under this curve is 1. A point on the X-axis of the standard normal distribution is called a normalized value. Assuming that your data is normally distributed, you can convert a data point to a normalized value to find the percentage of scores that are less than or equal to the raw score.

You can convert a value (raw score) from your normally distributed data to the equivalent normalized value (z-score) as follows:

\[z = \frac{\text{raw_score} - \text{mean}}{\text{standard_deviation}} \]
To convert from a z-score back to a raw score, use the following formula:

\[
\text{raw_score} = z \times \text{standard_deviation} + \text{mean}
\]

The mean of data points \(x_i\), where \(i\) is from 1 to \(n\) is:

\[
\frac{\sum x_i}{n}
\]

The standard deviation of data points \(x_i\), where \(i\) is from 1 to \(n\) is:

\[
\sqrt{\left(\frac{\sum x_i^2 - (\sum x_i)^2/n}{n - 1}\right)}
\]

The following diagram illustrates the results of the NORMSDST and NORMSINV functions.

Reference: Characteristics of the Normal Distribution

Many common measurements are normally distributed. A plot of normally distributed data values approximates a bell-shaped curve. The two measures required to describe any normal distribution are the mean and the standard deviation:

- The mean is the point at the center of the curve.
- The standard deviation describes the spread of the curve. It is the distance from the mean to the point of inflection (where the curve changes direction).
Syntax: How to Calculate the Cumulative Standard Normal Distribution Function

\[\text{NORMSDST}(\text{value}, \text{'D8'}); \]

where:

\text{value}

Is a normalized value.

\text{D8}

Is the required format for the result. The value returned by the function is double-precision. You can assign it to a field with any valid numeric format.

Example: Using the NORMSDST Function

NORMSDST calculates the Z value and finds its percentile:

\begin{verbatim}
DEFINE FILE GGPRODS
 -* CONVERT SIZE FIELD TO DOUBLE PRECISION
 X/D12.5 = SIZE;
END
TABLE FILE GGPRODS
 SUM X NOPRINT CNT.X NOPRINT
 -* CALCULATE MEAN AND STANDARD DEVIATION
 COMPUTE NUM/D12.5 = CNT.X; NOPRINT
 COMPUTE MEAN/D12.5 = AVE.X; NOPRINT
 COMPUTE VARIANCE/D12.5 = ((NUM*ASQ.X) - (X*X/NUM))/(NUM-1); NOPRINT
 COMPUTE STDEV/D12.5 = SQRT(VARIANCE); NOPRINT
 PRINT SIZE X NOPRINT
 -* COMPUTE NORMALIZED VALUES AND USE AS INPUT TO NORMSDST FUNCTION
 COMPUTE Z/D12.5 = (X - MEAN)/STDEV;
 COMPUTE NORMSD/D12.5 = \text{NORMSDST}(Z, \text{'D8'});
 \text{BY PRODUCT_ID NOPRINT}
END
\end{verbatim}

The output is:

<table>
<thead>
<tr>
<th>Size</th>
<th>Z</th>
<th>NORMSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>-.07298</td>
<td>.47091</td>
</tr>
<tr>
<td>12</td>
<td>-.80273</td>
<td>.21106</td>
</tr>
<tr>
<td>12</td>
<td>-.80273</td>
<td>.21106</td>
</tr>
<tr>
<td>20</td>
<td>.65678</td>
<td>.74434</td>
</tr>
<tr>
<td>24</td>
<td>1.38654</td>
<td>.91721</td>
</tr>
<tr>
<td>20</td>
<td>.65678</td>
<td>.74434</td>
</tr>
<tr>
<td>24</td>
<td>1.38654</td>
<td>.91721</td>
</tr>
<tr>
<td>16</td>
<td>-.07298</td>
<td>.47091</td>
</tr>
<tr>
<td>12</td>
<td>-.80273</td>
<td>.21106</td>
</tr>
<tr>
<td>8</td>
<td>-1.53249</td>
<td>.06270</td>
</tr>
</tbody>
</table>
NORMSINV: Calculating Inverse Cumulative Normal Distribution

The NORMSINV function performs calculations on a standard normal distribution curve, finding the normalized value that forms the upper boundary of a percentile in a standard normal distribution curve. This is the inverse of NORMSDST. For information about NORMSDST, see NORMSDST: Calculating Standard Cumulative Normal Distribution on page 570.

The results of NORMSINV are returned as double-precision and are accurate to 6 significant digits.

Syntax:

How to Calculate the Inverse Cumulative Standard Normal Distribution Function

\[\text{NORMSINV}(\text{value}, \; 'D8'); \]

where:

\text{value}

Is a number between 0 and 1 (which represents a percentile in a standard normal distribution).

\text{D8}

Is the required format for the result. The value returned by the function is double-precision. You can assign it to a field with any valid numeric format.
Example: Using the NORMSINV Function

NORMSDST finds the percentile for the Z field. NORMSINV then returns this percentile to a normalized value:

```
DEFINE FILE GGPRODS
  /* CONVERT SIZE FIELD TO DOUBLE PRECISION
  X/D12.5 = SIZE;
END
TABLE FILE GGPRODS
  SUM X NOPRINT CNT.X NOPRINT
  /* CALCULATE MEAN AND STANDARD DEVIATION
  COMPUTE NUM/D12.5 = CNT.X; NOPRINT
  COMPUTE MEAN/D12.5 = AVE.X; NOPRINT
  COMPUTE VARIANCE/D12.5 = ((NUM*ASQ.X) - (X*X/NUM))/(NUM-1); NOPRINT
  COMPUTE STDEV/D12.5 = SQRT(VARIANCE); NOPRINT
  PRINT SIZE X NOPRINT
  /* COMPUTE NORMALIZED VALUES AND USE AS INPUT TO NORMSDST FUNCTION
  /* THEN USE RETURNED VALUES AS INPUT TO NORMSINV FUNCTION
  /* AND CONVERT BACK TO DATA VALUES
  COMPUTE Z/D12.5 = (X - MEAN)/STDEV;
  COMPUTE NORMSD/D12.5 = NORMSDST(Z, 'D8');
  COMPUTE NORMSI/D12.5 = NORMSINV(NORMSD, 'D8');
  COMPUTE DSIZE/D12 = NORMSI * STDEV + MEAN;
  BY PRODUCT_ID NOPRINT
END
```

The output shows that NORMSINV is the inverse of NORMSDST and returns the original values:

<table>
<thead>
<tr>
<th>Size</th>
<th>Z</th>
<th>NORMSD</th>
<th>NORMSI</th>
<th>DSIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>-.07298</td>
<td>.47091</td>
<td>-.07298</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>-.80273</td>
<td>.21106</td>
<td>-.80273</td>
<td>12</td>
</tr>
<tr>
<td>20</td>
<td>.65678</td>
<td>.74434</td>
<td>.65678</td>
<td>20</td>
</tr>
<tr>
<td>24</td>
<td>1.38654</td>
<td>.91721</td>
<td>1.38654</td>
<td>24</td>
</tr>
<tr>
<td>20</td>
<td>.65678</td>
<td>.74434</td>
<td>.65678</td>
<td>20</td>
</tr>
<tr>
<td>24</td>
<td>1.38654</td>
<td>.91721</td>
<td>1.38654</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td>-.07298</td>
<td>.47091</td>
<td>-.07298</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>-.80273</td>
<td>.21106</td>
<td>-.80273</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>-1.53249</td>
<td>.06270</td>
<td>-1.53249</td>
<td>8</td>
</tr>
</tbody>
</table>

PRDNOR and PRDUNI: Generating Reproducible Random Numbers

Available Languages: reporting, Maintain

The PRDNOR and PRDUNI functions generate reproducible random numbers:

- PRDNOR generates reproducible double-precision random numbers normally distributed with an arithmetic mean of 0 and a standard deviation of 1.
If PRDNOR generates a large set of numbers, they have the following properties:

- The numbers lie roughly on a bell curve, as shown in the following figure. The bell curve is highest at the 0 mark, meaning that there are more numbers closer to 0 than farther away.

![Bell Curve Diagram](image)

- The average of the numbers is close to 0.
- The numbers can be any size, but most are between 3 and -3.
- PRDUNI generates reproducible double-precision random numbers uniformly distributed between 0 and 1 (that is, any random number it generates has an equal probability of being anywhere between 0 and 1).

**Syntax: **

How to Generate Reproducible Random Numbers

```
{PRDNOR|PRDUNI}(seed, output)
```

where:

PRDNOR

Generates reproducible double-precision random numbers normally distributed with an arithmetic mean of 0 and a standard deviation of 1.

PRDUNI

Generates reproducible double-precision random numbers uniformly distributed between 0 and 1.
seed

Numeric

Is the seed or the field that contains the seed, up to 9 digits. The seed is truncated to an integer.

On z/OS, the numbers do not reproduce.

output

Double-precision

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.

Example: Generating Reproducible Random Numbers

PRDNOR assigns random numbers and stores them in RAND. These values are then used to randomly pick five employee records identified by the values in the LAST NAME and FIRST NAME fields. The seed is 40. To produce a different set of numbers, change the seed.

```plaintext
DEFINE FILE EMPLOYEE
RAND/D12.2 WITH LAST_NAME = PRDNOR(40, RAND);
END

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND FIRST_NAME
BY HIGHEST 5 RAND
END
```

The output is:

<table>
<thead>
<tr>
<th>RAND</th>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.38</td>
<td>STEVENS</td>
<td>ALFRED</td>
</tr>
<tr>
<td>1.12</td>
<td>MCCOY</td>
<td>JOHN</td>
</tr>
<tr>
<td>.55</td>
<td>SMITH</td>
<td>RICHARD</td>
</tr>
<tr>
<td>.21</td>
<td>JONES</td>
<td>DIANE</td>
</tr>
<tr>
<td>.01</td>
<td>IRVING</td>
<td>JOAN</td>
</tr>
</tbody>
</table>
RDNORM and RDUNIF: Generating Random Numbers

Available Languages: reporting, Maintain

The RDNORM and RDUNIF functions generate random numbers:

- **RDNORM** generates double-precision random numbers normally distributed with an arithmetic mean of 0 and a standard deviation of 1.

 If RDNORM generates a large set of numbers (between 1 and 32768), they have the following properties:

 - The numbers lie roughly on a bell curve, as shown in the following figure. The bell curve is highest at the 0 mark, meaning that there are more numbers closer to 0 than farther away.

 ![Bell Curve Graph](image)

 - The average of the numbers is close to 0.

 - The numbers can be any size, but most are between 3 and -3.

- **RDUNIF** generates double-precision random numbers uniformly distributed between 0 and 1 (that is, any random number it generates has an equal probability of being anywhere between 0 and 1).
Syntax: How to Generate Random Numbers

\{RDNORM\, RDUNIF\} (output)

where:

RDNORM
Generates double-precision random numbers normally distributed with an arithmetic mean of 0 and a standard deviation of 1.

RDUNIF
Generates double-precision random numbers uniformly distributed between 0 and 1.

output
Double-precision
Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.

Example: Generating Random Numbers

RDNORM assigns random numbers and stores them in RAND. These numbers are then used to randomly choose five employee records identified by the values in the LAST NAME and FIRST NAME fields.

```
DEFINE FILE EMPLOYEE
RAND/D12.2 WITH LAST_NAME = RDNORM(RAND); END
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND FIRST_NAME
BY HIGHEST 5 RAND
END
```

The request produces output similar to the following:

<table>
<thead>
<tr>
<th>RAND</th>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>.65</td>
<td>CROSS</td>
<td>BARBARA</td>
</tr>
<tr>
<td>.20</td>
<td>BANNING</td>
<td>JOHN</td>
</tr>
<tr>
<td>.19</td>
<td>IRVING</td>
<td>JOAN</td>
</tr>
<tr>
<td>.00</td>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
</tr>
<tr>
<td>-.14</td>
<td>GREENSPAN</td>
<td>MARY</td>
</tr>
</tbody>
</table>

SQRT: Calculating the Square Root

Available Languages: reporting, Maintain

The SQRT function calculates the square root of a number.
Syntax:

How to Calculate the Square Root

\[\text{SQRT}(\text{in_value}) \]

where:

\[\text{in_value} \]

Numeric

Is the value for which the square root is calculated, the name of a field that contains the value, or an expression that returns the value. If you supply an expression, use parentheses as needed to ensure the correct order of evaluation. If you supply a negative number, the result is zero.

Example:

Calculating the Square Root

SQRT calculates the square root of LISTPR:

```
TABLE FILE MOVIES
PRINT LISTPR AND COMPUTE
SQRT_LISTPR/D12.2 = SQRT(LISTPR); BY TITLE
WHERE CATEGORY EQ 'MUSICALS';
END
```

The output is:

<table>
<thead>
<tr>
<th>TITLE</th>
<th>LISTPR</th>
<th>SQRT_LISTPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL THAT JAZZ</td>
<td>19.98</td>
<td>4.47</td>
</tr>
<tr>
<td>CABARET</td>
<td>19.98</td>
<td>4.47</td>
</tr>
<tr>
<td>CHORUS LINE, A</td>
<td>14.98</td>
<td>3.87</td>
</tr>
<tr>
<td>FIDDLER ON THE ROOF</td>
<td>29.95</td>
<td>5.47</td>
</tr>
</tbody>
</table>

XIRR: Calculating the Modified Internal Return Rate (Periodic or Non-Periodic)

Available languages: reporting

The XIRR function calculates the internal rate of return for a series of cash flows that can be periodic or non-periodic.
Syntax: How to Calculate the Internal Rate of Return

TABLE FILE ...
{PRINT|SUM} field ...
COMPUTE \texttt{rrate/fmt} = \texttt{XIRR (cashflow, dates,guess, maxiterations, output)};
WITHIN {sort_field|TABLE}

where:

\textit{field ...}

Are fields that appear in the report output.

\textit{rrate}

Is the field that contains the calculated return rate.

\textit{fmt}

Is the format of the return rate. The data type must be D.

\textit{cashflow}

Is a numeric field. Each value of this field represents either a payment (negative value) or income (positive value) for one period. The values must be in the correct sequence in order for the sequence of cash flows to be calculated correctly. The dates corresponding to each cash flow should be equally spaced and sorted in chronological order. The calculation requires at least one negative value and one positive value in the \textit{cashflow} field. If the values are all positive or all negative, a zero result is returned.

\textit{dates}

Is a date field containing the cash flow dates. The dates must be full component dates with year, month, and day components. Dates cannot be stored in fields with format A, I, or P. They must be stored in date fields (for example, format YMD, not AYMD). There must be the same number of dates as there are cash flow values. The number of dates must be the same as the number of cash flows.

\textit{guess}

Is an (optional) initial estimate of the expected return rate expressed as a decimal. The default value is .1 (10%). To accept the default, supply the value 0 (zero) for this argument.
maxiterations

Is an (optional) number specifying the maximum number of iterations that can be used to resolve the rate using Newton’s method. 50 is the default value. To accept the default, supply the value 0 (zero) for this argument. The rate is considered to be resolved when successive iterations do not differ by more than 0.0000003. If this level of accuracy is achieved within the maximum number of iterations, calculation stops at that point. If it is not achieved after reaching the maximum number of iterations, calculation stops and the value calculated by the last iteration is returned.

output

D

Is the name of the field that contains the return rate, or its format enclosed in single quotation marks.

sort_field

Is a field that sorts the report output and groups it into subsets of rows on which the function can be calculated separately. To calculate the function using every row of the report output, use the WITHIN TABLE phrase. A WITHIN phrase is required.

Reference: Usage Notes for the XIRR Function

- This function is only supported in a COMPUTE command with the WITHIN phrase.
- The cash flow field must contain at least one negative value and one positive value.
- Dates cannot be stored in fields with format A, I, or P. They must be stored in date fields (for example, format YMD, not AYMD).
- Cash flows or dates with missing values are not supported.

Example: Calculating the Internal Rate of Return

The following request creates a FOCUS data source with cash flows and dates and calculates the internal return rate.

The Master File for the data source is:

```
FILENAME=XIRR01,SUFFIX=FOC
SEGNAME=SEG1,SEGTYPE=S1
FIELDNAME=DUMMY,FORMAT=A2,$
FIELDNAME=DATES,FORMAT=YYMD,$
FIELDNAME=CASHFL,FORMAT=D12.4,$
END
```
The procedure to create the data source is:

```
CREATE FILE XIRR01
MODIFY FILE XIRR01
FREEFORM DUMMY DATES CASHFL
DATA
AA,19980101,-10000. ,$  
BB,19980301,2750.    ,$
CC,19981030,4250.    ,$
DD,19990215,3250.    ,$
EE,19990401,2750.    ,$
END
```

The request is sorted by date so that the correct cash flows can be calculated. The rate returned by the function is multiplied by 100 in order to express it as a percent rather than a decimal value. Note that the format includes the % character. This causes a percent symbol to display, but it does not calculate a percent:

```
TABLE FILE XIRR01
PRINT CASHFL
COMPUTE RATEX/D12.2%=XIRR(CASHFL, DATES, 0., 0., RATEX) * 100;
WITHIN TABLE
BY DATES
END
```

One rate is calculated for the entire report because of the WITHIN TABLE phrase:

```
DATES     CASHFL       RATEX
-----     ------       -----  
1998/01/01 -10,000.0000 37.49%
1998/03/01  2,750.0000  37.49%
1998/10/30  4,250.0000  37.49%
1999/02/15  3,250.0000  37.49%
1999/04/01  2,750.0000  37.49%
```
Chapter 20

Maintain-specific Script Functions

Script functions enable you to integrate JavaScript and VBScripts into your Maintain Data applications and perform client-side execution without returning to the WebFOCUS Reporting Server.

In this chapter:

- IWCLink: Displaying a URL in a Browser or Frame
- IWCSwitchToSecure and IWCSwitchToUnsecure: Turning the Secure Sockets Layer On and Off
- IWCTrigger: Calling a Maintain Function From a Script Handler
- IWC.FindAppCGIValue: Finding a TIBCO WebFOCUS Parameter or Variable Value
- IWC.GetAppCGIValue: Retrieving a TIBCO WebFOCUS Parameter or Variable Value

IWCLink: Displaying a URL in a Browser or Frame

The IWCLink function displays a URL in a new browser window or in a frame within your current form. You can use IWCLink as part of a technique that enables you to invoke an external procedure without the EXEC command.

Syntax: How to Display a URL in a Browser or Frame

IWCLink(url, [target], [newwindow], [options])

where:

url
Is the URL of the webpage to display.

target
Is the window or frame to send the URL request output to.

newwindow
Determines if the URL appears in a new browser window. When this parameter is a non-zero or true, a new browser window is created.
options

Are new window parameters. This includes, but is not limited to, the following:

- **screenX=distance**, which is the distance the new window is placed from the left side of the screen.
- **screenY=distance**, which is the distance the new window is placed from the top of the screen.
- **scrollbars={yes|no}**, which determines whether horizontal and vertical scrollbars are created when the document grows larger than the window dimensions. When set to yes, scrollbars are created. When set to no, scrollbars are not created.
- **status={yes|no}**, which determines whether a status bar appears at the bottom of the window. When set to yes, a status bar is created. When set to no, a status bar is not created.
- **titlebar={yes|no}**, which determines whether a title bar appears at the bottom of the window. When set to yes, a title bar is created. When set to no, a title bar is not created.
- **toolbar={yes|no}**, which determines whether a standard browser toolbar appears in the window. When set to yes, a toolbar is created. When set to no, a toolbar is not created.
- **height=pixels**, which is the height of the window in pixels.
- **resizable={yes|no}**, which determines whether a user is able to resize the window. If set to yes, a user can resize the window. If set to no, a user cannot resize the window.

Example: Displaying a URL in a Frame

The following JavaScript code is called from a script event handler and uses IWCLink as part of a technique to invoke an external procedure, and to supply the procedure’s parameter dynamically at run time.

2. `theReport = theReport + document.Form1.EditBox1.value;`

3. `IWCLink(theReport,"MyFrame",0,menubar=no,resizable=no,scrollbars=no,status=no,toolbar=no,height=600,width=600");`
These commands accomplish the following:

1. Defines a variable named theReport and initializes it to the target URL.
 When you use IWCLink as part of a technique to invoke an external procedure, the target URL must identify the WebFOCUS script (IPAddress/ibi_apps/WFServlet), the target external procedure (?IBIF_focexec=ProcedureName), and the procedure’s parameters (&IBIF_parms=ParameterName%3D). A parameter name is the name of the target procedure’s corresponding Dialogue Manager variable without the initial ampersand. Note that %3D is the HTML code for an equal sign; the next statement will append the parameter’s value to the equal sign.

 In this case, the target procedure is named rsales4, and rsales4 has a parameter named STCD.

2. Assigns a value from an edit box (Form1.EditBox1) to the target procedure’s STCD parameter by appending the value to the URL string in theReport.

3. Invokes IWCLink to display a WebFOCUS reporting session, running the external procedure rsales4, in the frame named MyFrame.

 If you want the reporting session to appear in a new browser window, you would leave the second argument blank and change the third argument from 0 to 1.

 The remaining arguments beginning with "menubar" customize the appearance of the browser window; for information about browser settings, see your browser documentation.

IWCSwitchToSecure and IWCSwitchToUnsecure: Turning the Secure Sockets Layer On and Off

The IWCSwitchToSecure and IWCSwitchToUnsecure functions turn Secure Sockets Layer on and off, respectively. Use these two functions when configuring an application that requires certain transmissions be private, such as transferring credit card information. Currently, these functions are most commonly used in e-commerce applications.

Before using IWCSwitchToSecure and IWCSwitchToUnsecure, you must do the following:

- Obtain secure certification for your Web server.
- For an e-commerce application, purchase an e-commerce product from a vendor. The product verifies your credit card number and completes the transaction.

IWCSwitchToSecure and IWCSwitchToUnsecure are JavaScript functions. JavaScript is case-sensitive. Ensure you enter these functions exactly as they appear. You can reference these functions in a VBScript or JavaScript.
Syntax: How to Turn Secure Sockets Layer On
IWCSwitchToSecure();

Syntax: How to Turn Secure Sockets Layer Off
IWCSwitchToUnsecure();

IWCTrigger: Calling a Maintain Function From a Script Handler

The IWCTrigger function can be used in two ways:

- To control the Maintain Data application when a local validation test succeeds. If the validation test fails, the function returns the end user to the form from which they executed it.

 If you use IWCTrigger in a script library, ensure the Maintain function you are calling is in the same procedure in which you are using the script library.

- To retrieve the value of an ActiveX Control property in a Maintain function. In an event handler for an ActiveX control event, use a script function for the handler and then call the Maintain function using IWCTrigger.

IWCTrigger can be used in JavaScript or VBScript. IWCTrigger is a Maintain Data-supplied script function for use in any Maintain Data application.

Syntax: How to Call a Maintain Function From a Script Handler
IWCTrigger("functionname", "parm")

where:

functionname
Is the Maintain function to call. Scripts are case-sensitive, so you must specify the name using the same uppercase and lowercase letters that you used to name the function in the Maintain Data procedure.

parm
Is a parameter being passed to the function.
Syntax: How to Retrieve a Parameter From the Called Function

```
formname.Triggervalue
```

where:

- **formname**
 - Is the name of the form in the Maintain Data application.

Syntax: How to Pass the Value of an ActiveX Control Property to a Maintain Function

```
IWCTrigger("function",document.form.control.property);
```

where:

- **function**
 - Is the Maintain function you are calling.

- **form**
 - Is the name of the form on which the ActiveX control is located.

- **control**
 - Is the name of the ActiveX control.

- **property**
 - Is the name of the ActiveX control property (look for ActiveX control properties in the ActiveX tab of the property sheet for the ActiveX control).

Example: Passing an ActiveX Control Value to a Maintain Function

If you have an ActiveX calendar control on Form1 that has a property called Month, you can use IWCTrigger to send the value of Month to a Maintain function called UpdateDate, via either JavaScript or VBScript:

```
IWCTrigger("UpdateDate",document.Form1.CalendarControl.Month);
```

IWC.FindAppCGIValue: Finding a TIBCO WebFOCUS Parameter or Variable Value

The IWC.FindAppCGIValue function finds WebFOCUS parameter or variable values by pairing the parameter or variable name with the Maintain Data variable name to which the value is assigned.

Note: IWC.FindAppCGIValue retrieves values, but cannot directly assign the values to a Maintain Data variable as IWC.GetAppCGIValue does.
Syntax: How to Find a TIBCO WebFOCUS Parameter Value

IWC.FindAppCGIValue(name, value);

where:

name

Is the WebFOCUS parameter or variable whose value you are finding.

value

Is the Maintain Data variable that receives the value of the WebFOCUS parameter or variable.

Example: Finding a Variable Value From a Launch Form

IWC.findAppCgiValue finds the user name and password values of the IBIC_user and IBIC_pass variables, respectively:

Maintain
COMPUTE username/A8;
COMPUTE password/A8;
IWC.findAppCgiValue("IBIC_user", username);
IWC.findAppCgiValue("IBIC_pass", password);

Example: Finding Parameterized Data From Excel

IWC.findAppCgiValue finds the values for fields listed in an Excel file:

MAINTAIN FILE car
MODULE IMPORT (webbase2 errors);
Case Top
compute xlsRetail_Cost/a0;
Infer car.ORIGIN.COUNTRY car.COMP.CAR car.CARREC.MODEL
car.BODY.BODYTYPE car.BODY.RETAIL_COST into car_stack;
car_stack.FocCount=1;
car_stack.FocIndex=1;
iwc.findAppCgiValue("COUNTRY",car_stack.country);
iwc.findAppCgiValue("CAR",car_stack.car);
iwc.findAppCgiValue("MODEL",car_stack.model);
iwc.findAppCgiValue("BODYTYPE",car_stack.bodytype);
iwc.findAppCgiValue("RETAIL_COST",xlsRetail_Cost);
car_stack.retail_cost = xlsRetail_Cost;
update car.BODY.RETAIL_COST from car_stack;
EndCase
END
IWC.GetAppCGIValue: Retrieving a TIBCO WebFOCUS Parameter or Variable

The IWC.GetAppCGIValue function retrieves the value of a WebFOCUS parameter or variable and imports it into a Maintain Data variable. IWC.GetAppCGIValue returns the value from the HTTP request header if the name of the parameter or variable is passed.

If the passed parameter or variable name is not found, the function returns a null value. Therefore, you can check for errors by looking for a null value, then handle the error as needed.

Both the IWC.FindAppCGIValue and IWC.GetAppCGIValue functions are supported, but it is recommended you use IWC.GetAppCGIValue. This function allows the parameter or variable value to be directly assigned to a Maintain Data variable, while IWC.FindAppCGIValue does not.

Note: Unlike Maintain Data variables, WebFOCUS parameters and variables are case-sensitive.

Syntax:

How to Retrieve a TIBCO WebFOCUS Parameter

Declare `mnt_var/type_length = IWC.GetAppCGIValue(parm);`

where:

`mnt_var`

Is the Maintain Data variable that receives the ASCII return value of the WebFOCUS parameter or variable. The value is unescaped before being passed to the Maintain Data variable.

`type_length`

Is the selected type and length format of the Maintain Data variable.

`parm`

Is the WebFOCUS parameter or variable to import. This value is case-sensitive.

Example:

Retrieving a TIBCO WebFOCUS Parameter

IWC.getAppCGIValue retrieves the PRODUCT_ID WebFOCUS parameter:

Maintain File GGPRODS
Infer Product_ID into prodstk;
Declare pcode/a4=IWC.getAppCGIValue("PRODUCT_ID");
For 1 next Product_ID into prodstk where Product_ID eq pcode;
IWC.GetAppCGIValue: Retrieving a TIBCO WebFOCUS Parameter or Variable
Simplified statistical functions can be called in a COMPUTE command to perform statistical calculations on the internal matrix that is generated during TABLE request processing. The STDDEV and CORRELATION functions can also be called as a verb object in a display command. Prior to calling a statistical function, you need to establish the size of the partition on which these functions will operate, if the request contains sort fields.

Note: It is recommended that all numbers and fields used as parameters to these functions be double-precision.

In this chapter:

- Specify the Partition Size for Simplified Statistical Functions
- CORRELATION: Calculating the Degree of Correlation Between Two Sets of Data
- KMEANS_CLUSTERS: Partitioning Observations Into Clusters Based on the Nearest Mean Value
- MULTIREGRESS: Creating a Multivariate Linear Regression Column
- OUTLIER: Identifying Outliers in Numeric Data
- RSERVE: Running an R Script
- STDDEV: Calculating the Standard Deviation for a Set of Data Values

Specify the Partition Size for Simplified Statistical Functions

```plaintext
SET PARTITION_ON = {FIRST | PENULTIMATE | TABLE}
```

where:

FIRST
- Uses the first (also called the major) sort field in the request to partition the values.

PENULTIMATE
- Uses the next to last sort field where the COMPUTE is evaluated to partition the values. This is the default value.
TABLE

Uses the entire internal matrix to calculate the statistical function.

CORRELATION: Calculating the Degree of Correlation Between Two Sets of Data

The CORRELATION function calculates the correlation coefficient between two numeric fields. The function returns a numeric value between zero (-1.0) and 1.0.

Syntax: How to Calculate the Correlation Coefficient Between Two Fields

\[
\text{CORRELATION}(field1, field2)
\]

where:

- \(field1 \)
 - Numeric
 - Is the first set of data for the correlation.

- \(field2 \)
 - Numeric
 - Is the second set of data for the correlation.

Note: Arguments for CORRELATION cannot be prefixed fields. If you need to work with fields that have a prefix operator applied, apply the prefix operators to the fields in COMPUTE commands and save the results in a HOLD file. Then, run the correlation against the HOLD file.

Example: Calculating a Correlation

The following request calculates the correlation between the DOLLARS and BUDDOLLARS fields converted to double precision.

```
DEFINE FILE ibisamp/ggsales
DOLLARS/D12.2 = DOLLARS;
BUDDOLLARS/D12.2 = BUDDOLLARS;
END
TABLE FILE ibisamp/ggsales
SUM DOLLARS BUDDOLLARS
CORRELATION(DOLLARS, BUDDOLLARS)
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
The output is shown in the following image.

<table>
<thead>
<tr>
<th>DOLLARS</th>
<th>BUDDOLLARS</th>
<th>CORRELATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>46,156,290.00</td>
<td>46,220,778.00</td>
<td>.895691073</td>
</tr>
</tbody>
</table>

KMEANS_CLUSTER: Partitioning Observations Into Clusters Based on the Nearest Mean Value

The KMEANS_CLUSTER function partitions observations into a specified number of clusters based on the nearest mean value. The function returns the cluster number assigned to the field value passed as a parameter.

Note: If there are not enough points to create the number of clusters requested, the value -10 is returned for any cluster that cannot be created.

Syntax:

How to Partition Observations Into Clusters Based on the Nearest Mean Value

```plaintext
KMEANS_CLUSTER(number, percent, iterations, tolerance, [prefix1.]field1[, [prefix1.]field2 ...])
```

where:

- **number**
 - Integer
 - Is number of clusters to extract.

- **percent**
 - Numeric
 - Is the percent of training set size (the percent of the total data to use in the calculations). The default value is AUTO, which uses the internal default percent.

- **iterations**
 - Integer
 - Is the maximum number of times to recalculate using the means previously generated. The default value is AUTO, which uses the internal default number of iterations.

- **tolerance**
 - Numeric
 - Is a weight value between zero (0) and 1.0. The value AUTO uses the internal default tolerance.
prefix1, prefix2
Defines an optional aggregation operator to apply to the field before using it in the calculation. Valid operators are:
- **SUM.** which calculates the sum of the field values. SUM is the default value.
- **CNT.** which calculates a count of the field values.
- **AVE.** which calculates the average of the field values.
- **MIN.** which calculates the minimum of the field values.
- **MAX.** which calculates the maximum of the field values.
- **FST.** which retrieves the first value of the field.
- **LST.** which retrieves the last value of the field.

Note: The operators PCT., RPCT., TOT., MDN., MDE., RNK., and DST. are not supported.

field1
Numeric
Is the set of data to be analyzed.

field2
Numeric
Is an optional set of data to be analyzed.
Example: Partitioning Data Values Into Clusters

The following request partitions the DOLLARS field values into four clusters and displays the result as a scatter chart in which the color represents the cluster. The request uses the default values for the percent, iterations, and tolerance parameters by passing them as the value 0 (zero).

```
SET PARTITION_ON = PENULTIMATE
GRAPH FILE GGSALES
PRINT UNITS DOLLARS
COMPUTE KMEAN1/D20.2 TITLE 'K-MEANS' = KMEANS_CLUSTER(4, AUTO, AUTO, AUTO, DOLLARS);
ON GRAPH SET LOOKGRAPH SCATTER
ON GRAPH PCHOLD FORMAT JSCHART
ON GRAPH SET STYLE *
INCLUDE=IBFS:/FILE/IBI_HTML_DIR/ibi_themes/Warm.sty,$
  type = data, column = N2, bucket=y-axis,$
  type=data, column= N1, bucket=x-axis,$
  type=data, column=N3, bucket=color,$
GRID=OFF,$
*GRAPH_JS_FINAL
colorScale: {
  colorMode: 'discrete',
  colorBands: [{start: 1, stop: 1.99, color: 'red'},
               {start: 2, stop: 2.99, color: 'green'},
               {start: 3, stop: 3.99, color: 'yellow'},
               {start: 3.99, stop: 4, color: 'blue'}]
}
*END
ENDSTYLE
END
```
MULTIREGRESS: Creating a Multivariate Linear Regression Column

MULTIREGRESS derives a linear equation that best fits a set of numeric data points, and uses this equation to create a new column in the report output. The equation can be based on one or more independent variables.

The equation generated is of the following form, where y is the dependent variable and x_1, x_2, and x_3 are the independent variables.

$$y = a_1 x_1 + a_2 x_2 + a_3 x_3 + ... + b$$

When there is one independent variable, the equation represents a straight line. When there are two independent variables, the equation represents a plane, and with three independent variables, it represents a hyperplane. You should use this technique when you have reason to believe that the dependent variable can be approximated by a linear combination of the independent variables.

Syntax:

How to Create a Multivariate Linear Regression Column

MULTIREGRESS(input_field1, [input_field2, ...])
where:

\[\text{input_field1}, \text{ input_field2} \ldots \]

Are any number of field names to be used as the independent variables. They should be independent of each other. If an input field is non-numeric, it will be categorized to transform it to numeric values that can be used in the linear regression calculation.

Example: Creating a Multivariate Linear Regression Column

The following request uses the DOLLARS and BUDDOLLARS fields to generate a regression column named Estimated_Dollars.

```plaintext
GRAPH FILE GGSALES
SUM BUDUNITS UNITS BUDDOLLARS DOLLARS
COMPUTE Estimated_Dollars/F8 = MULTIREGRESS(DOLLARS, BUDDOLLARS);
BY DATE
ON GRAPH SET LOOKGRAPH LINE
ON GRAPH PCHOLD FORMAT JSCHART
ON GRAPH SET STYLE *
INCLUDE=IBFS:/FILE/IBI_HTML_DIR/ibi_themes/Warm.sty,$
   type=data, column = n1, bucket = x-axis,$
   type=data, column= dollars, bucket=y-axis,$
   type=data, column= buddollars, bucket=y-axis,$
   type=data, column= Estimated_Dollars, bucket=y-axis,$
*GRAPH_JS
"series": ["series":2, "color":"orange"]
*END
ENDSTYLE
END
```
OUTLIER: Identifying Outliers in Numeric Data

The 1.5 * IQR (Inner Quartile Range) rule is a common way to identify outliers in data. This rule defines an outlier as a value that is above or below 1.5 times the inner quartile range in the data. The inner quartile range is based on sorting the data values, dividing it into equal quarters, and calculating the range of values between the first quartile (the value one quarter of the way through the sorted data) and third quartile (the value three quarters of the way through the sorted data). The value that is 1.5 times below the inner quartile range is called the lower fence, and the value that is 1.5 times above the inner quartile range is called the upper fence.

OUTLIER is not supported in a DEFINE expression. It can be used in a COMPUTE expression or a WHERE, WHERE TOTAL, or WHERE_GROUPED phrase.

Given a numeric field as input, OUTLIER returns one of the following values for each value of the field, using the 1.5 * IQR rule:

- **0 (zero).** The value is not an outlier.
- **-1.** The value is below the lower fence.
- **1.** The value is above the upper fence.
Syntax: How to Identify Outliers in Numeric Data

OUTLIER(input_field)

where:

input_field

Numeric

Is the numeric field to be analyzed.

Example: Identifying Outliers

The following request defines the SALES field to have different values depending on the store code, and uses OUTLIER to determine whether each field value is an outlier.

DEFINE FILE GGSALES
SALES/D12 = IF ((CATEGORY EQ 'Coffee') AND (STCD EQ 'R1019')) THEN 19000
 ELSE IF ((CATEGORY EQ 'Coffee') AND (STCD EQ 'R1020')) THEN 20000
 ELSE IF ((CATEGORY EQ 'Coffee') AND (STCD EQ 'R1040')) THEN 7000
 ELSE DOLLARS;
END
TABLE FILE GGSALES
SUM SALES
COMPUTE OUT1/I3 = OUTLIER(SALES);
BY CATEGORY
BY STCD
WHERE CATEGORY EQ 'Coffee'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
The output is shown in the following image. Values above 2 million are above the upper fence, values below 1 million are below the lower fence, and other values are not outliers:

<table>
<thead>
<tr>
<th>Category</th>
<th>Store ID</th>
<th>SALES</th>
<th>OUT1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coffee</td>
<td>R1019</td>
<td>2,280,000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>R1020</td>
<td>2,400,000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>R1040</td>
<td>840,000</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>R1041</td>
<td>1,576,915</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>R1044</td>
<td>1,340,437</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>R1088</td>
<td>1,375,040</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>R1100</td>
<td>1,364,420</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>R1109</td>
<td>1,459,160</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>R1200</td>
<td>1,463,453</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>R1244</td>
<td>1,553,962</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>R1248</td>
<td>1,535,631</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>R1250</td>
<td>1,386,124</td>
<td>0</td>
</tr>
</tbody>
</table>

RSERVE: Running an R Script

You can use the RSERVE function in a COMPUTE command to run an R script that returns vector output. This requires that you have a configured Adapter for Rserve.

Syntax: How to Run an R Script

```rsnake
text
```

```
RSERVE(rserve_mf, input_field1, ...input_fieldn, output)
```

where:

- **rserve_mf**

 Is the synonym for the R script.

- **input_field1, ...input_fieldn**

 Are the independent variables used by the R script.

- **output**

 Is the dependent variable returned by the R script. It must be a single column (vector) of output.
Example: Using RSERVE to Run an R Script

The R script named wine_run_model.R predicts Bordeaux wine prices based on the average growing season temperature, the amount of rain during the harvest season, the amount of rain during the winter, and the age of the wine.

Using a configured connection (named MyRserve) for the Adapter for Rserve, and a sample data file named wine_input_sample.csv, you create the following synonym for the R script, as described in the *TIBCO WebFOCUS® Adapter Administration* manual.

Master File

```
FILENAME=WINE_RUN_MODEL, SUFFIX=RSERVE , $
SEGMENT=INPUT_DATA, SECTYPE=S0, $
  FIELDNAME=AGST, ALIAS=AGST, USAGE=D9.4, ACTUAL=STRING, 
  MISSING=ON, 
  TITLE='AGST', $
  FIELDNAME=HARVESTRAIN, ALIAS=HarvestRain, USAGE=I1, ACTUAL=STRING, 
  MISSING=ON, 
  TITLE='HarvestRain', $
  FIELDNAME=WINTERRAIN, ALIAS=WinterRain, USAGE=I1, ACTUAL=STRING, 
  MISSING=ON, 
  TITLE='WinterRain', $
  FIELDNAME=AGE, ALIAS=Age, USAGE=I1, ACTUAL=STRING, 
  MISSING=ON, 
  TITLE='Age', $
SEGMENT=OUTPUT_DATA, SECTYPE=U, PARENT=INPUT_DATA, $
  FIELDNAME=PRICE, ALIAS=Price, USAGE=D18.14, ACTUAL=STRING, 
  MISSING=ON, 
  TITLE='Price', $
```

Access File

```
SEGNAME=INPUT_DATA,
  CONNECTION=MyRserve,
  R_SCRIPT=/prediction/wine_run_model.r,
  R_SCRIPT_LOCATION=WFRS,
  R_INPUT_SAMPLE_DAT=prediction/wine_input_sample.csv, $
```
Now that the synonym has been created for the model, the model will be used to run against the following data file named wine_forecast.csv.

```plaintext
Year, Price, WinterRain, AGST, HarvestRain, Age, FrancePop
1952, 7.495, 600, 17.1167, 160, 31, 43183.569
1953, 8.0393, 690, 16.7333, 80, 30, 43495.03
1955, 7.6858, 502, 17.15, 130, 28, 44217.857
1957, 6.9845, 420, 16.1333, 110, 26, 45152.256
1958, 7.7772, 582, 16.4167, 187, 25, 45653.805
1959, 8.0757, 485, 17.4833, 187, 24, 46128.638
1960, 6.5188, 763, 16.4167, 290, 23, 46583.995
1961, 8.4937, 830, 17.3333, 38, 22, 47128.005
1962, 7.388, 697, 16.3, 52, 21, 48088.763
1963, 6.727, 606, 15.7167, 155, 20, 48798.99
1964, 7.3094, 402, 17.2667, 96, 19, 49356.943
1965, 6.2518, 602, 15.3667, 267, 18, 49801.821
1966, 7.7443, 819, 16.5333, 86, 17, 50254.966
1967, 6.8398, 714, 16.2333, 118, 16, 50650.406
1968, 6.2435, 610, 16.2, 292, 15, 51034.413
1969, 6.3459, 575, 16.55, 244, 14, 51470.276
1970, 7.5883, 622, 16.6667, 89, 13, 51918.389
1971, 7.1934, 551, 16.7667, 112, 12, 52431.647
1972, 6.2049, 536, 16.9833, 58, 11, 52894.183
1973, 6.6367, 376, 17.0667, 123, 10, 53332.805
1974, 6.2941, 574, 16.3, 184, 9, 53689.61
1975, 7.292, 572, 16.95, 171, 8, 53955.042
1976, 7.1211, 418, 17.65, 247, 7, 54159.049
1977, 6.2587, 821, 15.5833, 87, 6, 54378.362
1978, 7.186, 763, 15.8167, 51, 5, 54602.193
```

The data file can be any type of file that R can read. In this case it is another .csv file. This file needs a synonym in order to be used in a report request. You create the synonym for this file using the Adapter for Delimited Files.

The following is the generated Master File, wine_forecast.mas.

```plaintext
FILENAME=WINE_FORECAST, SUFFIX=DFIX    , CODEPAGE=1252,
DATASET=prediction/wine_forecast.csv, $
SEGMENT=WINE_FORECAST, SEGTYPE=S0, $
FIELDNAME=YEAR1, ALIAS=Year, USAGE=I6, ACTUAL=A5V,
MISSING=ON,      TITLE='©Year©', $
FIELDNAME=PRICE, ALIAS=Price, USAGE=D8.4, ACTUAL=A7V,
MISSING=ON,      TITLE='©Price©', $
FIELDNAME=WINTERRAIN, ALIAS=WinterRain, USAGE=I5, ACTUAL=A3V,
MISSING=ON,      TITLE='©WinterRain©', $
FIELDNAME=AGST, ALIAS=AGST, USAGE=D9.4, ACTUAL=A8V,
MISSING=ON,      TITLE='©AGST©', $
FIELDNAME=HARVESTRAIN, ALIAS=HarvestRain, USAGE=I5, ACTUAL=A3V,
MISSING=ON,      TITLE='©HarvestRain©', $
FIELDNAME=AGE, ALIAS=Age, USAGE=I4, ACTUAL=A2V,      MISSING=ON,
TITLE='©Age©', $
FIELDNAME=FRANCEPOP, ALIAS=FrancePop, USAGE=D11.3, ACTUAL=A11V,
MISSING=ON,      TITLE='©FrancePop©', $
```
The following is the generated Access File, wine_forecast.acx.

```
SEGNAME=WINE_FORECAST, DELIMITER=',', ENCLOSURE='', HEADER=YES,
CDN=COMMAS_DOT, CONNECTION=<local>, $
```

The following request, wine_forecast_price_report.fex, uses the RSERVE built-in function to run the script and return a report.

```
-*wine_forecast_price_report.fex
TABLE FILE PREDICTION/WINE_FORECAST
PRINT
  YEAR
  WINTERRAIN
  AGST
  HARVESTRAIN
  AGE

  COMPUTE PREDICTED_PRICE/D18.2 MISSING ON ALL=
    RSERVE(prediction/wine_run_model, AGST, HARVESTRAIN, WINTERRAIN, AGE, Price); AS
'Predicted,Price'

ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
The output is shown in the following image.

<table>
<thead>
<tr>
<th>Year</th>
<th>WinterRain</th>
<th>AGST</th>
<th>HarvestRain</th>
<th>Age</th>
<th>Predicted Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
<td>600</td>
<td>17.1167</td>
<td>160</td>
<td>31</td>
<td>7.72</td>
</tr>
<tr>
<td>1953</td>
<td>690</td>
<td>16.7333</td>
<td>80</td>
<td>30</td>
<td>7.87</td>
</tr>
<tr>
<td>1955</td>
<td>502</td>
<td>17.1500</td>
<td>130</td>
<td>28</td>
<td>7.68</td>
</tr>
<tr>
<td>1957</td>
<td>420</td>
<td>16.1333</td>
<td>110</td>
<td>26</td>
<td>7.00</td>
</tr>
<tr>
<td>1958</td>
<td>582</td>
<td>16.4167</td>
<td>187</td>
<td>25</td>
<td>7.02</td>
</tr>
<tr>
<td>1959</td>
<td>485</td>
<td>17.4833</td>
<td>187</td>
<td>24</td>
<td>7.54</td>
</tr>
<tr>
<td>1960</td>
<td>763</td>
<td>16.4167</td>
<td>290</td>
<td>23</td>
<td>6.76</td>
</tr>
<tr>
<td>1961</td>
<td>830</td>
<td>17.3333</td>
<td>38</td>
<td>22</td>
<td>8.36</td>
</tr>
<tr>
<td>1962</td>
<td>697</td>
<td>16.3000</td>
<td>52</td>
<td>21</td>
<td>7.51</td>
</tr>
<tr>
<td>1963</td>
<td>608</td>
<td>15.7167</td>
<td>155</td>
<td>20</td>
<td>6.63</td>
</tr>
<tr>
<td>1964</td>
<td>402</td>
<td>17.2667</td>
<td>96</td>
<td>19</td>
<td>7.56</td>
</tr>
<tr>
<td>1965</td>
<td>602</td>
<td>15.3667</td>
<td>267</td>
<td>18</td>
<td>5.92</td>
</tr>
<tr>
<td>1966</td>
<td>819</td>
<td>16.5333</td>
<td>86</td>
<td>17</td>
<td>7.56</td>
</tr>
<tr>
<td>1967</td>
<td>714</td>
<td>16.2333</td>
<td>118</td>
<td>16</td>
<td>7.11</td>
</tr>
<tr>
<td>1969</td>
<td>575</td>
<td>16.5500</td>
<td>244</td>
<td>14</td>
<td>6.60</td>
</tr>
<tr>
<td>1970</td>
<td>622</td>
<td>16.6667</td>
<td>89</td>
<td>13</td>
<td>7.32</td>
</tr>
<tr>
<td>1971</td>
<td>551</td>
<td>16.7667</td>
<td>112</td>
<td>12</td>
<td>7.19</td>
</tr>
<tr>
<td>1972</td>
<td>536</td>
<td>14.9833</td>
<td>158</td>
<td>11</td>
<td>5.88</td>
</tr>
<tr>
<td>1973</td>
<td>376</td>
<td>17.0667</td>
<td>123</td>
<td>10</td>
<td>7.09</td>
</tr>
<tr>
<td>1974</td>
<td>574</td>
<td>16.3000</td>
<td>184</td>
<td>9</td>
<td>6.57</td>
</tr>
<tr>
<td>1975</td>
<td>572</td>
<td>16.9500</td>
<td>171</td>
<td>8</td>
<td>6.99</td>
</tr>
<tr>
<td>1976</td>
<td>418</td>
<td>17.6500</td>
<td>247</td>
<td>7</td>
<td>6.92</td>
</tr>
<tr>
<td>1977</td>
<td>821</td>
<td>15.5833</td>
<td>87</td>
<td>6</td>
<td>6.71</td>
</tr>
<tr>
<td>1978</td>
<td>763</td>
<td>15.8167</td>
<td>51</td>
<td>5</td>
<td>6.91</td>
</tr>
</tbody>
</table>
STDDEV: Calculating the Standard Deviation for a Set of Data Values

The STDDEV function returns a numeric value that represents the amount of dispersion in the data. The set of data can be specified as the entire population or a sample. The standard deviation is the square root of the variance, which is a measure of how observations deviate from their expected value (mean). If specified as a population, the divisor in the standard deviation calculation (also called degrees of freedom) will be the total number of data points, \(N \). If specified as a sample, the divisor will be \(N-1 \).

If \(x_i \) is an observation, \(N \) is the number of observations, and \(\mu \) is the mean of all of the observations, the formula for calculating the standard deviation for a population is:

\[
\sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}
\]

To calculate the standard deviation for a sample, the mean is calculated using the sample observations, and the divisor is \(N-1 \) instead of \(N \).

Reference: Calculate the Standard Deviation in a Set of Data

\[
\text{STDDEV}(\text{field}, \text{sampling})
\]

where:

field
- Numeric
 - Is the set of observations for the standard deviation calculation.

sampling
- Keyword
 - Indicates the origin of the data set. Can be one of the following values.
 - P Entire population.
 - S Sample of population.

Note: Arguments for STDDEV cannot be prefixed fields. If you need to work with fields that have a prefix operator applied, apply the prefix operators to the fields in COMPUTE commands and save the results in a HOLD file. Then, run the standard deviation against the HOLD file.
Calculating a Standard Deviation

The following request calculates the standard deviation of the DOLLARS field converted to double precision.

```
DEFINE FILE ibisamp/ggsales
DOLLARS/D12.2 = DOLLARS;
END
TABLE FILE ibisamp/ggsales
SUM DOLLARS STDDEV(DOLLARS,S)
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE * 
GRID=OFF,$
ENDSTYLE
END
```

The output is shown in the following image.

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DOLLARS</td>
<td></td>
<td>DOLLARS</td>
</tr>
<tr>
<td>46,156,290.00</td>
<td></td>
<td>6,157.711080272</td>
</tr>
</tbody>
</table>
```
The Machine Learning (Python-based) functions are FOCUS functions implemented as Python scripts. These Python scripts take advantage of Python packages such as scipy, numpy, scikit-learn, and pandas, which extends the Python capabilities to machine learning.

The Machine Learning (Python-based) functions perform regression, classification, extreme gradient boosting, and outlier detection using a variety of machine learning methods. The Python scripts perform a sequence of conventional machine learning tasks including scaling of the data where appropriate. They are built around a grid search with cross-validation. That is, some hyper-parameters (parameters that influence the learning process, but that are not model parameters) are identified, and models are built using a number of values for each hyper-parameter, in order to determine the optimal values. To determine optimality, cross-validation is used, which ensures that the performance is measured on a validation-subset of the data that is distinct from the training-subset. Rows with missing values in the target-column are not used for training and validation, but a predicted value is computed by the trained model.

You can generate the .csv file and accompanying Master File used in the examples by running the WebFOCUS - Machine Learning Demo tutorial in the Reporting Server browser interface.

In this chapter:

- ANOMALY_IF: Detecting Outliers
- CLASSIFY_BLR: Binary Logistic Regression
- CLASSIFY_KNN: K-Nearest Neighbors Classification
- CLASSIFY_RF: Random Forest Classification
- CLASSIFY_XGB: Extreme Gradient Boosting Classification
- REGRESS_KNN: K-Nearest Neighbors Regression
- REGRESS_POLY: Polynomial Regression
- REGRESS_RF: Random Forest Regression
- REGRESS_XGB: Extreme Gradient Boosting Regression
- RUN_MODEL and RUN_MODEL2: Running a Saved Python Model
ANOMALY_IF: Detecting Outliers

ANOMALY_IF detects outliers using an Isolation Forest. An Isolation Forest uses decision trees to randomly and recursively split the space spanned by the observations X0, X1, . . . into hyper-rectangles, each containing one or a small number of samples. Outlier samples can be isolated in a hyper-rectangle with fewer splits than samples that are in close vicinity of many other samples. The number of splits needed to reach a sample translates into the anomaly score of the sample.

Syntax:

How to Calculate an Anomaly Score

ANOMALY_IF('options' predictor_field1[, predictor_field2, ...])

where:

'**options**'

Is a dictionary of advanced parameters that control the model attributes, enclosed in single quotation marks. Most of these parameters have a default value, so you can omit them from the request, if you want to use the default values. Even with no advanced parameters, the single quotation marks are required. The format of the advanced parameter dictionary is:

'{"parm_name1": "parm_value1", … ,"parm_namei": "parm_valuei"}'}

The following advanced parameters are supported:

"trees"

Is the number of decision trees in the forest. Allowed values are integers greater than 10. The default value is "100".

"score"

Defines the type of value returned by the function. If score is "binary", the function returns -1 for anomalous samples and +1 for normal samples. If score is "grade", a continuous anomaly score between -1.0 and 1.0 is returned, in which the more negative the number returned is, the more of an outlier the point is. Valid values are "binary" and "grade". The default value is "binary".

"max_samples"

Is the fraction of the rows in the training set used per tree. Allowed values are fractions between 0 (zero) and 1. The default value is "0.5".

"contamination"

Only applies when score is "binary". Is the fraction of the samples in the training set that will be marked anomalous. Allowed values are fractions between 0 (zero) and 0.5. The default value is "0.1".
"train_ratio"
Is a value between 0 and 1 that specifies the fraction of data used for training the
model. The default value is "1.0".

predictor_field1[, predictor_field2, ...]
Numeric
Are one or more predictor field names.

Example: Detecting Outliers Using ANOMALY_IF
The following procedure uses ANOMALY_IF to detect outliers using binary mode and predictors
horsepower, peak RPM, city MPG, highway MPG, and price. Outliers are identified by the return
value -1.00.

TABLE FILE imports85
PRINT horsepower peakRpm cityMpg highwayMpg price
COMPUTE AnomalyBinaryScore/D5.2 =
ANOMALY_IF('{"trees":"123","score":"binary","contamination":"0.2"}',
 horsepower, peakRpm, cityMpg, highwayMpg, price);
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
ANOMALY_IF: Detecting Outliers
Partial output is shown in the following image.

The following version of the request uses grade mode with the same advanced parameters and
predictors.
TABLE FILE imports85
PRINT horsepower peakRpm cityMpg highwayMpg price
COMPUTE AnomalyGradeScore/D5.2 =
ANOMALY_IF('{"trees":"123","score":"grade","contamination":"0.2"}',
horsepower, peakRpm, cityMpg,
highwayMpg, price);
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

610


Partial output is shown in the following image.

<table>
<thead>
<tr>
<th>horsepower</th>
<th>peakRpm</th>
<th>cityMpg</th>
<th>highwayMpg</th>
<th>price</th>
<th>AnomalyGradeScore</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>5000</td>
<td>21</td>
<td>27</td>
<td>13495</td>
<td>.09</td>
</tr>
<tr>
<td>111</td>
<td>5000</td>
<td>21</td>
<td>27</td>
<td>16500</td>
<td>.08</td>
</tr>
<tr>
<td>154</td>
<td>5000</td>
<td>19</td>
<td>26</td>
<td>16500</td>
<td>.07</td>
</tr>
<tr>
<td>102</td>
<td>5500</td>
<td>24</td>
<td>30</td>
<td>13950</td>
<td>.08</td>
</tr>
<tr>
<td>115</td>
<td>5500</td>
<td>18</td>
<td>22</td>
<td>17450</td>
<td>.05</td>
</tr>
<tr>
<td>110</td>
<td>5500</td>
<td>19</td>
<td>25</td>
<td>15250</td>
<td>.09</td>
</tr>
<tr>
<td>110</td>
<td>5500</td>
<td>19</td>
<td>25</td>
<td>17710</td>
<td>.09</td>
</tr>
<tr>
<td>110</td>
<td>5500</td>
<td>19</td>
<td>25</td>
<td>18920</td>
<td>.08</td>
</tr>
<tr>
<td>140</td>
<td>5500</td>
<td>17</td>
<td>20</td>
<td>23875</td>
<td>-.01</td>
</tr>
<tr>
<td>160</td>
<td>5500</td>
<td>16</td>
<td>22</td>
<td></td>
<td>.00</td>
</tr>
<tr>
<td>101</td>
<td>5800</td>
<td>23</td>
<td>29</td>
<td>16430</td>
<td>.03</td>
</tr>
<tr>
<td>101</td>
<td>5800</td>
<td>23</td>
<td>29</td>
<td>16925</td>
<td>.03</td>
</tr>
<tr>
<td>121</td>
<td>4250</td>
<td>21</td>
<td>28</td>
<td>20970</td>
<td>.02</td>
</tr>
<tr>
<td>121</td>
<td>4250</td>
<td>21</td>
<td>28</td>
<td>21105</td>
<td>.02</td>
</tr>
<tr>
<td>121</td>
<td>4250</td>
<td>20</td>
<td>25</td>
<td>24565</td>
<td>-.01</td>
</tr>
<tr>
<td>182</td>
<td>5400</td>
<td>16</td>
<td>22</td>
<td>30760</td>
<td>-.03</td>
</tr>
<tr>
<td>182</td>
<td>5400</td>
<td>16</td>
<td>22</td>
<td>41315</td>
<td>-.09</td>
</tr>
<tr>
<td>182</td>
<td>5400</td>
<td>15</td>
<td>20</td>
<td>36880</td>
<td>-.06</td>
</tr>
<tr>
<td>48</td>
<td>5100</td>
<td>47</td>
<td>53</td>
<td>5151</td>
<td>-.16</td>
</tr>
<tr>
<td>70</td>
<td>5400</td>
<td>38</td>
<td>43</td>
<td>6295</td>
<td>.00</td>
</tr>
<tr>
<td>70</td>
<td>5400</td>
<td>38</td>
<td>43</td>
<td>6575</td>
<td>.00</td>
</tr>
<tr>
<td>68</td>
<td>5500</td>
<td>37</td>
<td>41</td>
<td>5572</td>
<td>.03</td>
</tr>
<tr>
<td>68</td>
<td>5500</td>
<td>31</td>
<td>38</td>
<td>6377</td>
<td>.10</td>
</tr>
<tr>
<td>102</td>
<td>5500</td>
<td>24</td>
<td>30</td>
<td>7957</td>
<td>.09</td>
</tr>
<tr>
<td>68</td>
<td>5500</td>
<td>31</td>
<td>38</td>
<td>6229</td>
<td>.10</td>
</tr>
<tr>
<td>68</td>
<td>5500</td>
<td>31</td>
<td>38</td>
<td>6692</td>
<td>.10</td>
</tr>
<tr>
<td>68</td>
<td>5500</td>
<td>31</td>
<td>38</td>
<td>7609</td>
<td>.09</td>
</tr>
<tr>
<td>102</td>
<td>5500</td>
<td>24</td>
<td>30</td>
<td>8558</td>
<td>.09</td>
</tr>
<tr>
<td>88</td>
<td>5000</td>
<td>24</td>
<td>30</td>
<td>8921</td>
<td>.10</td>
</tr>
</tbody>
</table>

CLASSIFY_BLR: Binary Logistic Regression

Binary logistic regression finds the best linear separation between two classes in the space spanned by the predictors. The target variable has two values (0 and 1), corresponding to the two classes. The predicted value is either a class assignment (0 or 1) or the probability of belonging to class 1.
Syntax:

CLASSIFY_BLR('options',
 predictor_field1[, predictor_field2, ...] target_field)

where:

'options'

Is a dictionary of advanced parameters that control the model attributes, enclosed in single quotation marks. Most of these parameters have a default value, so you can omit them from the request, if you want to use the default values. Even with no advanced parameters, the single quotation marks are required. The format of the advanced parameter dictionary is:

'{"parm_name1": "parm_value1", ... ,"parm_namei": "parm_valuei"}'}

The following advanced parameters are supported:

"proba"

Indicates whether to display a probability of being in the target class or a class prediction. Valid values are "no" (the default) or "yes". The value "yes" produces a probability \(Y \) (0<=\(Y \)<=1) for belonging to the class specified by "pos_label" (default is "1") for each point in the space. The value "no" produces a class-prediction \(Y \) (0 or 1) for each point in the space.

"pos_label"

Is relevant when "proba" is "yes". Specifies the class for which the probability of belonging is to be computed. Valid values are "0" and "1". The default is "1".

"train_ratio"

Is a value between 0 and 1 that specifies the fraction of data used for training the model. The default value is "0.8".

"test_ratio"

Is a value between 0 and 1 that specifies the fraction of data used for testing the model. The default value is "0.2".

"l2_grid"

Is a grid consisting of comma-separated positive numbers to be used as L2-regularization strengths. The default value is "0,1,1,10". The optimal value is chosen by cross-validation.

"kfold"

Is the number of folds used for cross-validation. Suggested values are integers between "2" and "10". The default value is "4".
predictor_field1[, predictor_field2, ...]
 Numeric
 Are one or more predictor field names.

target_field
 Numeric
 Is the target field.

Example: Using CLASSIFY_BLR to Predict Number of Doors

The following TABLE request uses CLASSIFY_BLR to compute the number of doors in a car, using the default values for the advanced parameters and predictors price, height, horsepower, peak RPM, city MPG, and highway MPG.

TABLE FILE imports85
PRINT numOfDoors
COMPUTE predictedNumOfDoors/A6 =
CLASSIFY_BLR({"proba":"no","kfold":"4","test_ratio":"0.2"},
 price, height, horsepower, peakRpm,
 cityMpg, highwayMpg, numOfDoors);
WHERE price LT 30000
ON TABLE SET PAGE NOPAGE
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
The partial output is shown in the following image.

<table>
<thead>
<tr>
<th>numOfDoors</th>
<th>predictedNumOfDoors</th>
</tr>
</thead>
<tbody>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>two</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>two</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>two</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>four</td>
<td>two</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>four</td>
<td>two</td>
</tr>
<tr>
<td>four</td>
<td>two</td>
</tr>
<tr>
<td>four</td>
<td>two</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>four</td>
<td>two</td>
</tr>
<tr>
<td>four</td>
<td>two</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>four</td>
<td>two</td>
</tr>
</tbody>
</table>
CLASSIFY_KNN: K-Nearest Neighbors Classification

K-nearest neighbors classification is a method for assigning a class membership to a data point in the space spanned by the predictors. The classification is done by assigning the class most common among its \(k\) nearest neighbors. This method requires having a distance definition in this space.

Reference: Calculate a K-Nearest Neighbors Classification

```python
CLASSIFY_KNN('options',
    predictor_field1[, predictor_field2, ...] target_field)
```

where:

'`options`'

Is a dictionary of advanced parameters that control the model attributes, enclosed in single quotation marks. Most of these parameters have a default value, so you can omit them from the request, if you want to use the default values. Even with no advanced parameters, the single quotation marks are required. The format of the advanced parameter dictionary is:

```
{"parm_name1": "parm_value1", ... ,"parm_namei": "parm_valuei"}
```

The following advanced parameters are supported:

"k"

Is the number of nearest neighbors. Allowed values are integers greater than 1. The default value is "5".

"p"

Is the power (p) of the L^p-distance. Allowed values are positive integers. Suggested values are "1" and "2". The default value is "2".

- power=1 calculates the distance as the sum of the absolute values of the differences between the coordinates (Manhattan distance).
- power=2 calculates the distance as the square root of the sum of the squares of the differences between the coordinates (Euclidean distance). This is the default value.

"prediction_ratio"

Is the fraction of the data that will be used for prediction. Allowed values are numbers between 0 and 1. The default value is "0.8".

"test_ratio"

Is a value between 0 and 1 that specifies the fraction of data used for testing the model. The default value is "0.2".
CLASSIFY_KNN: K-Nearest Neighbors Classification

"kfold"

Is the number of folds used in the grid-search with cross-validation. A grid-search of
the nearest neighbors grid K/2, K, 2K is done. Suggested values are integers between
"2" and "10". The default value is "4".
predictor_field1[, predictor_field2, ...]
Numeric

Are one or more predictor field names.
target_field
Numeric

Is the target field.

Example:

Predicting Class Assignment Using CLASSIFY_KNN
The following request creates classes 0 (zero) and 1 based on the number of doors in a car,
then uses CLASSIFY_KNN to predict the class assignment using the 10 nearest neighbors and
Euclidean distance, with predictors price, height, horsepower, peak RPM, city MPG, and
highway MPG. The data set includes rows with missing target values.
DEFINE FILE imports85
OUR_CLASSES/I2 MISSING ON = IF numOfDoors EQ MISSING THEN MISSING
ELSE IF numOfDoors EQ 'two' THEN 0
ELSE 1;
END
TABLE FILE imports85
PRINT numOfDoors BODYSTYLE OUR_CLASSES
COMPUTE predictedCLASSES/I2 =
CLASSIFY_KNN('{"K":"10","p":"2","kfold":"4","test_ratio":"0.2"}',
price, height, horsepower, peakRpm,
cityMpg, highwayMpg, OUR_CLASSES);
ON TABLE SET PAGE NOPAGE
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

616


Partial output is shown in the following image.

<table>
<thead>
<tr>
<th>numOfDoors</th>
<th>bodyStyle</th>
<th>OUR_CLASSES</th>
<th>predictedCLASSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>two</td>
<td>convertible</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>two</td>
<td>convertible</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>two</td>
<td>hatchback</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>four</td>
<td>sedan</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>four</td>
<td>sedan</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>two</td>
<td>sedan</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>four</td>
<td>sedan</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>four</td>
<td>wagon</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>four</td>
<td>sedan</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>two</td>
<td>hatchback</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>two</td>
<td>sedan</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>four</td>
<td>sedan</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>two</td>
<td>sedan</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>four</td>
<td>sedan</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>four</td>
<td>sedan</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>four</td>
<td>sedan</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>two</td>
<td>sedan</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>four</td>
<td>sedan</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>two</td>
<td>hatchback</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>two</td>
<td>hatchback</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>four</td>
<td>sedan</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>four</td>
<td>hatchback</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>four</td>
<td>sedan</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>four</td>
<td>wagon</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>two</td>
<td>hatchback</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>four</td>
<td>hatchback</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>four</td>
<td>sedan</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

CLASSIFY_RF: Random Forest Classification

CLASSIFY_RF creates a random forest, which is an ensemble of decision trees. Each decision tree produces an independent classification prediction, and the prediction of the forest is the majority vote of the individual predictions.

Syntax: How to Calculate a Random Forest Classification

```
CLASSIFY_RF('options', number_of_trees, 
predictor_field1[, predictor_field2, ...] target_field)
```
where:

`options`

Is a dictionary of advanced parameters that control the model attributes, enclosed in single quotation marks. Most of these parameters have a default value, so you can omit them from the request, if you want to use the default values. Even with no advanced parameters, the single quotation marks are required. The format of the advanced parameter dictionary is:

`{"parm_name1": "parm_value1", ... ,"parm_namei": "parm_valuei"}`

The following advanced parameters are supported:

"trees"

Is the number of decision trees in the forest. Allowed values are integers greater than 10. The default value is "100".

"feature_importances"

Specifies whether to compute feature importances. Valid values are "yes" and "no". The default value is "yes".

"train_ratio"

Is a value between 0 and 1 that specifies the fraction of data used for training the model. The default value is "0.8".

"test_ratio"

Is a value between 0 and 1 that specifies the fraction of data used for testing the model. The default value is "0.2".

"scoring"

The training optimizes either for F1 Score (weighted average of Precision and Recall) or accuracy (ratio of correctly predicted observations to total observations). Allowed values are "f1_score" and "accuracy". The default value is "f1_score".

"min_values_leaf_grid"

Is a grid of the minimum number of samples required in a node in order to split the node, or a single value. The optimal value is chosen by cross-validation. The default value is "1,3,5".

`predictor_field1[, predictor_field2, ...]`

Numeric or alphanumeric

Are one or more predictor field names.
Example: Predicting Class Assignment Using CLASSIFY_RF

The following procedure uses CLASSIFY_RF to predict a class assignment for the number of doors in a car, using a random forest with 100 decision trees, with predictors price, body style, height, horsepower, peak RPM, city MPG, highway MPG.

```plaintext
TABLE FILE imports85
PRINT numOfDoors
COMPUTE predictedNumOfDoors/A6 = CLASSIFY_RF('"trees":"100","kfold":"4","test_ratio":"0.2"',
  price, bodyStyle, height, horsepower,
  peakRpm, cityMpg, highwayMpg, numOfDoors);
WHERE price LT 30000
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE $
END
```
Partial output is shown in the following image.

<table>
<thead>
<tr>
<th>numOfDoors</th>
<th>predictedNumOfDoors</th>
</tr>
</thead>
<tbody>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>two</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>two</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>two</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>four</td>
<td>two</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
</tbody>
</table>

CLASSIFY_XGB: Extreme Gradient Boosting Classification

CLASSIFY_XGB creates a series of decision trees, where each new tree attempts to improve on the predictive capabilities of the prior trees. Each decision tree arrives at its prediction based on a partitioning of the space spanned by the predictors, using a recursive succession of binary splits. At each split, the values of one predictor are partitioned into two sets. The splits are guided (choice of the split-predictor and the split-point) by the greedy maximization of an objective function that involves measuring how much alike the y-values of the data points in each partition are (called purity), as well as a regularization term. Early stopping is applied when the predictive capability starts to deteriorate.

Syntax: How to Calculate an Extreme Gradient Boosting Classification

CLASSIFY_XGB('options',
 predictor_field1[, predictor_field2, ...] target_field)

where:

'options'

Is a dictionary of advanced parameters that control the model attributes, enclosed in single quotation marks. Most of these parameters have a default value, so you can omit them from the request, if you want to use the default values. Even with no advanced parameters, the single quotation marks are required. The format of the advanced parameter dictionary is:

'{"parm_name1": "parm_value1", ... ,"parm_namei": "parm_valuei"}'}

The following advanced parameters are supported:

"trees"

Is the number of decision trees in the forest. Allowed values are integers greater than 10. The default value is "300".

"train_ratio"

Is a value between 0 and 1 that specifies the fraction of data used for training the model. The default value is "0.8".

"test_ratio"

Is a value between 0 and 1 that specifies the fraction of data used for testing the model. The default value is "0.2".

"early_stopping_rounds"

Specifies the number of added trees such that if the algorithm has not improved its performance in this many added trees, it stops. Allowed values are integers between 1 and the number of trees. The default value is "10".
"l2_grid"
Is a grid consisting of comma-separated positive numbers to be used as L2-
regularization strengths. The default value is "0, 1, 1, 10". The optimal value is chosen
by cross-validation.

"kfold"
Is the number of folds used in the grid-search with cross-validation. Suggested values
are integers between "2" and "10". The default value is "4".

"max_depth_grid"
Is the maximum depth of each decision tree. A grid in the form "4, 5, 6" is allowed. The
default value is "5". The optimal value is chosen by cross-validation.

"scoring"
The training optimizes either for F1 Score (weighted average of Precision and
Recall) or accuracy (ratio of correctly predicted observations to total observations).
Allowed values are "f1_score" and "accuracy". The default value is "f1_score".

predictor_field1[, predictor_field2, ...]
Numeric or Alphanumeric

Are one or more predictor field names.

target_field
Numeric or alphanumeric

Is the target field.

Example: Predicting Price Using CLASSIFY_XGB
The following procedure uses CLASSIFY_XGB to predict number, using 400 trees, 10 early
stopping rounds, and default values for the other advanced parameters, and with predictors
price, body style, height, horsepower, peak RPM, city MPG, and highway MPG.

TABLE FILE imports85
PRINT numOfDoors
COMPUTE predictedNumOfDoors/A6 =
CLASSIFY_XGB({'"trees":"400","early_stopping_rounds":"10",
"kfold":"4","test_ratio":"0.2"'},
 price, bodyStyle, height, horsepower,
 peakRpm, cityMpg, highwayMpg, numOfDoors);
WHERE price LT 30000
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
Partial output is shown in the following image.

<table>
<thead>
<tr>
<th>numOfDoors</th>
<th>predictedNumOfDoors</th>
</tr>
</thead>
<tbody>
<tr>
<td>two</td>
<td>four</td>
</tr>
<tr>
<td>two</td>
<td>four</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>two</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>two</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>two</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
<tr>
<td>four</td>
<td>two</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>.</td>
<td>four</td>
</tr>
<tr>
<td>four</td>
<td>four</td>
</tr>
<tr>
<td>two</td>
<td>two</td>
</tr>
</tbody>
</table>
REGRESS_KNN: K-Nearest Neighbors Regression

K-nearest neighbors regression is a method for predicting a target value for a data point in the space spanned by the predictors. The prediction is the average of the target values of its K nearest neighbors. This method requires having a distance definition in this space.

Reference: Calculate a K-Nearest Neighbors Regression

```plaintext
REGRESS_KNN('options',
           predictor_field1[, predictor_field2, ...] target_field)
```

where:

'`options`'
Is a dictionary of advanced parameters that control the model attributes, enclosed in single quotation marks. Most of these parameters have a default value, so you can omit them from the request, if you want to use the default values. Even with no advanced parameters, the single quotation marks are required. The format of the advanced parameter dictionary is:

```plaintext
'{"parm_name1": "parm_value1", ... ,"parm_namei": "parm_valuei"}'
```

The following advanced parameters are supported:

"K"
Is the number of nearest neighbors to participate in the prediction. Allowed values are integers greater than 1. The default value is "5".

"p"
Is the power (p) of the L^p-distance. Allowed values are integers. Suggested values are "1" and "2". The default value is "2".

- `power=1` calculates the distance as the sum of the absolute values of the differences between the coordinates (Manhattan distance).
- `power=2` calculates the distance as the square root of the sum of the squares of the differences between the coordinates (Euclidean distance).

"prediction_ratio"
Is the fraction of the data that will be used for prediction. Allowed values are numbers between 0 and 1. The default value is "0.8".

"test_ratio"
Is a value between 0 and 1 that specifies the fraction of data used for testing the model. The default value is "0.2".
"kfold"
Is the number of folds used in the grid-search with cross-validation. A grid-search of the nearest neighbors grid \(K/2, K, 2K\) is done. Suggested values are integers between "2" and "10". The default value is "4".

`predictor_field1[, predictor_field2, ...]`
Numeric
Are one or more predictor field names.

`target_field`
Numeric
Is the target field.

Example: Predicting Price Using **REGRESS_KNN**

The following request uses **REGRESS_KNN** to predict price using the default advanced parameters (10 nearest neighbors and Euclidean distance), with predictors height, horsepower, peak RPM, city MPG, and highway MPG.

```sql
TABLE FILE imports85
PRINT price
COMPUTE predictedPrice/I5 = REGRESS_KNN({"K":"10","p":"2","kfold":"4","prediction_ratio":"0.8","test_ratio":"0.2"},
    height, horsepower, peakRpm,
    cityMpg, highwayMpg, price);
WHERE price LT 30000
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF, $
ENDSTYLE
END
```
Partial output is shown in the following image.

<table>
<thead>
<tr>
<th>price</th>
<th>predictedPrice</th>
</tr>
</thead>
<tbody>
<tr>
<td>13495</td>
<td>12461</td>
</tr>
<tr>
<td>16500</td>
<td>12461</td>
</tr>
<tr>
<td>16500</td>
<td>16099</td>
</tr>
<tr>
<td>13950</td>
<td>12951</td>
</tr>
<tr>
<td>17450</td>
<td>17266</td>
</tr>
<tr>
<td>15250</td>
<td>17266</td>
</tr>
<tr>
<td>17710</td>
<td>17612</td>
</tr>
<tr>
<td>18920</td>
<td>17612</td>
</tr>
<tr>
<td>23875</td>
<td>18281</td>
</tr>
<tr>
<td></td>
<td>16099</td>
</tr>
<tr>
<td>16430</td>
<td>13541</td>
</tr>
<tr>
<td>16925</td>
<td>13541</td>
</tr>
<tr>
<td>20970</td>
<td>20690</td>
</tr>
<tr>
<td>21105</td>
<td>20690</td>
</tr>
<tr>
<td>24565</td>
<td>24088</td>
</tr>
<tr>
<td>5151</td>
<td>6851</td>
</tr>
<tr>
<td>6295</td>
<td>5934</td>
</tr>
<tr>
<td>6575</td>
<td>5934</td>
</tr>
<tr>
<td>5572</td>
<td>5724</td>
</tr>
<tr>
<td>6377</td>
<td>6677</td>
</tr>
<tr>
<td>7957</td>
<td>8765</td>
</tr>
<tr>
<td>6229</td>
<td>6685</td>
</tr>
<tr>
<td>6692</td>
<td>6685</td>
</tr>
</tbody>
</table>

REGRESS_POLY: Polynomial Regression

Polynomial regression fits the target column to a polynomial expression of the predictor columns. The degree of the polynomial is specified as an input argument to the function.
Reference: Calculate a Polynomial Regression Column

```
REGRESS_POLY('options',
             predictor_field1, predictor_field2, [...], target_field)
```

where:

'`options`

Is a dictionary of advanced parameters that control the model attributes, enclosed in single quotation marks. Most of these parameters have a default value, so you can omit them from the request, if you want to use the default values. Even with no advanced parameters, the single quotation marks are required. The format of the advanced parameter dictionary is:

'`{"parm_name1": "parm_value1", ... ,"parm_namei": "parm_valuei"}`'

The following advanced parameters are supported:

"degree"

Optional. Is the degree of the polynomial. Low degree polynomials are recommended. The default value is "1".

"interaction_only"

Optional. Controls the terms that are generated in the polynomial equation. The default value is "no". Allowed values are:

- "no", which generates the most general polynomial of degree degree based on the predictor fields.

- "yes", which uses only terms linear in each predictor X0, X1, ..., and cross-terms of the form X0*X1*X2 of at most degree predictors.

"train_ratio"

Optional. Is a value between 0 and 1 that specifies the fraction of data used for training the model. The default value is "0.8".

"test_ratio"

Optional. Is a value between 0 and 1 that specifies the fraction of data used for testing the model. The default value is "0.2".

"l2_grid"

Optional. Is a grid consisting of comma-separated positive numbers to be used as L2-regularization strengths. The default value is "0,1,1,10". The optimal value is chosen by cross-validation.
"kfold"
 Optional. Is the number of folds used for cross-validation. Suggested values are integers between "2" and "10". The default value is "4".

`predictor_field1, predictor_field2, [...,]`
 Numeric

 Are at least two predictor field names.

`target_field`
 Numeric

 Is the target field.

Example: Using REGRESS_POLY to Predict Price

The following request uses REGRESS_POLY to compute the predicted price using a polynomial regression of degree 4 and predictors height, horsepower, peak RPM, city MPG, and highway MPG.

```
TABLE FILE imports85
PRINT price
COMPUTE predictedPrice/I5 = REGRESS_POLY(©{"degree":"4"}©,
  height, horsepower, peakRpm,
  cityMpg, highwayMpg, price);
WHERE price LT 30000
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
The partial output is shown in the following image.

<table>
<thead>
<tr>
<th>price</th>
<th>predictedPrice</th>
</tr>
</thead>
<tbody>
<tr>
<td>13495</td>
<td>13981</td>
</tr>
<tr>
<td>16500</td>
<td>13981</td>
</tr>
<tr>
<td>16500</td>
<td>14360</td>
</tr>
<tr>
<td>13950</td>
<td>11755</td>
</tr>
<tr>
<td>17450</td>
<td>18201</td>
</tr>
<tr>
<td>15250</td>
<td>14163</td>
</tr>
<tr>
<td>17710</td>
<td>17545</td>
</tr>
<tr>
<td>18920</td>
<td>17545</td>
</tr>
<tr>
<td>23875</td>
<td>22230</td>
</tr>
<tr>
<td>16430</td>
<td>13639</td>
</tr>
<tr>
<td>16925</td>
<td>13639</td>
</tr>
<tr>
<td>20970</td>
<td>19351</td>
</tr>
<tr>
<td>21105</td>
<td>19351</td>
</tr>
<tr>
<td>24565</td>
<td>23792</td>
</tr>
<tr>
<td>5151</td>
<td>9471</td>
</tr>
<tr>
<td>6295</td>
<td>7992</td>
</tr>
<tr>
<td>6575</td>
<td>7992</td>
</tr>
<tr>
<td>5572</td>
<td>5927</td>
</tr>
<tr>
<td>6377</td>
<td>6849</td>
</tr>
<tr>
<td>7957</td>
<td>9107</td>
</tr>
<tr>
<td>6229</td>
<td>6624</td>
</tr>
<tr>
<td>6692</td>
<td>6624</td>
</tr>
<tr>
<td>7609</td>
<td>6624</td>
</tr>
<tr>
<td>8558</td>
<td>8940</td>
</tr>
<tr>
<td>8921</td>
<td>8948</td>
</tr>
</tbody>
</table>
REGRESS_RF: Random Forest Regression

REGRESS_RF creates a random forest, which is an ensemble of decision trees. Each decision tree produces an independent regression prediction, and the prediction of the forest is the average of the individual predictions.

Syntax: How to Calculate a Random Forest Regression

```sql
REGRESS_RF('options',
            predictor_field1[, predictor_field2, ...] target_field)
```

where:

'`options`

Is a dictionary of advanced parameters that control the model attributes, enclosed in single quotation marks. Most of these parameters have a default value, so you can omit them from the request, if you want to use the default values. Even with no advanced parameters, the single quotation marks are required. The format of the advanced parameter dictionary is:

'`{"parm_name1": "parm_value1", ... ,"parm_namei": "parm_valuei"}`

The following advanced parameters are supported:

'trees`

Is the number of decision trees in the forest. Allowed values are integers greater than 10. The default value is "100".

'feature_importances`

Specifies whether to compute feature importances. Valid values are "yes" and "no". The default value is "yes".

'train_ratio`

Is a value between 0 and 1 that specifies the fraction of data used for training the model. The default value is "0.8".

'test_ratio`

Is a value between 0 and 1 that specifies the fraction of data used for testing the model. The default value is "0.2".

'min_values_leaf_grid`

Is a grid of the minimum number of samples required in a node in order to split the node, or a single value. The optimal value is chosen by cross-validation. The default value is "1,3,5".
predictor_field1[, predictor_field2, ...]

Numeric or Alphanumeric

Are one or more predictor field names.

target_field

Numeric

Is the target field.

Example: Predicting Price Using REGRESS_RF

The following procedure uses REGRESS_RF to predict price, using a random forest with default values for all of the advanced parameters, and with predictors number of doors, body style, height, horsepower, peak RPM, city MPG, and highway MPG.

```plaintext
TABLE FILE imports85
PRINT price
COMPUTE predictedPrice/I5 = REGRESS_RF('',
   numOfDoors, bodyStyle, height, horsepower,
   peakRpm, cityMpg, highwayMpg, price);
WHERE price LT 30000
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```
Partial output is shown in the following image.

<table>
<thead>
<tr>
<th>price</th>
<th>predictedPrice</th>
</tr>
</thead>
<tbody>
<tr>
<td>13495</td>
<td>15210</td>
</tr>
<tr>
<td>16500</td>
<td>15210</td>
</tr>
<tr>
<td>16500</td>
<td>14983</td>
</tr>
<tr>
<td>13950</td>
<td>13184</td>
</tr>
<tr>
<td>17450</td>
<td>16074</td>
</tr>
<tr>
<td>15250</td>
<td>15459</td>
</tr>
<tr>
<td>17710</td>
<td>18590</td>
</tr>
<tr>
<td>18920</td>
<td>18573</td>
</tr>
<tr>
<td>23875</td>
<td>21104</td>
</tr>
<tr>
<td>16430</td>
<td>12923</td>
</tr>
<tr>
<td>16925</td>
<td>14432</td>
</tr>
<tr>
<td>20970</td>
<td>19721</td>
</tr>
<tr>
<td>21105</td>
<td>20481</td>
</tr>
<tr>
<td>24565</td>
<td>23470</td>
</tr>
<tr>
<td>5151</td>
<td>5910</td>
</tr>
<tr>
<td>6295</td>
<td>6810</td>
</tr>
<tr>
<td>6575</td>
<td>8448</td>
</tr>
<tr>
<td>5572</td>
<td>6043</td>
</tr>
<tr>
<td>6377</td>
<td>6745</td>
</tr>
<tr>
<td>7957</td>
<td>8249</td>
</tr>
<tr>
<td>6229</td>
<td>6627</td>
</tr>
<tr>
<td>6692</td>
<td>7152</td>
</tr>
<tr>
<td>7609</td>
<td>7152</td>
</tr>
<tr>
<td>8558</td>
<td>9234</td>
</tr>
<tr>
<td>8921</td>
<td>9668</td>
</tr>
</tbody>
</table>
REGRESS_XGB: Extreme Gradient Boosting Regression

REGRESS_XGB creates a series of decision trees, where each new tree attempts to improve on the predictive capabilities of the prior trees. Each decision tree arrives at its prediction based on a partitioning of the space spanned by the predictors, using a recursive succession of binary splits. At each split, the values of one predictor are partitioned into two sets. The splits are guided (choice of the split-predictor and the split-point) by the greedy maximization of an objective function that involves measuring how much alike the y-values of the data points in each partition are (called purity), as well as a regularization term. Early stopping is applied when the predictive capability starts to deteriorate.

Syntax: How to Calculate an Extreme Gradient Boosting Regression

REGRESS_XGB('options',
 predictor_field1[, predictor_field2, ...] target_field)

where:

'options'

Is a dictionary of advanced parameters that control the model attributes, enclosed in single quotation marks. Most of these parameters have a default value, so you can omit them from the request, if you want to use the default values. Even with no advanced parameters, the single quotation marks are required. The format of the advanced parameter dictionary is:

'{"parm_name1": "parm_value1", ... ,"parm_namei": "parm_valuei"}'}

The following advanced parameters are supported:

"trees"

Is the number of decision trees in the forest. Allowed values are integers greater than 10. The default value is "300".

"train_ratio"

Is a value between 0 and 1 that specifies the fraction of data used for training the model. The default value is "0.8".

"test_ratio"

Is a value between 0 and 1 that specifies the fraction of data used for testing the model. The default value is "0.2".

"early_stopping_rounds"

Specifies the number of added trees such that if the algorithm has not improved its performance in this many added trees, it stops. Allowed values are integers between 1 and the number of trees. The default value is "10".
"l2_grid"
Is a grid consisting of comma-separated positive numbers to be used as L2-
regularization strengths. The default value is "0,1,1,10". The optimal value is chosen
by cross-validation.

"kfold"
Is the number of folds used in the grid-search with cross-validation. Suggested values
are integers between "2" and "10". The default value is "4".

"max_depth_grid"
Is the maximum depth of each decision tree. A grid in the form "4,5,6" is allowed. The
default value is "5". The optimal value is chosen by cross-validation.

predictor_field1[, predictor_field2, ...]
Numeric or Alphanumeric
Are one or more predictor field names.

target_field
Numeric
Is the target field.

Example: Predicting Price Using REGRESS_XGB

The following procedure uses REGRESS_XGB to predict price, using 400 trees and default
values for the other advanced parameters, and with predictors number of doors, body style,
height, horsepower, peak RPM, city MPG, and highway MPG.

TABLE FILE imports85
PRINT price
COMPUTE predictedPrice/I5 =
REGRESS_XGB('"trees":"400","early_stopping_rounds":"10",
"kfold":"4","test_ratio":"0.2"),
numOfDoors, bodyStyle, height, horsepower,
peakRpm, cityMpg, highwayMpg, price);

WHERE price LT 30000
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
Partial output is shown in the following image.

<table>
<thead>
<tr>
<th>price</th>
<th>predictedPrice</th>
</tr>
</thead>
<tbody>
<tr>
<td>13495</td>
<td>15634</td>
</tr>
<tr>
<td>16500</td>
<td>15634</td>
</tr>
<tr>
<td>16500</td>
<td>14517</td>
</tr>
<tr>
<td>13950</td>
<td>13522</td>
</tr>
<tr>
<td>17450</td>
<td>14939</td>
</tr>
<tr>
<td>15250</td>
<td>15343</td>
</tr>
<tr>
<td>17710</td>
<td>19065</td>
</tr>
<tr>
<td>18920</td>
<td>19097</td>
</tr>
<tr>
<td>23875</td>
<td>21800</td>
</tr>
<tr>
<td></td>
<td>17161</td>
</tr>
<tr>
<td>16430</td>
<td>13499</td>
</tr>
<tr>
<td>16925</td>
<td>13738</td>
</tr>
<tr>
<td>20970</td>
<td>21822</td>
</tr>
<tr>
<td>21105</td>
<td>21352</td>
</tr>
<tr>
<td>24565</td>
<td>24267</td>
</tr>
<tr>
<td>5151</td>
<td>5704</td>
</tr>
<tr>
<td>6295</td>
<td>6414</td>
</tr>
<tr>
<td>6575</td>
<td>7402</td>
</tr>
<tr>
<td>5572</td>
<td>6201</td>
</tr>
<tr>
<td>6377</td>
<td>6821</td>
</tr>
<tr>
<td>7957</td>
<td>8410</td>
</tr>
<tr>
<td>6229</td>
<td>6778</td>
</tr>
<tr>
<td>6692</td>
<td>7566</td>
</tr>
<tr>
<td>7609</td>
<td>7566</td>
</tr>
<tr>
<td>8558</td>
<td>9300</td>
</tr>
<tr>
<td>8921</td>
<td>9204</td>
</tr>
<tr>
<td>12964</td>
<td>14641</td>
</tr>
</tbody>
</table>
RUN_MODEL and RUN_MODEL2: Running a Saved Python Model

RUN_MODEL and RUN_MODEL2: Running a Saved Python Model
Once you create a model using one of the machine learning functions by running it on a set of
training and test data, you can save the model and run it against new data. The type of data
source used to run the model can be any data source that WebFOCUS can read.
Use the RUN_MODEL function when the predictor fields in the new data source have the same
field names as the predictor fields used to generate the model. Use the RUN_MODEL2
function If the field names are different. The data types and lengths must be the same in
either case.

Syntax:

How to Save a Python-Based Model
ON TABLE HOLD FORMAT PYTHON MODEL fieldname AS app/modelname

where:
fieldname
Is the fieldname in the COMPUTE command that returned the value from the machine
learning function.
app

Is the application folder in which to save the model.
modelname
Is the name of the saved model.

Example:

Saving a Python Model
The following request uses the REGRESS_RF function to return a field named predictedPrice
and save it as a model named model5 in application folder app1/mymodels.
TABLE FILE imports85
PRINT price
COMPUTE predictedPrice/I5 =
REGRESS_RF('{"trees":"123","test_ratio":"0.20","train_ratio":"0.80"}',
make, numOfDoors, bodyStyle, height, horsepower,
peakRpm, cityMpg, highwayMpg, price);
WHERE OUTPUTLIMIT EQ 1
ON TABLE HOLD FORMAT PYTHON MODEL predictedPrice
AS app1/mymodels/model5
END

Syntax:

How to Run a Saved Python Model
Use the RUN_MODEL function if the predictor field names are the same in the model and the
data.
COMPUTE fieldname/fmt = RUN_MODEL('app/modelname');

636


Use the RUN_MODEL2 function if the predictor field names are not the same in the model and the data.

\[
\text{COMPUTE } \text{fieldname/fmt = RUN_MODEL2('app/modelname', pfield1, ..., pfieldn);}
\]

where:

- \textit{fieldname}

 Is the name of the field that will contain the returned predictions from the model.

- \textit{app/modelname}'

 Is the application folder and saved model name.

- \textit{pfield1, ..., pfieldn}

 Are the field names in the data used for running the model that match the predictor fields used to generate the model.

\textbf{Example: Running a Model Using RUN_MODEL}

In the following request, the data source in the request has the same field names that were used to create the model.

\[
\text{TABLE FILE imports85}
\text{PRINT price COMPUTE predictedPriceFromSaved/I5 =}
\text{RUN_MODEL('appl/mymodels/model5');}
\text{ON TABLE SET PAGE NOLEAD}
\text{ON TABLE SET STYLE * GRID=OFF,}$
\text{ENDIF}
\text{END}
\]
Example: Running a Model Using RUN_MODEL2

In the following version of the request, the data source in the request is assumed to have field names that are different from the ones that were used to create the model.

TABLE FILE imports2
PRINT price COMPUTE predictedPriceFromSaved/I5 =
 RUN_MODEL2('appl/mymodels/model15',
 type, doors, Style, ht, hpower, Rpm, CMpg, HMpg);
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
Partial output is shown in the following image.

<table>
<thead>
<tr>
<th>price</th>
<th>predictedPriceFromSaved</th>
</tr>
</thead>
<tbody>
<tr>
<td>13495</td>
<td>15594</td>
</tr>
<tr>
<td>16500</td>
<td>15594</td>
</tr>
<tr>
<td>16500</td>
<td>15786</td>
</tr>
<tr>
<td>13950</td>
<td>13479</td>
</tr>
<tr>
<td>17450</td>
<td>17685</td>
</tr>
<tr>
<td>15250</td>
<td>15888</td>
</tr>
<tr>
<td>17710</td>
<td>17916</td>
</tr>
<tr>
<td>18920</td>
<td>18267</td>
</tr>
<tr>
<td>23875</td>
<td>22390</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>16430</td>
<td>14593</td>
</tr>
<tr>
<td>16925</td>
<td>15589</td>
</tr>
<tr>
<td>20970</td>
<td>20472</td>
</tr>
<tr>
<td>21105</td>
<td>20939</td>
</tr>
<tr>
<td>24565</td>
<td>23194</td>
</tr>
</tbody>
</table>
Simplified System Functions

Simplified system functions have streamlined parameter lists, similar to those used by SQL functions. In some cases, these simplified functions provide slightly different functionality than previous versions of similar functions.

The simplified functions do not have an output argument. Each function returns a value that has a specific data type.

When used in a request against a relational data source, these functions are optimized (passed to the RDBMS for processing).

In this chapter:

- EDAPRINT: Inserting a Custom Message in the EDAPRINT Log File
- ENCRYPT: Encrypting a Password
- GETENV: Retrieving the Value of an Environment Variable
- PUTENV: Assigning a Value to an Environment Variable
- SLACK: Posting a Message to a Slack Channel

EDAPRINT: Inserting a Custom Message in the EDAPRINT Log File

The EDAPRINT function enables you to add a text message into the EDAPRINT log file and assign it a message type. The returned value of the function is zero (0).

Syntax:

```
EDAPRINT(message_type, 'message')
```

where:

- `message_type`

 Keyword

 Can be one of the following message types.

 - I. Informational message.
 - W. Warning message.
ENCRIPT: Encrypting a Password

The ENCRYPT function encrypts an alphanumeric input value using the encryption algorithm configured in the TIBCO WebFOCUS® Reporting Server. The result is returned as variable length alphanumeric.

Syntax:

ENCRIPT(password)

where:

password

Fixed length alphanumeric

Is the value to be encrypted.
Example: Encrypting a Password

The following request encrypts the value `guestpassword` using the encryption algorithm configured in the WebFOCUS Reporting Server.

```plaintext
-SET &P1 = ENCRYPT('guestpassword');
-TYPE &P1
```

The returned encrypted value is (AES)963AFA754E1763ABE697E8C5E764115E.

GETENV: Retrieving the Value of an Environment Variable

The GETENV function takes the name of an environment variable and returns its value as a variable length alphanumeric value.

Syntax: How to Retrieve the Value of an Environment Variable

```plaintext
GETENV(var_name)
```

where:

- `var_name` fixed length alphanumeric

 Is the name of the environment variable whose value is being retrieved.

Example: Retrieving the Value of an Environment Variable

The following request retrieves the value of the WebFOCUS Reporting Server variable EDAEXTSEC.

```plaintext
-SET &E1 = GETENV('EDAEXTSEC');
-TYPE &E1
```

The value returned is ON if the WebFOCUS Reporting Server was started with security on or OFF if the WebFOCUS Reporting Server was started with security off.

PUTENV: Assigning a Value to an Environment Variable

The PUTENV function assigns a value to an environment variable. The function returns an integer return code whose value is 1 (one) if the assignment is not successful or 0 (zero) if it is successful.

Syntax: How to Assign a Value to an Environment Variable

```plaintext
PUTENV(var_name, var_value)
```
where:

var_name
Fixed length alphanumeric
Is the name of the environment variable to be set.

var_value
Alphanumeric
Is the value you want to assign to the variable.

Example: Assigning a Value to the UNIX PS1 Variable
The following request assigns the value FOCUS/Shell: to the UNIX PS1 variable.
-SET &P1 = PUTENV('PS1','FOCUS/Shell:');

This causes UNIX to display the following prompt when the user issues the UNIX shell command SH:
FOCUS/Shell:

The following request creates a variable named xxxx and sets it to the value this is a test. It then retrieves the value using GETENV.
-SET &XXXX=PUTENV(xxxx,'this is a test');
-SET &YYYY=GETENV(xxxx);
-TYPE Return Code: &XXXX, Variable value: &YYYY

The output is:
Return Code: 0, Variable value: this is a test

SLACK: Posting a Message to a Slack Channel
SLACK posts a message to a Slack channel from a TIBCO WebFOCUS® procedure:

- If the message is sent successfully, the function returns the value true.
- If the message is not sent successfully, the function returns a blank.

Syntax: How to Post a Message to a Slack Channel
SLACK(workspace, channel, message)

where:

workspace
Is a Workspace name.
channel
Is a Channel name.

message
Is an alphanumeric field containing the message.

Example: **Sending a Slack Message From a TIBCO WebFOCUS Request**

The Adapter for Slack has been configured to have a connection to the devibi workspace, as shown in the following image.
The following request sends a Slack message to the *general* channel of the *devibi* Workspace, when the department is MIS.

```sql
TABLE FILE ibisamp/EMPLOYEE
SUM
  CURR_SAL
  AND COMPUTE SLACK_SESSION/A200 = 'Salary for Department ' | DEPARTMENT || ' is ' | LJUST(20, FPRINT(CURR_SAL,'D12.2M'), 'A20');
  AND COMPUTE CURR_SAL_SLACK/A20=IF DEPARTMENT EQ 'MIS'
    THEN SLACK('devibi', 'general', SLACK_MESSAGE) ELSE 'false';
AS 'Message Sent to Slack highlighting Salary'
BY DEPARTMENT
HEADING
"Slack"
"Slack Function Example"
ON TABLE SET PAGE-NUM NOLEAD
ON TABLE NOTOTAL
ON TABLE SET STYLE *
INCLUDE=IBFS:/FILE/IBI_HTML_DIR/javaassist/intl/EN/ENIADefault_combine.sty,
ENDSTYLE
END
```

The output is shown in the following image.

The message in the Slack channel is shown in the following image.
System Functions

System functions call the operating system to obtain information about the operating environment or to use a system service.

For many functions, the output argument can be supplied either as a field name or as a format enclosed in single quotation marks. However, if a function is called from a Dialogue Manager command, this argument must always be supplied as a format, and if a function is called from a Maintain Data procedure, this argument must always be supplied as a field name. For detailed information about calling a function and supplying arguments, see Accessing and Calling a Function on page 61.

In this chapter:

- CHECKPRIVS: Retrieving the Privilege State for the Connected User
- CLSDDREC: Closing All Files Opened by the PUTDDREC Function
- FEXERR: Retrieving an Error Message
- FGETENV: Retrieving the Value of an Environment Variable
- FINDMEM: Finding a Member of a Partitioned Data Set
- FPUTENV: Assigning a Value to an Environment Variable
- GETCOOKI: Retrieving a Browser Cookie Value
- GETHEADR: Retrieving an HTTP Header Variable
- GETPDS: Determining If a Member of a Partitioned Data Set Exists
- GETUSER: Retrieving a User ID
- GRPLIST: Retrieving the Group List of the Connected User
- JOBNAME: Retrieving the Current Process Identification String
- MVSDYNAM: Passing a DYNAM Command to the Command Processor
- PUTCOOKIE: Submitting a Value to a Browser Cookie
- PUTDDREC: Writing a Character String as a Record in a Sequential File
- SLEEP: Suspending Execution for a Given Number of Seconds
- SPAWN: Creating a Subprocess From a Procedure
- SYSTEM: Calling a System Program
- SYSVAR: Retrieving the Value of a z/OS System Variable
CHECKPRIVS: Retrieving the Privilege State for the Connected User

Given a privilege code, CHECKPRIVS returns the value Y, if the connected user has that privilege, or N if the user does not have the privilege or the privilege does not exist.

Note: You can see your list of general privileges by clicking the Console (C) button at the top left corner of the window and selecting *My Console/Show My General Privileges*. A user with Server Administrator privileges can also see the list of general privileges on the Access Control page by right-clicking a user ID, selecting *Properties* from the context menu and clicking the *General Privileges* tab on the Properties page.

Syntax:

How to Retrieve the Privilege State for the Connected User

CHECKPRIVS(*privcode*, *output*)

where:

privcode

Is the privilege code for which to retrieve the status.

output

Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.

Example:

Retrieving the Privilege State for the Connected User

The following request retrieves the privilege state for privilege ADPTP (Configure Data Adapter):

-SET &PRIVSTATE = CHECKPRIVS(ADPTP,'A1');
-TYPE Privilege State is: &PRIVSTATE

The output is:

Privilege State is: Y

CLSDDREC: Closing All Files Opened by the PUTDDREC Function

The CLSDDREC function closes all files opened by the PUTDDREC function. If PUTDDREC is called in a Dialogue Manager -SET command, the files opened by PUTDDREC are not closed automatically until the end of a request or connection. In this case, you can close the files and free the memory used to store information about open file by calling the CLSDDREC function.
Syntax: How to Close All Files Opened by the PUTDDREC Function

\[
\text{CLSDDREC}(\text{output})
\]

where:

\[
\text{output}
\]

Integer

Is the return code, which can be one of the following values:

- **0**, which indicates that the files are closed.
- **1**, which indicates an error while closing the files.

Example: Closing Files Opened by the PUTDDREC Function

This example closes files opened by the PUTDDREC function:

\[
\text{CLSDDREC('II')}\]

FEXERR: Retrieving an Error Message

Available Languages: reporting, Maintain

The FEXERR function retrieves an error message. It is especially useful in a procedure using a command that suppresses the display of output messages.

An error message consists of up to four lines of text. The first line contains the message and the remaining three contain a detailed explanation, if one exists. FEXERR retrieves the first line of the error message.

Syntax: How to Retrieve an Error Message

\[
\text{FEXERR}(\text{error}, 'A72')
\]

where:

\[
\text{error}
\]

Numeric

Is the error number, up to 5 digits long.
'A72'

Is the format of the output value enclosed in single quotation marks. The format is A72, the maximum length of an error message.

Example: Retrieving an Error Message

FEXERR retrieves the error message whose number is contained in the &ERR variable, in this case 650. The result is returned to the variable &&MSGVAR and has the format A72.

-SET &ERR = 650;
-SET &&MSGVAR = FEXERR(&ERR, 'A72');
-TYPE &&MSGVAR

The output is:

(FOC650) THE DISK IS NOT ACCESSSED

FGETENV: Retrieving the Value of an Environment Variable

Available Languages: reporting

The FGETENV function retrieves the value of an environment variable and returns it as an alphanumeric string.

Syntax: How to Retrieve the Value of an Environment Variable

FGETENV(length, 'varname', outlen, output)

where:

length

Integer

Is the number of characters in the environment variable name.

varname

Alphanumeric

Is the name of the environment variable whose value is being retrieved.

outlen

Integer

Is the length of the environment variable value returned or a field in which the environment variable value is stored.
output

Alphanumeric

Is the format of the field in which the environment variable’s value is stored.

FINDMEM: Finding a Member of a Partitioned Data Set

Available Languages: reporting, Maintain

The FINDMEM function, available only on z/OS, determines if a specific member of a partitioned data set (PDS) exists. This function is used primarily in Dialogue Manager procedures.

To use this function, allocate the PDS to a ddname because the ddname is required in the function call. You can search multiple PDSs with one function call if they are concatenated to one ddname.

Syntax: How to Find a Member of a Partitioned Data Set

FINDMEM(ddname, member, output)

where:

ddname

A8

Is the ddname to which the PDS is allocated. This value must be an eight-character literal enclosed in single quotation marks, or a variable that contains the ddname. If you supply a literal less than eight characters long, pad it with trailing spaces.

member

A8

Is the member for which you are searching. This value must be eight characters long. If you supply a literal that has less than eight characters, pad it with trailing spaces.

output

A1
Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks. The result is one of the following:

- **Y** indicates the member exists in the PDS.
- **N** indicates the member does not exist in the PDS.
- **E** indicates an error occurred. Either the data set is not allocated to the ddname, or the data set allocated to the ddname is not a PDS (and may be a sequential file).

Example: Finding a Member of a Partitioned Data Set

FINDMEM searches for the EMPLOYEE Master File in the PDS allocated to ddname MASTER, and returns the result to the variable &FINDCODE. The result has the format A1:

```
-SET &FINDCODE = FINDMEM('MASTER ', 'EMPLOYEE', 'A1'); -IF &FINDCODE EQ 'N'
  GOTO NOMEM;
-IF &FINDCODE EQ 'E' GOTO NOPDS;
-TYPE MEMBER EXISTS, RETURN CODE = &FINDCODE
  TABLE FILE EMPLOYEE
  PRINT CURR_SAL BY LAST_NAME BY FIRST_NAME
  WHERE RECORDLIMIT EQ 4;
END
-EXIT
-NOMEM
-TYPE EMPLOYEE NOT FOUND IN MASTER FILE PDS
-EXIT
-NOPDS
-TYPE ERROR OCCURRED IN SEARCH
-TYPE CHECK IF FILE IS A PDS ALLOCATED TO DDNAME MASTER
-EXIT
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>CURR_SAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>JONES</td>
<td>DIANE</td>
<td>$18,480.00</td>
</tr>
<tr>
<td>SMITH</td>
<td>MARY</td>
<td>$13,200.00</td>
</tr>
<tr>
<td>STEVENS</td>
<td>RICHARD</td>
<td>$9,500.00</td>
</tr>
<tr>
<td></td>
<td>ALFRED</td>
<td>$11,000.00</td>
</tr>
</tbody>
</table>

FPUTENV: Assigning a Value to an Environment Variable

Available Operating Systems: IBM i (formerly referred to as i5/OS), Tandem, UNIX, Windows

Available Languages: reporting

The FPUTENV function assigns a character string to an environment variable. Use FPUTENV to set values that are used elsewhere in the system.
Limit: You cannot use FPUTENV to set or change FOCPRINT, FOCPATH, or USERPATH. Once started, these variables are held in memory and not reread from the environment.

Syntax: How to Assign a Value to an Environment Variable

FPUTENV (varname_length, 'varname', value_length, 'value', output)

where:

varname_length
 Integer
 Is the maximum number of characters in the name of the environment variable.

varname
 Alphanumeric
 Is the name of the environment variable enclosed in single quotation marks. The name must be right-justified and padded with blanks to the maximum length specified by varname_length.

value_length
 Is the maximum length of the environment variable value.

Note: The sum of varname_length and value_length cannot exceed 64.

value
 Alphanumeric
 Is the value you wish to assign to the environment variable. The string must be right-justified and contain no embedded blanks. Strings that contain embedded blanks are truncated at the first blank.

output
 Integer
 Is the return code. It can be the name of the field that contains the result, or the format of the output value enclosed in single quotation marks. If the variable is set successfully, the return code is 0. Any other value indicates a failure occurred.

Example: Assigning a Value to an Environment Variable

FPUTENV assigns the value FOCUS/Shell to the PS1 variable and stores it in a field with the format A12:

-SET &RC = FPUTENV(3, 'PS1', 12, 'FOCUS/Shell:', 'I4');
GETCOOKI: Retrieving a Browser Cookie Value

The request displays the following prompt when the user issues the UNIX shell command SH:

FOCUS/Shell:

GETCOOKI: Retrieving a Browser Cookie Value

Security credentials can come from many sources and be provided in several different formats. Some security credentials from third-party single sign-on products are passed in the form of a browser cookie. The WebFOCUS Reporting Server can use the GETCOOKI function to retrieve the value of a browser cookie passed to it by the WebFOCUS® Client.

Syntax: How to Retrieve a Cookie Value

```
GETCOOKI('cookie_name', 'length')
```

where:

- **cookie_name**

 Alphanumeric

 Is the name of the browser cookie whose value is being retrieved. The maximum length of the cookie name is 80 bytes. If the cookie is not set or its name exceeds 80 characters, the function will return *Invalid Cookie Name*.

- **length**

 Alphanumeric (An)

 Is the length of the cookie. It can be the name of the field that contains the result, or the format of the output value enclosed in single quotation marks. If the length n specified is greater than the actual length of the retrieved cookie, the result will be padded with blanks. It is always recommended to use the function TRUNCATE($arg1$) on return from GETCOOKI to remove extra trailing blanks.

Example: Retrieving the Value of a Browser Cookie

The following function call retrieves the value of the ObSSOCookie created by Oracle Access manager (formerly Oblix):

```
GETCOOKI('ObSSOCookie', 'A400')
```
GETHEADR: Retrieving an HTTP Header Variable

The HTTP header contains variables whose values describe the Web Server environment and can specify credentials coming from the Web Server or a third-party single sign-on product. The WebFOCUS Reporting Server can use the GETHEADR function to retrieve the value of an HTTP Header variable from an HTTP header passed to it by the WebFOCUS Client.

Syntax: How to Retrieve an HTTP Header Variable

GETHEADR('varname', output)

where:

varname

Alphanumeric

Is the name of the HTTP header variable whose value is being retrieved.

output

Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.

Example: Retrieving the Value of an HTTP Header Variable

The following is a sample HTTP header:

<table>
<thead>
<tr>
<th>Header</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>cookie</td>
<td>JSESSIONID=3576041321067E425A4E2A0C67D6E425E</td>
</tr>
<tr>
<td>connection</td>
<td>Keep-Alive</td>
</tr>
<tr>
<td>accept-encoding</td>
<td>gzip, deflate</td>
</tr>
<tr>
<td>referer</td>
<td>http://edamv4.8080/edi_apps_77/webconsole/webconsole/admin?IBIS_page=NODETREE</td>
</tr>
<tr>
<td>accept</td>
<td>image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-shockwave-flash, application/vnd.ms-powerpoint, application/vnd.ms-excel, application/*</td>
</tr>
<tr>
<td>content-length</td>
<td>62</td>
</tr>
<tr>
<td>cache-control</td>
<td>no-cache</td>
</tr>
<tr>
<td>accept-language</td>
<td>en-us</td>
</tr>
<tr>
<td>user-agent</td>
<td>Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322; .NET CLR 2.0.50727; MS-RTC L)</td>
</tr>
<tr>
<td>content-type</td>
<td>application/x-www-form-urlencoded</td>
</tr>
<tr>
<td>host</td>
<td>edamv4.8080</td>
</tr>
</tbody>
</table>

The following function call retrieves the value application/x-www-form-urlencoded from the HTTP Header:

GETHEADR('content-type', 'A150')
The following function call retrieves the value en-us from the HTTP Header:

`GETHEADR('accept-language', 'en-us')`

GETPDS: Determining If a Member of a Partitioned Data Set Exists

Available Operating Systems: z/OS

Available Languages: reporting, Maintain

The GETPDS function determines if a specific member of a partitioned data set (PDS) exists, and if it does, returns the PDS name. This function is used primarily in Dialogue Manager procedures.

To use this function, allocate the PDS to a ddname because the ddname is required in the function call. You can search multiple PDSs with one function call if they are concatenated to one ddname.

GETPDS is almost identical to FINDMEM, except that GETPDS provides either the PDS name or returns a different set of status codes.

Syntax: How to Determine If a PDS Member Exists

```
GETPDS(ddname, member, output)
```

where:

- **ddname**
 - A8

 Is the ddname to which the PDS is allocated. This value must be an eight-character literal enclosed in single quotation marks, or a variable that contains the ddname. If you supply a literal less than eight characters long, pad it with trailing spaces.

- **member**
 - A8

 Is the member for which the function searches. This value must be eight characters long. If you supply a literal with less than eight characters, pad it with trailing spaces.

- **output**
 - A44
Is the name of the field that contains the result, or the format of the output value enclosed in single quotation marks. The maximum length of a PDS name is 44. The result is one of the following:

- **PDS name** is the name of the PDS that contains the member, if it exists.
- ***D** indicates the ddname is not allocated to a data set.
- ***M** indicates the member does not exist in the PDS.
- ***E** indicates an error occurred. For example, the data set allocated to the ddname is not a PDS (and may be a sequential file).

Example: Determining If a PDS Member Exists

GETPDS searches for the member specified by &MEMBER in the PDS allocated to &DDNAME, and returns the result to &PNAME. The result has the format A44.

```plaintext
-SET &DDNAME = 'MASTER';
-SET &MEMBER = 'EMPLOYEE';
-SET &PNAME = '';
-SET &PNAME = GETPDS(&DDNAME, &MEMBER, 'A44');
-IF &PNAME EQ '*D' THEN GOTO DDNOAL;
-IF &PNAME EQ '*M' THEN GOTO MEMNOF;
-IF &PNAME EQ '*E' THEN GOTO DDERROR;
   -TYPE MEMBER &MEMBER IS FOUND IN
   -TYPE THE PDS &PNAME
   -TYPE ALLOCATED TO &DDNAME
   -EXIT
-EXIT
   DDNOAL
   -TYPE DDNAME &DDNAME NOT ALLOCATED
   -EXIT
   MEMNOF
   -TYPE MEMBER &MEMBER NOT FOUND UNDER DDNAME &DDNAME
   -EXIT
   DDERROR
   -TYPE ERROR IN GETPDS; DATA SET PROBABLY NOT A PDS.
   -EXIT

The output is similar to the following:

MEMBER EMPLOYEE IS FOUND IN
THE PDS USER1.MASTER.DATA
ALLOCATED TO MASTER
```
Example: Displaying the Attributes of a PDS

To view the attributes of the PDS that contains a specific member, this Dialogue Manager procedure can search for the EMPLOYEE member in the PDS allocated to the ddname MASTER and, based on its existence, allocate the PDS to the ddname TEMPMAST. Dialogue Manager system variables are used to display the attributes.

```
-SET &DDNAME = 'MASTER '
-SET &MEMBER = 'EMPLOYEE'
-SET &PNAME = ' ';
-SET &PNAME = GETPDS (&DDNAME, &MEMBER, 'A44');
-IF &PNAME EQ '*D' OR '*M' OR '*E' THEN GOTO DDERROR;
-*
DYNAM ALLOC FILE TEMPMAST DA -
 &PNAME SHR
-RUN
-? MVS DDNAME TEMPMAST
-TYPE The data set attributes include:
-TYPE Data set name is: &DSNAME
-TYPE Volume is: &VOLSER
-TYPE Disposition is: &DISP
-EXIT
-*
-DDERROR
-TYPE Error in GETPDS; Check allocation for &DDNAME for
-TYPE proper allocation.
-*
-EXIT
```

The sample output is:

```
THE DATA SET ATTRIBUTES INCLUDE:
DATA SET NAME IS: USER1.MASTER.DATA
VOLUME IS: USERM0
DISPOSITION IS: SHR
```

GETUSER: Retrieving a User ID

Available Languages: reporting, Maintain

The GETUSER function retrieves the ID of the connected user.

Syntax: How to Retrieve a User ID

```
GETUSER(output)
```

where:

- `output`

 Alphanumeric, at least A8
Is the result field, whose length depends on the platform on which the function is issued. Provide a length as long as required for your platform; otherwise the output will be truncated.

Example: **Retrieving a User ID**

GETUSER retrieves the user ID of the person running the request:

```
DEFINE FILE EMPLOYEE
USERID/A8 WITH EMP_ID = GETUSER(USERID);
END

TABLE FILE EMPLOYEE
SUM CURR_SAL AS 'TOTAL SALARIES'
BY DEPARTMENT
HEADING
"SALARY REPORT RUN FROM USERID: <USERID"
" "
END
```

The output is:

```
SALARY REPORT RUN FROM USERID: doccar
DEPARTMENT             TOTAL SALARIES
--------------            -----------
MIS                    $108,002.00
PRODUCTION             $114,282.00
```

GRPLIST: Retrieving the Group List of the Connected User

Available Languages: reporting

GRPLIST returns a group name or a list of group names (separated by colons) for the connected user. This function is supported for LDAP security with all types of connections.

If the group list is empty or there is an error in the function parameters, the function returns blanks.

Syntax: **How to Retrieve a List of Group Memberships for the Connected User**

```
GRPLIST(outputLength, outformat)
```

where:

- `outputLength`

 Is the length of the output string.
Example: **Retrieving the Group List for the Connected User**

The following request retrieves the group list for the connected user into a Dialogue Manager variable named &LIST:

```
-SET &LIST = GRPLIST(300, 'A300');
-TYPE &LIST
```

The output is:

```
#All_Technical_Staff;#CTSS_ADV;#CTSS_ADV;#CTSS_ADVT;#DSEDA
```

Issuing the same request for user pgmuser1 shows that this user belongs to a single group:

```
pgmgrp1
```

JOBNAME: Retrieving the Current Process Identification String

The JOBNAME function retrieves the raw identification string of the current process from the operating system. This is also commonly known as a process PID at the operating system level. The function is valid in all environments, but is typically used in Dialogue Manager and returns the value as an alphanumeric string (even though a PID is pure numeric on some operating systems).

Note: JOBNAME strings differ between some operating systems in terms of look and length. For example, Windows, UNIX, and z/OS job names are pure numeric (typically a maximum of 8 characters long), while an IBM i job name is a three-part string that has a 26 character maximum length. Since an application may eventually be run in another (unexpected) environment in the future, it is good practice to use the maximum length of 26 to avoid accidental length truncation in the future. Applications using this function for anything more than simple identification may also need to account for the difference in the application code.

Syntax: **How to Retrieve the Current Process Identification String**

```
JOBNAME(length, output)
```

where:

- **length**
 - Integer
 - Is the maximum number of characters to return from the PID system call.
output

Alphanumeric

Is the returned process identification string, whose length depends on the platform on which the function is issued. Provide a length as long as required for your platform. Otherwise, the output will be truncated.

Example: Retrieving a Process Identification String

The following example uses the JOBNAME function to retrieve the current process identification string to an A26 string and then truncate it for use in a -TYPE statement:

-SET &JOBNAME = JOBNAME(26, 'A26');
-SET &JOBNAME = TRUNCATE(&JOBNAME);
-TYPE The Current system PID &JOBNAME is processing.

For example, on Windows, the output is similar to the following:

The Current system PID 2536 is processing.

MVSDYNAM: Passing a DYNAM Command to the Command Processor

Available Operating Systems: z/OS
Available Languages: reporting, Maintain

The MVSDYNAM function transfers a FOCUS DYNAM command to the DYNAM command processor. It is useful in passing allocation commands to the processor in a compiled MODIFY procedure after the CASE AT START command.

Syntax: How to Pass a DYNAM Command to the Command Processor

MVSDYNAM(command, length, outfield)

where:

command

Alphanumeric

Is the DYNAM command enclosed in single quotation marks, or a field or variable that contains the command. The function converts lowercase input to uppercase.

length

Numeric

Is the maximum length of the command, in characters, between 1 and 256.
OUTFIELD
I4

Is the field that contains the result, or the format of the output value enclosed in single quotation marks.

MVSDYNAM returns one of the following codes:

0 indicates the DYNAM command transferred and executed successfully.

positive number is the error number corresponding to a FOCUS error.

negative number is the FOCUS error number corresponding to a DYNAM failure.

In Dialogue Manager, you must specify the format.

PUTCOOKI: Submitting a Value to a Browser Cookie

The PUTCOOKI function allows you to submit a value to the cookie to be used by a third-party single sign-on software product for connection to the WebFOCUS Reporting Server or an adapter. In order to retrieve an appropriate cookie value, you must have an existing exit that calls an external procedure which obtains the value of a single sign-on browser cookie. This feature was initially developed for the MYSAPSSO2 cookie for the SAP RFC connection.

Syntax: How to Submit a Cookie Value

PUTCOOKI('cookie_name', 'cookie_value')

where:

cookie_name

 Alphanumeric

 Is the name of the browser cookie whose value is being set.

cookie_value

 Alphanumeric

 Is the value to submit for the cookie. It can be the name of the field that contains the result, or the format of the output value enclosed in single quotation marks.
Example: Submitting a Value to a Browser Cookie

The following function call submits the value created by an external custom exit or set by SAP EP configured for SSO with SAP Logon Tickets:

```
SET &COOKIE_VALUE=CUSTOM_EXIT();
PUTCOOKIE('MYSAPSSO2', &COOKIE_VALUE)
```

PUTDDREC: Writing a Character String as a Record in a Sequential File

The PUTDDREC function writes a character string as a record in a sequential file. The file must be identified with a FILEDEF (DYNAM on z/OS) command. If the file is defined as an existing file (with the APPEND option), the new record is appended. If the file is defined as NEW and it already exists, the new record overwrites the existing file.

PUTDDREC opens the file if it is not already open. Each call to PUTDDREC can use the same file or a new one. All of the files opened by PUTDDREC remain open until the end of a request or connection. At the end of the request or connection, all files opened by PUTDDREC are automatically closed.

- The open, close, and write operations are handled by the operating system. Therefore, the requirements for writing to the file and the results of deviating from the instructions when calling PUTDDREC are specific to your operating environment. Make sure you are familiar with and follow the guidelines for your operating system when performing input/output operations.

- You can call PUTDDREC in a DEFINE FILE command or in a DEFINE in the Master File. However, PUTDDREC does not open the file until its field name is referenced in a request.

If PUTDDREC is called in a Dialogue Manager -SET command, the files opened by PUTDDREC are not closed automatically until the end of a request or connection. In this case, you can close the files and free the memory used to store information about open file by calling the CLSDDREC function.

Syntax: How to Write a Character String as a Record in a Sequential File

```
PUTDDREC(ddname, dd_len, record_string, record_len, output)
```

where:

```
ddname
```

Alphanumeric

Is the logical name assigned to the sequential file in a FILEDEF command.
dd_len

Numeric

Is the number of characters in the logical name.

record_string

Alphanumeric

Is the character string to be added as the new record in the sequential file.

record_len

Numeric

Is the number of characters to add as the new record.

It cannot be larger than the number of characters in `record_string`. To write all of `record_string` to the file, `record_len` should equal the number of characters in `record_string` and should not exceed the record length declared in the FILEDEF command. If `record_len` is shorter than the declared length declared, the resulting file may contain extraneous characters at the end of each record. If `record_string` is longer than the declared length, `record_string` may be truncated in the resulting file.

output

Integer

Is the return code, which can have one of the following values:

- 0 - Record is added.
- -1 - FILEDEF statement is not found.
- -2 - Error while opening the file.
- -3 - Error while adding the record to the file.
Example: Calling PUTDDREC in a TABLE Request

The following example defines a new file whose logical name is PUTDD1. The TABLE request then calls PUTDDREC for each employee in the EMPLOYEE data source and writes a record to the file composed of the employee’s last name, first name, employee ID, current job code, and current salary (converted to alphanumeric using the EDIT function). The return code of zero (in OUT1) indicates that the calls to PUTDDREC were successful:

```
FILEDEF PUTDD1 DISK putdd1.dat TABLE FILE EMPLOYEE
PRINT EMP_ID CURR_JOBCODE AS 'JOB' CURR_SAL
COMPUTE SALA/A12 = EDIT(CURR_SAL); NOPRINT
COMPUTE EMP1/A50= LAST_NAME|FIRST_NAME|EMP_ID|CURR_JOBCODE|SALA;
NOPRINT
COMPUTE OUT1/I1 = PUTDDREC('PUTDD1',6, EMP1, 50, OUT1);
BY LAST_NAME BY FIRST_NAME
END
```

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>EMP_ID</th>
<th>JOB</th>
<th>CURR_SAL</th>
<th>OUT1</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANNING</td>
<td>JOHN</td>
<td>119329144</td>
<td>A17</td>
<td>$29,700.00</td>
<td>0</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
<td>326179357</td>
<td>B04</td>
<td>$21,780.00</td>
<td>0</td>
</tr>
<tr>
<td>CROSS</td>
<td>BARBARA</td>
<td>818692173</td>
<td>A17</td>
<td>$27,062.00</td>
<td>0</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>MARY</td>
<td>543729165</td>
<td>A07</td>
<td>$9,000.00</td>
<td>0</td>
</tr>
<tr>
<td>IRVING</td>
<td>JOAN</td>
<td>123764317</td>
<td>A15</td>
<td>$26,862.00</td>
<td>0</td>
</tr>
<tr>
<td>JONES</td>
<td>DIANE</td>
<td>117593129</td>
<td>B03</td>
<td>$18,480.00</td>
<td>0</td>
</tr>
<tr>
<td>MCCOY</td>
<td>JOHN</td>
<td>219984371</td>
<td>B02</td>
<td>$18,480.00</td>
<td>0</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>ROGER</td>
<td>451123478</td>
<td>B02</td>
<td>$16,100.00</td>
<td>0</td>
</tr>
<tr>
<td>ROMANS</td>
<td>ANTHONY</td>
<td>126724188</td>
<td>B04</td>
<td>$21,120.00</td>
<td>0</td>
</tr>
<tr>
<td>SMITH</td>
<td>MARY</td>
<td>112847612</td>
<td>B14</td>
<td>$13,200.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>RICHARD</td>
<td>119265415</td>
<td>A01</td>
<td>$9,500.00</td>
<td>0</td>
</tr>
<tr>
<td>STEVENS</td>
<td>ALFRED</td>
<td>071382660</td>
<td>A07</td>
<td>$11,000.00</td>
<td>0</td>
</tr>
</tbody>
</table>

After running this request, the sequential file contains the following records:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>EMP_ID</th>
<th>CURR_SAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANNING</td>
<td>JOHN</td>
<td>119329144</td>
<td>$29,700.00</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
<td>326179357</td>
<td>$21,780.00</td>
</tr>
<tr>
<td>CROSS</td>
<td>BARBARA</td>
<td>818692173</td>
<td>$27,062.00</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>MARY</td>
<td>543729165</td>
<td>$9,000.00</td>
</tr>
</tbody>
</table>
Example: Calling PUTDDREC and CLSDDREC in Dialogue Manager -SET Commands

The following example defines a new file whose logical name is PUTDD1. The first -SET command creates a record to add to this file. The second -SET command calls PUTDDREC to add the record. The last -SET command calls CLSDDREC to close the file. The return codes are displayed to make sure operations were successful:

```
FILEDEF PUTDD1 DISK putdd1.dat
-SET &EMP1 = 'SMITH'|'MARY'|'A07'|'27000';
-TYPE DATA = &EMP1
-SET &OUT1 = PUTDDREC('PUTDD1',6,&EMP1,17,'I1');
-TYPE PUT RESULT = &OUT1
-SET &OUT1 = CLSDDREC('I1');
-TYPE CLOSE RESULT = &OUT1
```

The output is:

```
DATA = SMITHMARYA0727000
PUT RESULT = 0
CLOSE RESULT = 0
```

After running this procedure, the sequential file contains the following record:

```
SMITHMARYA0727000
```

SLEEP: Suspending Execution for a Given Number of Seconds

Available Languages: reporting, Maintain

The SLEEP function suspends execution for the number of seconds you specify as its input argument.

This function is most useful in Dialogue Manager when you need to wait to start a specific procedure. For example, you can start a FOCUS Database Server and wait until the server is started before initiating a client application.

Syntax: How to Suspend Execution for a Specified Number of Seconds

```
SLEEP(delay, output);
```

where:

- **delay**
 Numeric
 Is the number of seconds to delay execution. The number can be specified down to the millisecond.

- **output**
 Numeric
Is the name of a field or a format enclosed in single quotation marks. The value returned is the same value you specify for delay.

Example: Suspending Execution for Four Seconds

The following example computes the current date and time, suspends execution for 4 seconds, and computes the current date and time after the delay:

```
TABLE FILE VIDEOTRK
PRINT TRANSDATE NOPRINT
COMPUTE
START_TIME/HYYMDSa = HGETC(8, START_TIME);
DELAY/I2 = SLEEP(4.0, 'I2');
END_TIME/HYYMDSa = HGETC(8, END_TIME);
IF RECORDLIMIT EQ 1
END
```

The output is:

```
START_TIME     DELAY     END_TIME
----------     -----     --------
2007/10/26  5:04:36pm      4  2007/10/26  5:04:40pm
```

SPAWN: Creating a Subprocess From a Procedure

Available Operating Systems: UNIX

Available Languages: reporting

The SPAWN function creates a subprocess from a procedure that executes a system command without terminating the current procedure.

Limit: On UNIX, you can invoke this function only from a COMPUTE or DEFINE command.

Syntax: How to Create a Subprocess From a Procedure

```
SPAWN(inlength, command, outcode)
```

where:

inlength

Numeric

Is the length, in characters, of `command`.

command

Alphanumeric

Is a UNIX command, or a .COM file you want to execute.
outcode
D

Is the return code specifying whether or not the spawn was successful, or the format of
the output value enclosed in single quotation marks. Zero indicates a successful spawn; a
non-zero value indicates an unsuccessful spawn.

Example: Creating a Subprocess From a Procedure on UNIX

SPAWN executes the echo command, which displays Hello at the beginning of the procedure:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID
ON MATCH DELETE
CASE AT START
COMPUTE
MESSAGE/38=SPAWN (10, 'echo Hello', 'D8');
ENDCASE
DATA

SYSTEM: Calling a System Program

Available Operating Systems: Windows
Available Languages: reporting

The SYSTEM function calls a DOS program, a batch program, or a Windows application from a
procedure. SYSTEM passes a command string to DOS or Windows and the program is
executed as if it had been entered at the DOS command line or the command line field in the
Windows Program Manager Run dialog box. When you exit the program, control returns to
WebFOCUS.

SYSTEM suspends FOCUS execution of subsequent commands until you exit the application. It
has an advantage over the FOCUS DOS command, which also enables you to call DOS
programs and Windows applications from a procedure.

When executing a command from SYSTEM, the command executes as follows:

- If the command name in the string passed to SYSTEM contains a .COM or .EXE extension,
 the command is called directly rather than using the DOS command interpreter.

- If the command name in the string does not contain a suffix or contains a .BAT extension,
 SYSTEM calls the DOS command interpreter COMMAND.COM to perform the specified
 command and then exit.
SYSTEM passes the following commands to FOCUS, not to the DOS command interpreter: CD, CLS, COPY, DEL, DIR, drive:, REN, TYPE. As a result, these commands are interpreted directly by FOCUS, not by DOS, and you may observe a slightly different behavior. If you want SYSTEM to pass these commands to the DOS command interpreter instead, use the following syntax:

```
SYSTEM(length, 'COMMAND /C string', returncode)
```

Syntax: How to Call a DOS or Windows Program

```
SYSTEM(length, 'string ', returncode)
```

where:

- **length**
 - Integer
 - Is the length, in characters, of `string`.

- **string**
 - Alphanumeric
 - Is a valid Windows or DOS command with command line parameters enclosed in single quotation marks.

- **returncode**
 - Double precision
 - Is the name or length of the variable that contains the value of the DOS error level.

Example: Executing the DIR Command

SYSTEM passes the DIR command to the DOS command interpreter to create a sorted directory listing with no heading information or summary, and redirects the output to a file named DIR.LIS:

```
-SET &RETCODE = SYSTEM(31,'COMMAND /C DIR /O-N /B >DIR.LIS','D4');
```

Example: Changing the Default Directory

SYSTEM changes the default directory and suspends processing until the operation is complete:

```
-SET &ERRORLEVEL = SYSTEM(15,'CHDIR \CARDATA','D4');
```
Example: Running the Check Disk Program

SYSTEM runs the check disk program and redirects the output to a file called CHKDSK.TXT. (Redirecting the output to a file makes it accessible to a program that might want to read it.)

-SET &RETCODE=SYSTEM(19,'CHKDSK > CHKDSK.TXT','D4');

SYSVAR: Retrieving the Value of a z/OS System Variable

Available Operating Systems: z/OS

The SYSVAR function populates a Dialogue Manager amper variable with the contents of any z/OS system variable. System variables are in the format [&]name[.], where the dot is optional. They can be provided by the operating system or can be user defined. The function can be called in a -SET command.

Syntax: How to Retrieve the Value of a z/OS System Variable

-SET &dmvar = SYSVAR('length','[&]sysvar[.]','outfmt');

where:

&dmvar
Alphanumeric
Is the name of the Dialogue Manager variable to be populated with the value of the z/OS system variable.

length
Alphanumeric
Is the length of the next parameter in the call. Do not include the escape character in the length, if one is present in the sysvar argument.

[&|]sysvar[.]
Alphanumeric
Is the name of the system variable to be retrieved. Note that the ampersand (&) and the dot (.) are optional. If the ampersand is included, it must be followed by the escape character (|).

outfmt
Alphanumeric
Is the format of the returned value enclosed in single quotation marks.
Example: Retrieving the Value of the z/OS SYSNAME Variable

The following example populates the Dialogue Manager variable named &MYSNAME2 with the value of the z/OS SYSNAME variable:

-SET &MYSNAME2=SYSVAR('7', 'SYSNAME', 'A8');
-TYPE SYSNAME:&MYSNAME2

The output is similar to the following:

SYSNAME:IBI1
SYSVAR: Retrieving the Value of a z/OS System Variable
Chapter 25

Simplified Geography Functions

The simplified geography functions perform location-based calculations and retrieve geocoded points for various types of location data. They are used by the WebFOCUS® location intelligence products that produce maps and charts. Some of the geography functions use GIS services and require valid credentials for accessing Esri ArcGIS proprietary data.

In this chapter:

- Sample Geography Files
- GIS_DISTANCE: Calculating the Distance Between Geometry Points
- GIS_DRIVE_ROUTE: Calculating the Driving Directions Between Geometry Points
- GIS_GEOCODE_ADDR: Geocoding a Complete Address
- GIS_GEOCODE_ADDR_CITY: Geocoding an Address Line, City, and State
- GIS_GEOCODE_ADDR_POSTAL: Geocoding an Address Line and Postal Code
- GIS_GEOMETRY: Building a JSON Geometry Object
- GIS_IN_POLYGON: Determining if a Point is in a Complex Polygon
- GIS_LINE: Building a JSON Line
- GIS_POINT: Building a Geometry Point
- GIS_REVERSE_COORDINATE: Returning a Geographic Component
- GIS_SERVICE_AREA: Calculating a Geometry Area Around a Given Point
- GIS_SERV_AREA_XY: Calculating a Service Area Around a Given Coordinate
Sample Geography Files

Some of the examples for the geography functions use geography sample files. One file, esri-citibike.csv has station names, latitudes and longitudes, and trip start times and end times. The other file, esri-geo10036.ftm has geometry data. To run the examples that use these files, create an application named esri, and place the following files into the application folder.

```mas
FILENAME=ESRI-CITIBIKE, SUFFIX=DFIX ,
DATASET=esri/esri-citibike.csv, $
SEGMENT=CITIBIKE_TRIPDATA, SEGTYPE=S0, $
  FIELDNAME=TRIPDURATION, ALIAS=tripduration, USAGE=I7, ACTUAL=A5V, $
    TITLE='tripduration', $
  FIELDNAME=STARTTIME, ALIAS=starttime, USAGE=HMDYYS, ACTUAL=A18, $
    TITLE='starttime', $
  FIELDNAME=STOPTIME, ALIAS=stoptime, USAGE=HMDYYS, ACTUAL=A18, $
    TITLE='stoptime', $
  FIELDNAME=START_STATION_ID, ALIAS='start station id', USAGE=I6, ACTUAL=A4V, $
    TITLE='start station id', $
  FIELDNAME=START_STATION_NAME, ALIAS='start station name', USAGE=A79V, $
    ACTUAL=A79BV, TITLE='start station name', $
  FIELDNAME=START_STATION_LATITUDE, ALIAS='start station latitude', USAGE=P20.15, $
    ACTUAL=A18V, TITLE='start station latitude', $
    GEOGRAPHIC_ROLE=LATITUDE, $
  FIELDNAME=START_STATION_LONGITUDE, ALIAS='start station longitude', USAGE=P20.14, $
    ACTUAL=A18V, TITLE='start station longitude', $
    GEOGRAPHIC_ROLE=LONGITUDE, $
  FIELDNAME=END_STATION_ID, ALIAS='end station id', USAGE=I6, $
    ACTUAL=A4V, TITLE='end station id', $
  FIELDNAME=END_STATION_NAME, ALIAS='end station name', USAGE=A79V, $
    ACTUAL=A79BV, TITLE='end station name', $
  FIELDNAME=END_STATION_LATITUDE, ALIAS='end station latitude', USAGE=P20.15, $
    ACTUAL=A18V, TITLE='end station latitude', $
    GEOGRAPHIC_ROLE=LATITUDE, $
  FIELDNAME=END_STATION_LONGITUDE, ALIAS='end station longitude', USAGE=P20.14, $
    ACTUAL=A18V, TITLE='end station longitude', $
    GEOGRAPHIC_ROLE=LONGITUDE, $
  FIELDNAME=BIKEID, ALIAS=bikeid, USAGE=I7, ACTUAL=A5, $
    TITLE='bikeid', $
  FIELDNAME=USERTYPE, ALIAS=usertype, USAGE=A10V, ACTUAL=A10BV, $
    TITLE='usertype', $
  FIELDNAME=BIRTH_YEAR, ALIAS='birth year', USAGE=I6, ACTUAL=A4, $
    TITLE='birth year', $
  FIELDNAME=GENDER, ALIAS=gender, USAGE=I3, ACTUAL=A1, $
    TITLE='gender', $
SEGMENT=ESRIGEO, SEGTYPE=KU, SEGSUF=FIX, PARENT=CITIBIKE_TRIPDATA,
DATASET=esri/esri-geo10036.ftm (LRECL 80 RECFM V, CRFILE=ESRI-GEO10036, $
```

esri-citibike.csv

Note: Each complete record must be on a single line. Therefore, you must remove any line breaks that may have been inserted due to the page width in this document.

<table>
<thead>
<tr>
<th>ID</th>
<th>Date/Time In, Out</th>
<th>Date/Time End</th>
<th>Start Lat, Lon</th>
<th>End Lat, Lon</th>
<th>Type</th>
<th>Category</th>
<th>Start Date</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1094</td>
<td>11/1/2015 0:00, 0:18</td>
<td>11/1/2015 0:18</td>
<td>-73.9409214, 531, Forsyth St & Broome St</td>
<td>-73.98409214,</td>
<td>537</td>
<td>Lexington Ave & E 24 St</td>
<td>1980</td>
<td>1</td>
</tr>
<tr>
<td>520</td>
<td>11/1/2015 0:00, 0:08</td>
<td>11/1/2015 0:08</td>
<td>-73.97536082, 498, Broadway & W 32 St</td>
<td>-73.99266288, 23959,</td>
<td>536</td>
<td>1 Ave & E 30 St</td>
<td>1981</td>
<td>1</td>
</tr>
<tr>
<td>753</td>
<td>11/1/2015 0:00, 0:12</td>
<td>11/1/2015 0:12</td>
<td>-73.99379025, 328, Watts St & Greenwich St</td>
<td>-73.98808416, 22251,</td>
<td>40.74144387, -73.97536082, 498, Broadway & W 32 St</td>
<td>1981</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>477</td>
<td>11/1/2015 0:08, 0:21</td>
<td>11/1/2015 0:21</td>
<td>-73.99724901, 21645,</td>
<td>-74.00965965, 15869,</td>
<td>40.7405549, -73.99074142,</td>
<td>-73.99724901, 21645,</td>
<td>1981</td>
<td>1</td>
</tr>
<tr>
<td>353</td>
<td>11/1/2015 0:06, 0:06</td>
<td>11/1/2015 0:06</td>
<td>-73.99074142, 151, Cleveland Pl & Spring St</td>
<td>-73.99724901, 21645,</td>
<td>40.73454567, -73.99074142,</td>
<td>-73.99724901, 21645,</td>
<td>1981</td>
<td>1</td>
</tr>
<tr>
<td>1285</td>
<td>11/1/2015 0:21, 0:26</td>
<td>11/1/2015 0:26</td>
<td>-73.99733337, 476, E 31 St & 3 Ave</td>
<td>-73.99766069, 14788,</td>
<td>40.71910537, -73.99074142,</td>
<td>-73.99733337, 476, E 31 St & 3 Ave</td>
<td>1981</td>
<td>0</td>
</tr>
<tr>
<td>477</td>
<td>11/1/2015 0:08, 0:39</td>
<td>11/1/2015 0:39</td>
<td>-73.991454, 310, State St & Smith St</td>
<td>-73.9812867, 21016,</td>
<td>40.700469, -73.991454,</td>
<td>-73.991454, 310, State St & Smith St</td>
<td>1981</td>
<td>1</td>
</tr>
<tr>
<td>362</td>
<td>11/1/2015 0:06, 0:40</td>
<td>11/1/2015 0:40</td>
<td>-73.99733337, 476, E 31 St & 3 Ave</td>
<td>-73.99766069, 14788,</td>
<td>40.71910537, -73.99074142,</td>
<td>-73.99733337, 476, E 31 St & 3 Ave</td>
<td>1981</td>
<td>0</td>
</tr>
<tr>
<td>2316</td>
<td>11/1/2015 0:39, 0:41</td>
<td>11/1/2015 0:41</td>
<td>-74.0112197, 441, E 52 St & 2 Ave</td>
<td>-73.967416, 24117,</td>
<td>40.71542197, -74.0112197,</td>
<td>-74.0112197, 441, E 52 St & 2 Ave</td>
<td>1988</td>
<td>2</td>
</tr>
<tr>
<td>627</td>
<td>11/1/2015 0:11, 0:11</td>
<td>11/1/2015 0:11</td>
<td>-73.99444208, 285, Broadway & E 14 St</td>
<td>-73.99766069, 14788,</td>
<td>40.75096735, -73.99444208,</td>
<td>-73.99444208, 285, Broadway & E 14 St</td>
<td>1986</td>
<td>2</td>
</tr>
<tr>
<td>1484</td>
<td>11/1/2015 0:26, 0:28</td>
<td>11/1/2015 0:28</td>
<td>-73.97371465, 367, E 53 St & Lexington Ave</td>
<td>-73.97069431, 16779,</td>
<td>40.7643971, -73.97371465,</td>
<td>-73.97069431, 16779,</td>
<td>1988</td>
<td>0</td>
</tr>
</tbody>
</table>
Sample Geography Files

284,11/1/2015 0:01,11/1/2015 0:06,247,Perry St & Bleecker St, 40.73535398,-74.00483091,453,W 22 St & 8 Ave,40.74475148,-73.99915362,17272,Subscriber, 1976,1

886,11/1/2015 0:01,11/1/2015 0:16,492,W 33 St & 7 Ave,40.75019995,-73.99093085,377,6 Ave & Canal St,40.72243797,-74.00566443,23019,Subscriber,1982,1

1379,11/1/2015 0:01,11/1/2015 0:24,512,W 29 St & 9 Ave,40.7500727,-73.99839279,445,E 10 St & Avenue A,40.72740794,-73.98142006,23843,Subscriber,1962,2

179,11/1/2015 0:01,11/1/2015 0:04,319,Fulton St & Broadway, 40.711066,-74.009447,264,Maiden Ln & Pearl St, 40.70706456,-74.00731853,22538,Subscriber,1981,1

309,11/1/2015 0:01,11/1/2015 0:07,160,E 37 St & Lexington Ave, 40.748239,-73.978311,362,Broadway & W 37 St,40.75172632,-73.98753523,22042,Subscriber,1988,1

616,11/1/2015 0:02,11/1/2015 0:12,479,9 Ave & W 45 St,40.76019252,-73.9912551,440,E 45 St & 3 Ave,40.75255434,-73.97282625,22699,Subscriber,1982,1

852,11/1/2015 0:02,11/1/2015 0:16,346,Bank St & Hudson St, 40.73652889,-74.00618026,375,Mercer St & Bleecker St, 40.72679454,-73.99695094,21011,Subscriber,1991,1

1854,11/1/2015 0:02,11/1/2015 0:33,409,DeKalb Ave & Skillman St, 40.6906495,-73.95643107,3103,N 11 St & Wythe Ave, 40.72153267,-73.95782357,22011,Subscriber,1992,1

1161,11/1/2015 0:02,11/1/2015 0:21,521,8 Ave & W 31 St,40.75096735,-73.99444208,461,E 20 St & 2 Ave,40.73587678,-73.98205027,19856,Subscriber,1957,1

917,11/1/2015 0:02,11/1/2015 0:17,532,S 5 Pl & S 4 St,40.710451,-73.960876,393,E 5 St & Avenue C,40.72299208,-73.97995466,18598,Subscriber,1991,1

esri-geo10036.mas

FILENAME=ESRI-GE010036, SUFFIX=FIX , DATASET=esri/esri-geo10036.ftm (LRECL 80 RECFM V, IOTYPE=STREAM, $ SEGMENT=ESRIGEO, SEGTYPE=S0, $ FIELDNAME=GEOMETRY, ALIAS=GEOMETRY, USAGE=TX80L, ACTUAL=TX80, MISSING=ON, $

676
25. Simplified Geography Functions

Using Functions 677
GIS_DISTANCE: Calculating the Distance Between Geometry Points

The GIS_DISTANCE function uses a GIS service to calculate the distance between two geometry points.

Syntax: How to Calculate the Distance Between Geometry Points

GIS_DISTANCE(geo_point1, geo_point2)

where:

geo_point1, geo_point2

Fixed length alphanumeric, large enough to hold the JSON describing the point (for example, A200).

Are the geometry points for which you want to calculate the distance.

Note: You can generate a geometry point using the GIS_POINT function.
Calculating the Distance Between Two Geometry Points

The following uses a citibike .csv file that contains station names, latitudes and longitudes, and trip start times and end times. It uses the GIS_POINT function to define geometry points for start stations and end stations. It then uses GIS_DISTANCE to calculate the distance between them.

```plaintext
DEFINE FILE esri/esri-citibike
STARTPOINT/A200 = GIS_POINT('4326', START_STATION_LONGITUDE, START_STATION_LATITUDE);
ENDPOINT/A200 = GIS_POINT('4326', END_STATION_LONGITUDE, END_STATION_LATITUDE);
Distance/P10.2 = GIS_DISTANCE(ENDPOINT, STARTPOINT);
END

TABLE FILE esri/esri-citibike
PRINT END_STATION_NAME AS End Distance
BY START_STATION_NAME AS Start
ON TABLE SET PAGE NOLEAD
END
```
GIS_DRIVE_ROUTE: Calculating the Driving Directions Between Geometry Points

The GIS_DRIVE_ROUTE function uses a GIS service to calculate the driving route between two geometry points.

Note: This function uses GIS services and requires an Esri ArcGIS adapter connection with named credentials.

Syntax: How to Calculate the Drive Route Between Geometry Points

```python
GIS_DRIVE_ROUTE(geo_start_point, geo_end_point)
```
where:

\textit{geo_start_point, geo_point2}

Fixed length alphanumeric, large enough to hold the JSON describing the point (for example, A200).

Is the starting point for which you want to calculate the drive route.

\textbf{Note:} You can generate a geometry point using the GIS_POINT function.

\textit{geo_end_point, geo_point2}

Fixed length alphanumeric, large enough to hold the JSON describing the point (for example, A200).

Is the ending point for which you want to calculate the drive route.

\textbf{Note:} You can generate a geometry point using the GIS_POINT function.

The format of the field to which the drive route will be returned is TX.

\textbf{Example:} Calculating the Drive Route Between Two Geometry Points

The following uses a citibike .csv file that contains station names, latitudes and longitudes, and trip start times and end times. It uses the GIS_POINT function to define geometry points for start stations and end stations. It then uses GIS_DRIVE_ROUTE to calculate the route to get from the end point to the start point.

\begin{verbatim}
DEFINE FILE esri/esri-citibike
STARTPOINT/A200 = GIS_POINT('4326', START_STATION_LONGITUDE,
START_STATION_LATITUDE);
ENDPOINT/A200 = GIS_POINT('4326', END_STATION_LONGITUDE,
END_STATION_LATITUDE);
Route/TX140 (GEOGRAPHIC_ROLE=GEOMETRY_LINE) =
 GIS_DRIVE_ROUTE(ENDPOINT, STARTPOINT);
END
TABLE FILE esri/esri-citibike
PRINT START_STATION_NAME AS Start END_STATION_NAME AS End Route
WHERE START_STATION_ID EQ 147
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF,SIZE-11,$
ENDSTYLE
END
\end{verbatim}
Example:

Charting a Driving Route Between Two Geometry Points

The following request uses GIS_DRIVE_ROUTE to generate a driving route between a station start point and end point and charts the route on an Esri map.

```
DEFINE FILE esri-citibike
STARTPOINT/A200 = GIS_POINT(©4326©, START_STATION_LONGITUDE, START_STATION_LATITUDE);
ENDPOINT/A200 = GIS_POINT('4326', END_STATION_LONGITUDE, END_STATION_LATITUDE);
Route/TX80 (GEOGRAPHIC_ROLE=GEOMETRY_LINE) = GIS_DRIVE_ROUTE(ENDPOINT, STARTPOINT);
END
```
The output is shown in the following image.

GIS_GEOCODE_ADDR: Geocoding a Complete Address

GIS_GEOCODE_ADDR uses a GIS geocoding service to obtain the geometry point for a complete address.

Note: This function uses GIS services and requires an Esri ArcGIS adapter connection with named credentials.

Syntax:

How to Geocode a Complete Address

```
GIS_GEOCODE_ADDR(address[, country])
```

where:

- **address**
 - Fixed length alphanumeric
 - Is the complete address to be geocoded.

- **country**
 - Fixed length alphanumeric
 - Is a country name, which is optional if the country is the United States.
Example: Geocoding a Complete Address

The following request creates a complete address by concatenating the street address, city, state, and ZIP code. It then uses GIS_GEOCODE_ADDR to create a GIS point for the address.

```sql
DEFINE FILE WF_RETAIL_LITE
GADDRESS/A200 = ADDRESS_LINE_1 || ' ' || CITY_NAME || ' ' || STATE_PROV_NAME || ' ' || POSTAL_CODE;
GEOCODE1/A200 = GIS_GEOCODE_ADDR(GADDRESS);
END

TABLE FILE WF_RETAIL_LITE
PRINT ADDRESS_LINE_1 AS Address GEOCODE1
BY POSTAL_CODE AS Zip
WHERE CITY_NAME EQ 'New York'
WHERE POSTAL_CODE FROM '10013' TO '10020'
ON TABLE SET PAGE NOPAGE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Zip</th>
<th>Address</th>
<th>GEOCODE1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10013</td>
<td>125 Worth St</td>
<td></td>
</tr>
<tr>
<td>10016</td>
<td>139 E 35Th St</td>
<td></td>
</tr>
<tr>
<td>10017</td>
<td>United Nations Plz</td>
<td></td>
</tr>
<tr>
<td>405 E 42Nd St</td>
<td></td>
<td></td>
</tr>
<tr>
<td>405 E 42Nd St</td>
<td></td>
<td></td>
</tr>
<tr>
<td>219 E 42Nd St</td>
<td></td>
<td></td>
</tr>
<tr>
<td>330 Madison Ave</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10018</td>
<td>119 W 40Th St Fl 10</td>
<td></td>
</tr>
<tr>
<td>10019</td>
<td>31 West 52Nd Street</td>
<td></td>
</tr>
<tr>
<td>1301 Ave Of The Americas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1345 Avenue Of The Americas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>745 7th Ave</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10020</td>
<td>1221 Avenue Of The Americas</td>
<td></td>
</tr>
<tr>
<td>1271 Avenue Of The Americas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GIS_GEOCODE_ADDR_CITY: Geocoding an Address Line, City, and State

GIS_GEOCODE_ADDR_CITY uses a GIS geocoding service to obtain the geometry point for an address line, city, state, and optional country. The returned value is a fixed length alphanumeric format, large enough to hold the JSON describing the geographic location (for example, A200).

Note: This function uses GIS services and requires an Esri ArcGIS adapter connection with named credentials.

Syntax: How to Geocode an Address Line, City, and State

```sql
GIS_GEOCODE_ADDR_CITY( street_addr, city, state [, country])
```
where:

street_addr
- Fixed length alphanumeric
 - Is the street address to be geocoded.

city
- Fixed length alphanumeric
 - Is the city name associated with the street address.

state
- Fixed length alphanumeric
 - Is the state name associated with the street address.

country
- fixed length alphanumeric
 - Is a country name, which is optional if the country is the United States.

Example: Geocoding a Street Address, City, and State

The following request geocodes a street address using GIS_GEOCODE_ADDR_CITY.

```plaintext
DEFINE FILE WF_RETAIL_LITE
GEOCODE1/A200 = GIS_GEOCODE_ADDR_CITY(ADDRESS_LINE_1, CITY_NAME, STATE_PROV_NAME);
END
TABLE FILE WF_RETAIL_LITE
PRINT ADDRESS_LINE_1 AS Address GEOCODE1
BY POSTAL_CODE AS Zip
WHERE CITY_NAME EQ 'New York'
WHERE POSTAL_CODE FROM '10013' TO '10020'
ON TABLE SET PAGE NOPAGE
END
```
GIS_GEOCODE_ADDR_POSTAL: Geocoding an Address Line and Postal Code

GIS_GEOCODE_ADDR_POSTAL uses a GIS geocoding service to obtain the geometry point for an address line, postal code and optional country. The returned value is a fixed length alphanumeric format, large enough to hold the JSON describing the geographic location (for example, A200).

Note: This function uses GIS services and requires an Esri ArcGIS adapter connection with named credentials.

Syntax:

How to Geocode an Address Line and Postal Code

GIS_GEOCODE_ADDR_POSTAL(street_addr, postal_code [, country])

where:

- **street_addr**
 fixed length alphanumeric

 Is the street address to be geocoded.

- **postal_code**
 fixed length alphanumeric

 Is the postal code associated with the street address.

- **country**
 fixed length alphanumeric

 Is a country name, which is optional if the country is the United States.
Example: Geocoding a Street Address and Postal Code

The following request geocodes a street address using GIS_GEOCODE_ADDR_POSTAL.

```
DEFINE FILE WF_RETAIL_LITE
GEOCODE1/A200 = GIS_GEOCODE_ADDR_POSTAL(ADDRESS_LINE_1, POSTAL_CODE);
END
TABLE FILE WF_RETAIL_LITE
PRINT ADDRESS_LINE_1 AS Address GEOCODE1
BY POSTAL_CODE AS Zip
WHERE CITY_NAME EQ 'New York'
WHERE POSTAL_CODE FROM '10013' TO '10020'
ON TABLE SET PAGE NOPAGE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Zip</th>
<th>Address</th>
<th>GEOCODE1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10015</td>
<td>125 W 40th St</td>
<td></td>
</tr>
<tr>
<td>10016</td>
<td>139 E 35th St</td>
<td></td>
</tr>
<tr>
<td>10017</td>
<td>2 United Nations Plz</td>
<td></td>
</tr>
<tr>
<td>405 E 42nd St</td>
<td></td>
<td></td>
</tr>
<tr>
<td>405 E 42nd St</td>
<td></td>
<td></td>
</tr>
<tr>
<td>219 E 22nd St</td>
<td></td>
<td></td>
</tr>
<tr>
<td>330 Madison Ave</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10018</td>
<td>119 W 40th St F1 10</td>
<td></td>
</tr>
<tr>
<td>11 W 40th Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10019</td>
<td>31 West 52nd Street</td>
<td></td>
</tr>
<tr>
<td>1301 Ave Of The Americas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1345 Avenue Of The Americas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>745 7th Ave</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10020</td>
<td>1231 Avenue Of The Americas</td>
<td></td>
</tr>
<tr>
<td>1271 Avenue Of The Americas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GIS_GEOMETRY: Building a JSON Geometry Object

The GIS_GEOMETRY function builds a JSON Geometry object given a geometry type, WKID, and a geometry.

Syntax: How to Build a JSON Geometry Object

```
GIS_GEOMETRY(geotype, wkid, geometry)
```

where:

- **geotype**
 - Alphanumeric
 - Is a geometry type, for example, 'esriGeometryPolygon', 'esriGeometryPolyline', 'esriGeometryMultipoint', 'EsriGeometryPoint', 'EsriGeometryExtent'..
wkid
Alphanumeric

Is a valid spatial reference ID. WKID is an abbreviation for Well-Known ID, which identifies a projected or geographic coordinate system.

geometry

TX

A geometry in JSON.

The output is returned as TX.

Example: Building a JSON Geometry Object

The following request builds a polygon geometry of the area encompassing ZIP code 10036 in Manhattan. The input geometry object is stored in a text (.ftm) file that is cross-referenced in the esri-citibike Master File. The field containing the geometry object is GEOMETRY.

```sql
DEFINE FILE esri/esri-citibike
WKID/A10 = '4326';
MASTER_GEOMETRY/TX256 (GEOGRAPHIC_ROLE=GEOMETRY_AREA) =
  GIS_GEOMETRY( 'esriGeometryPolygon', WKID , GEOMETRY );
END
TABLE FILE esri/esri-citibike
PRINT
  START_STATION_NAME AS Station
  START_STATION_LATITUDE AS Latitude
  START_STATION_LONGITUDE AS Longitude
  MASTER_GEOMETRY AS 'JSON Geometry Object'
WHERE START_STATION_ID EQ 479
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
type=report, grid=off, size=10,$
ENDSTYLE
END
```
Example: Charting a Geometry Object

The following request uses GIS_GEOMETRY to build a geometry object and chart it on an Esri map.

```
DEFINE FILE esri-citibike
WKID/A10 = '4326';
MASTER_GEOMETRY/TX256 (GEOGRAPHIC_ROLE=GEOMETRY_AREA) = GIS_GEOMETRY('esriGeometryPolygon', WKID, GEOMETRY);
END
```

GRAPH FILE ESRI-CITIBIKE
PRINT
START_STATION_NAME
END_STATION_NAME
ON TABLE PCHOLD FORMAT JSCART
ON TABLE SET LOOKGRAPH CHOROPLETH
ON TABLE SET EMBEDHEADING ON
ON TABLE SET AUTOFIT ON
ON TABLE SET STYLE *
TYPE=REPORT, TITLETEXT='Map', PAGESIZE=E, CHART-LOOK=com.esri.map, $ TYPE=DATA, COLUMN=N1, /*START_STATION_NAME*/
BUCKET=tooltip, $ TYPE=DATA, COLUMN=N2, /*END_STATION_NAME*/
```
The output is shown in the following image.
GIS_IN_POLYGON: Determining if a Point is in a Complex Polygon

Given a point and a polygon definition, the GIS_IN_POLYGON function returns the value 1 (TRUE) if the point is in the polygon or 0 (FALSE) if the point is not in the polygon. The value is returned in integer format.

**Syntax:**

How to Determine if a Point is in a Complex Polygon

```
GIS_IN_POLYGON(point, polygon_definition)
```

where:

- **point**
  - Alphanumeric or text
  - Is the geometry point.

- **polygon_definition**
  - Text
  - Is the geometry area (polygon) definition.

**Example:**

Determining if a Point is in a Polygon

The following example determines if a station is inside ZIP code 10036. GIS_IN_POLYGON returns 1 for a point inside the polygon definition and 0 for a point outside. The polygon definition being passed is the same one used in the example for the GIS_GEOMETRY function described previously and defines the polygon for ZIP code 10036 in Manhattan in New York City. The value 1 is translated to Yes and 0 to No for display on the output.

```plaintext
DEFINE FILE esri/esri-citibike
WKID/A10 = '4326';
MASTER_GEOMETRY/TX256 (GEOGRAPHIC_ROLE=GEOMETRY_AREA) =
 GIS_GEOMETRY('esriGeometryPolygon', WKID, GEOMETRY);
START_STATION_POINT/A200 = GIS_POINT(WKID, START_STATION_LONGITUDE,
 START_STATION_LATITUDE);
STATION_IN_POLYGON/I4 = GIS_IN_POLYGON(START_STATION_POINT, MASTER_GEOMETRY);
IN_POLYGON/A5 = IF STATION_IN_POLYGON EQ 1 THEN 'Yes' ELSE 'No';
END
TABLE FILE esri/esri-citibike
PRINT
 START_STATION_NAME AS Station
 IN_POLYGON AS 'Station in zip, code 10036?'
BY START_STATION_ID AS 'Station ID'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
type=report, grid=off, size=10,$
type=data, column=in_polygon, style=bold, color=red, when = in_polygon eq
 'Yes',$
ENDSTYLE
END
```
The output is shown in the following image.

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Station</th>
<th>Station in zip code 10036?</th>
</tr>
</thead>
<tbody>
<tr>
<td>147</td>
<td>Greenwich St &amp; Warren St</td>
<td>No</td>
</tr>
<tr>
<td>160</td>
<td>E 37 St &amp; Lexington Ave</td>
<td>No</td>
</tr>
<tr>
<td>229</td>
<td>Great Jones St</td>
<td>No</td>
</tr>
<tr>
<td>247</td>
<td>Perry St &amp; Bleecker St</td>
<td>No</td>
</tr>
<tr>
<td>268</td>
<td>Howard St &amp; Centre St</td>
<td>No</td>
</tr>
<tr>
<td>281</td>
<td>Grand Army Plaza &amp; Central Park S</td>
<td>No</td>
</tr>
<tr>
<td>285</td>
<td>Broadway &amp; E 14 St</td>
<td>No</td>
</tr>
<tr>
<td>319</td>
<td>Fulton St &amp; Broadway</td>
<td>No</td>
</tr>
<tr>
<td>346</td>
<td>Bank St &amp; Hudson St</td>
<td>No</td>
</tr>
<tr>
<td>379</td>
<td>W 31 St &amp; 7 Ave</td>
<td>No</td>
</tr>
<tr>
<td>407</td>
<td>Henry St &amp; Poplar St</td>
<td>No</td>
</tr>
<tr>
<td>409</td>
<td>DeKalb Ave &amp; Skillman St</td>
<td>No</td>
</tr>
<tr>
<td>479</td>
<td>9 Ave &amp; W 45 St</td>
<td>Yes</td>
</tr>
<tr>
<td>492</td>
<td>W 33 St &amp; 7 Ave</td>
<td>No</td>
</tr>
<tr>
<td>512</td>
<td>W 29 St &amp; 9 Ave</td>
<td>No</td>
</tr>
<tr>
<td>521</td>
<td>8 Ave &amp; W 31 St</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>8 Ave &amp; W 31 St</td>
<td>No</td>
</tr>
<tr>
<td>532</td>
<td>S 5 Pl &amp; S 4 St</td>
<td>No</td>
</tr>
<tr>
<td>536</td>
<td>1 Ave &amp; E 30 St</td>
<td>No</td>
</tr>
<tr>
<td>537</td>
<td>Lexington Ave &amp; E 24 St</td>
<td>No</td>
</tr>
</tbody>
</table>

**GIS_LINE: Building a JSON Line**

Given two geometry points or lines, GIS_LINE builds a JSON line. The output is returned in text format.

**Syntax:**

```plaintext
GIS_LINE(geometry1, geometry2)
```

where:

- `geometry1`
  - Alphanumeric or text
  - Is the first point or line for defining the beginning of the new line.
Is the second point or line for the concatenation of the new line.

**Example:** Building a JSON Line

The following request prints start stations and end stations and builds a JSON line between them.

```plaintext
DEFINE FILE ESRI/ESRI-CITIBIKE
STARTPOINT/A200 = GIS_POINT('4326', START_STATION_LONGITUDE,
START_STATION_LATITUDE);
ENDPOINT/A200 = GIS_POINT('4326', END_STATION_LONGITUDE,
END_STATION_LATITUDE);
CONNECTION_LINE/TX80 (GEOGRAPHIC_ROLE=GEOMETRY_LINE) =
 GIS_LINE(STARTPOINT, ENDPOINT);
END
TABLE FILE ESRI/ESRI-CITIBIKE
PRINT END_STATION_NAME AS End CONNECTION_LINE AS 'Connecting Line'
BY START_STATION_NAME AS Start
WHERE START_STATION_NAME LE 'D'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF,$
ENDSTYLE
END
```
Example: Charting Geometry Lines

The following request generates geometry lines and charts them on an Esri map.

```
DEFINE FILE ESRI-CITIBIKE
CONNECTION_LINE/TX80 (GEOGRAPHIC_ROLE=GEOMETRY_LINE)
=GIS_LINE (START_STATION_POINT, END_STATION_POINT);
DISTANCE/P33.11 TITLE 'Distance'=GIS_DISTANCE (START_STATION_POINT, END_STATION_POINT);
END
```
GRAPH FILE ESRI-CITIBIKE
PRINT
    START_STATION_NAME
    END_STATION_NAME
    DISTANCE
ON TABLE PCHOLD FORMAT JSCHART
ON TABLE SET LOOKGRAPH BUBBLEMAP
ON TABLE SET EMBEDHEADING ON
ON TABLE SET AUTOFIT ON
ON TABLE SET STYLE *
    TYPE=REPORT, TITLETEXT='Map', PAGESIZE=E, CHART-LOOK=com.esri.map, $
    TYPE=DATA, COLUMN=N1, /*START_STATION_NAME*/
        BUCKET=tooltip, $
    TYPE=DATA, COLUMN=N2, /*END_STATION_NAME*/
        BUCKET=tooltip, $
    TYPE=DATA, COLUMN=N3, /*DISTANCE*/
        BUCKET=tooltip, $
*GRAPH_JS_FINAL
"legend": {"visible": true},
"extensions" : { "com.esri.map" :
    { "scalebar" :
        { "scalebarUnit": "dual",
            "attachTo": "bottom-left"
        },
    "baseMapInfo": {
        "drawBasemapControl" : false,
        "showArcGISBasemaps" : false,
        "customBaseMaps" : [
            {"ibiBaseLayer" : "dark-gray"}
        ]
    },
    "overlayLayers":
        [{
            "ibiDataLayer": {"map-geometry" : {"map_by_field" : "CONNECTION_LINE"}},
            "title" : "Chart"}
        ],
    "introAnimation": "{\"enabled\":false}"
}

*END
ENDSTYLE
HEADING
   "Chart Geometry Lines"
END
The output is shown in the following image.

**GIS_POINT: Building a Geometry Point**

Given a WKID (Well-Known ID) spatial reference, longitude, and latitude, the GIS_POINT function builds a JSON point defining a Geometry object with the provided WKID, longitude, and latitude. The function is optimized for those SQL engines that can build a JSON geometry object.

The field to which the point is returned should have fixed length alphanumeric format, large enough to hold the JSON describing the point (for example, A200).

**Syntax:**

*How to Build a Geometry Point*

```plaintext
GIS_POINT(wkid, longitude, latitude)
```

where:

**wkid**

Fixed length alphanumeric

Is a spatial reference code (WKID). WKID is an abbreviation for Well-Known ID, which identifies a projected or geographic coordinate system.

**longitude**

D20.8

Is the longitude for the point.
*latitude*

D20.8

Is the latitude for the point.

**Example:** Building a Geometry Point

The following request uses the spatial reference code 4326 (decimal degrees) and state capital longitudes and latitudes to build a geometry point.

```
DEFINE FILE WF_RETAIL_LITE
GPOINT/A200 = GIS_POINT('4326', STATE_PROV_CAPITAL_LONGITUDE,
STATE_PROV_CAPITAL_LATITUDE);
END
TABLE FILE WF_RETAIL_LITE
SUM FST.STATE_PROV_CAPITAL_LONGITUDE AS Longitude
FST.STATE_PROV_CAPITAL_LATITUDE AS Latitude
FST.GPOINT AS Point
BY STATE_PROV_CAPITAL_NAME AS Capital
WHERE COUNTRY_NAME EQ 'United States'
WHERE STATE_PROV_CAPITAL_NAME LT 'C'
ON TABLE SET PAGE NOPAGE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Capital</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albany</td>
<td>-73.66</td>
<td>42.66</td>
<td>(spatialReference: (wkid: 4326), geometryType: 'esriGeometryPoint', geometry: {'x':-73.66, 'y':42.66})</td>
</tr>
<tr>
<td>Anchorage</td>
<td>-76.49</td>
<td>38.96</td>
<td>(spatialReference: (wkid: 4326), geometryType: 'esriGeometryPoint', geometry: {'x':-76.49, 'y':38.96})</td>
</tr>
<tr>
<td>Atlanta</td>
<td>-84.34</td>
<td>33.94</td>
<td>(spatialReference: (wkid: 4326), geometryType: 'esriGeometryPoint', geometry: {'x':-84.34, 'y':33.94})</td>
</tr>
<tr>
<td>Augusta</td>
<td>-69.77</td>
<td>44.32</td>
<td>(spatialReference: (wkid: 4326), geometryType: 'esriGeometryPoint', geometry: {'x':-69.77, 'y':44.32})</td>
</tr>
<tr>
<td>Austin</td>
<td>-97.75</td>
<td>30.40</td>
<td>(spatialReference: (wkid: 4326), geometryType: 'esriGeometryPoint', geometry: {'x':-97.75, 'y':30.40})</td>
</tr>
<tr>
<td>Baton Rouge</td>
<td>-91.17</td>
<td>30.38</td>
<td>(spatialReference: (wkid: 4326), geometryType: 'esriGeometryPoint', geometry: {'x':-91.17, 'y':30.38})</td>
</tr>
<tr>
<td>Bismarck</td>
<td>-100.77</td>
<td>46.82</td>
<td>(spatialReference: (wkid: 4326), geometryType: 'esriGeometryPoint', geometry: {'x':-100.77, 'y':46.82})</td>
</tr>
<tr>
<td>Boise</td>
<td>-116.16</td>
<td>43.60</td>
<td>(spatialReference: (wkid: 4326), geometryType: 'esriGeometryPoint', geometry: {'x':-116.16, 'y':43.60})</td>
</tr>
<tr>
<td>Boston</td>
<td>-71.10</td>
<td>42.35</td>
<td>(spatialReference: (wkid: 4326), geometryType: 'esriGeometryPoint', geometry: {'x':-71.10, 'y':42.35})</td>
</tr>
</tbody>
</table>
**Example:**  
**Charting Geometry Points**

The following request generates geometry points using GIS_POINT charts them on an Esri map.

```plaintext
DEFINE FILE WF_RETAIL
GPOINT/A200 = GIS_POINT('4326', STATE_PROV_CAPITAL_LONGITUDE,
STATE_PROV_CAPITAL_LATITUDE);
END

GRAPH FILE WF_RETAIL
PRINT
STATE_PROV_NAME
WHERE STATE_PROV_CAPITAL_LONGITUDE NE MISSING
ON TABLE PCHOLD FORMAT JSCHART
ON TABLE SET LOOKGRAPH BUBBLEMAP
ON TABLE SET EMBEDHEADING ON
ON TABLE SET AUTOFIT ON
ON TABLE SET STYLE *
 TYPE=REPORT, TITLETEXT='Map', PAGESIZE=E, CHART-LOOK=com.esri.map, $
 TYPE=DATA, COLUMN=N1,
 BUCKET=tooltip, $

 "bubbleMarker": {"maxSize": "10%"},
 "legend": {"visible": true},
 "extensions" : { "com.esri.map" :
 { "scalebar" :
 { "scalebarUnit": "dual",
 "attachTo" : "bottom-left"
 },
 "baseMapInfo": {
 "drawBasemapControl" : false,
 "showArcGISBasemaps" : false,
 "customBaseMaps" : [
 {"ibiBaseLayer" : "gray"}
]
 },
 "overlayLayers":
 {"ibiDataLayer": {"map-geometry" : {"map_by_field" : "GPOINT"}},
 "title" : "Report"}
 },
 "introAnimation":{"enabled":false}"
 },

*GRAPH_JS_FINAL
*END
ENDSTYLE
HEADING
"Chart Geometry Points"
END
```
GIS_REVERSE_COORDINATE: Returning a Geographic Component

The output is shown in the following image.

GIS_REVERSE_COORDINATE: Returning a Geographic Component

Given longitude and latitude values and the name of a geographic component, GIS_REVERSE_COORDINATE returns the specified geographic component values associated with those coordinates.

**Note:** This function uses GIS services and requires an Esri ArcGIS adapter connection with named credentials.

**Syntax:** How to Return a Geographic Component

```plaintext
GIS_REVERSE_COORDINATE(longitude, latitude, component)
```

where:

**longitude**

Numeric

Is the longitude of the component to return.

**latitude**

Numeric

Is the latitude of the component to return.
**component**

Keyword

Is one of the following components:

- MATCH_ADDRESS, which returns the matching address.
- METROAREA, which returns the metro area name.
- REGION, which returns the region name.
- SUBREGION, which returns the subregion name.
- CITY, which returns the city name.
- POSTAL, which returns the postal code.

The value is returned as text and can be assigned to a field with text or alphanumeric (fixed or variable length) format.

**Example: Returning Geographic Components Associated With Coordinates**

The following request uses city longitude and city latitude to return the matching address, postal code, region, and subregion.

```sql
TABLE FILE WF_RETAIL_GEOGRAPHY
SUM FST.CITY_LONGITUDE AS Longitude FST.CITY_LATITUDE AS Latitude
COMPUTE
MatchingAddress/A250 = GIS.ReverseCoordinate(CITY_LONGITUDE, CITY_LATITUDE, MATCH_ADDRESS);
PostalCode/A250 = GIS.ReverseCoordinate(CITY_LONGITUDE, CITY_LATITUDE, POSTAL);
Region/A250 = GIS.ReverseCoordinate(CITY_LONGITUDE, CITY_LATITUDE, REGION);
Subregion/A250 = GIS.ReverseCoordinate(CITY_LONGITUDE, CITY_LATITUDE, SUBREGION);
BY CITY_NAME AS City
WHERE COUNTRY_NAME EQ 'United States'
WHERE TOTAL PostalCode NE ''
WHERE RECORDLIMIT EQ 20
ON TABLE SET PAGE NOLEAD
END
```
GIS_SERVICE_AREA: Calculating a Geometry Area Around a Given Point

The output is shown in the following image.

<table>
<thead>
<tr>
<th>City</th>
<th>Longitude</th>
<th>Latitude</th>
<th>MatchingAddress</th>
<th>PostaCode</th>
<th>Region</th>
<th>Subregion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annapolis</td>
<td>-76.54549000</td>
<td>38.98700000</td>
<td>Annapolis Mall, Annapolis, Maryland, 21401</td>
<td>21401</td>
<td>Maryland</td>
<td>Anne Arundel County</td>
</tr>
<tr>
<td>Baton Rouge</td>
<td>-91.09780000</td>
<td>30.44990000</td>
<td>233 E Parkland Dr, Baton Rouge, Louisiana, 70806</td>
<td>70806</td>
<td>Louisiana</td>
<td>East Baton Rouge Parish</td>
</tr>
<tr>
<td>Cincinnati</td>
<td>-84.26999000</td>
<td>39.16200000</td>
<td>2570-2095 Elm Ave, Cincinnati, Ohio, 45212</td>
<td>45212</td>
<td>Ohio</td>
<td>Hamilton County</td>
</tr>
<tr>
<td>Daytona Beach</td>
<td>-81.34700000</td>
<td>29.19100000</td>
<td>511 S Clyde Morris Blvd, Daytona Beach, Florida, 32114</td>
<td>32114</td>
<td>Florida</td>
<td>Volusia County</td>
</tr>
<tr>
<td>Detroit</td>
<td>-83.09600000</td>
<td>42.34630000</td>
<td>133 Davison Rd, Detroit, Michigan, 48201</td>
<td>48201</td>
<td>Michigan</td>
<td>Wayne County</td>
</tr>
<tr>
<td>Harrington Park</td>
<td>-73.98330000</td>
<td>40.99070000</td>
<td>247 Lynn St, Harrington Park, New Jersey, 07640</td>
<td>07640</td>
<td>New Jersey</td>
<td>Bergen County</td>
</tr>
<tr>
<td>Johnston</td>
<td>-93.72040000</td>
<td>41.70310000</td>
<td>Camp Dodge</td>
<td>50131</td>
<td>Iowa</td>
<td>Polk County</td>
</tr>
<tr>
<td>Lake Mary</td>
<td>-81.33970000</td>
<td>28.75780000</td>
<td>1271-129 E Plantation Blvd, Lake Mary, Florida, 33746</td>
<td>33746</td>
<td>Florida</td>
<td>Seminole County</td>
</tr>
<tr>
<td>Laredo</td>
<td>-99.50500000</td>
<td>27.51330000</td>
<td>1201-1599 Santa Cruz Ave, Laredo, Texas, 78040</td>
<td>78040</td>
<td>Texas</td>
<td>Webb County</td>
</tr>
<tr>
<td>Latham</td>
<td>-73.78040000</td>
<td>42.75160000</td>
<td>1 Line Jet Lin, Latham, New York, 12110</td>
<td>12110</td>
<td>New York</td>
<td>Albany County</td>
</tr>
<tr>
<td>Louisville</td>
<td>-85.69180000</td>
<td>38.70830000</td>
<td>1714 N 28th St, Louisville, Kentucky, 40205</td>
<td>40205</td>
<td>Kentucky</td>
<td>Jefferson County</td>
</tr>
<tr>
<td>Medley</td>
<td>-80.35190000</td>
<td>25.85880000</td>
<td>53178, Miami, Florida</td>
<td>53178</td>
<td>Florida</td>
<td>Miami-Dade County</td>
</tr>
<tr>
<td>North Kansas City</td>
<td>84.56220000</td>
<td>39.13000000</td>
<td>1201-1499 Quebec St, Kansas City, Missouri, 64116</td>
<td>64116</td>
<td>Missouri</td>
<td>Clay County</td>
</tr>
<tr>
<td>Rochester</td>
<td>-79.61500000</td>
<td>43.15480000</td>
<td>35 Plymouth Ave S, Rochester, New York, 14614</td>
<td>14614</td>
<td>New York</td>
<td>Monroe County</td>
</tr>
<tr>
<td>Waco</td>
<td>-87.13820000</td>
<td>31.53100000</td>
<td>1200 Austin Ave, Waco, Texas, 76701</td>
<td>76701</td>
<td>Texas</td>
<td>McLennan County</td>
</tr>
</tbody>
</table>

**GIS_SERVICE_AREA: Calculating a Geometry Area Around a Given Point**

The GIS_SERVICE_AREA function uses a GIS service to calculate the geometry area with access boundaries within the given time or distance from the provided geometry point. The output is returned in text format.

**Note:** This function uses GIS services and requires an Esri ArcGIS adapter connection with named credentials.

**Syntax:** How to Calculate a Geometry Area Around a Point

```
GIS_SERVICE_AREA(geo_point, distance, travel_mode)
```

where:

- **geo_point**
  - Alphanumeric
  - Is the starting geometry point.

- **distance**
  - Alphanumeric
  - Is the travel limitation in either time or distance units.

- **travel_mode**
  - Alphanumeric
  - Is a valid travel mode as defined in gis_serv_area.mas in the Catalog directory, located in drive:\ib\WebFOCUS\srv\home\catalog. The accepted travel modes are;

  - 'Miles'. This is the default value.
- 'TravelTime'.
- 'TruckTravelTime'.
- 'WalkTime'.
- 'Kilometers'.

**Example:** Calculating a Service Area Around a Geometry Point

The following request calculates the geometry area that is a five-minute walk around a station.

```sql
DEFINE FILE esri/esri-citibike
WKID/A10='4326';
START_STATION_POINT/A200=GIS_POINT(WKID, START_STATION_LONGITUDE,
START_STATION_LATITUDE);
DISTANCE/A10='5';
TRAVEL_MODE/A10='WalkTime';
STATION_SERVICE_AREA/TX80 (GEOGRAPHIC_ROLE=GEOMETRY_AREA)=
 GIS_SERVICE_AREA(START_STATION_POINT, DISTANCE, TRAVEL_MODE);
END
TABLE FILE esri/esri-citibike
PRINT
 START_STATION_ID AS 'Station ID'
 START_STATION_NAME AS 'Station Name'
 STATION_SERVICE_AREA AS '5-Minute Walk Service Area Around Station'
WHERE START_STATION_ID EQ 479 OR 512;
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, SIZE=12,$
ENDSTYLE
END
```
The output is shown in the following image.

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Station Name</th>
<th>5-Minute Walk Service Area Around Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>W 29 St &amp; 9 Ave</td>
<td>&quot;spatialReference&quot;: { &quot;wkid&quot;: 4326 }, &quot;geometryType&quot;: &quot;esriGeometryPolygon&quot;, &quot;geometry&quot;: { &quot;rings&quot;: [[-73.995542525999592, 40.749246597000081], [-73.99509429899959, 40.7478346329000071], [-73.995425259999592, 40.7477674942000065], [-73.99666554999959, 40.7487498750000045], [-73.99486267699964, 40.7497224808000055], [-73.9928292999992, 40.7461032870000039], [-73.99135970099987, 40.7474916640000055], [-73.99013597009987, 40.7461032870000039], [-73.98846267699964, 40.74624808000055], [-73.986692525999592, 40.7449897500000045], [-73.98462667699964, 40.7449897500000045], [-73.98259398999959, 40.7449897500000045], [-73.98056121999942, 40.7487491664000055], [-73.9784916640000055], [-73.976425525999592, 40.7487491664000055], [-73.974398999959, 40.7461032870000039], [-73.9723292999992, 40.74334870000039], [-73.9703681180000045], [-73.968392525999592, 40.74246597000081]]}</td>
</tr>
<tr>
<td>479</td>
<td>9 Ave &amp; W 45 St</td>
<td>&quot;spatialReference&quot;: { &quot;wkid&quot;: 4326 }, &quot;geometryType&quot;: &quot;esriGeometryPolygon&quot;, &quot;geometry&quot;: { &quot;rings&quot;: [[-73.990602492999983, 40.760248184000034], [-73.98813247699965, 40.759351730000034], [-73.9873824929996, 40.758451462000039], [-73.9868180703999958, 40.757555008000054], [-73.9862918899996, 40.7577800750000028], [-73.9857255999957, 40.757329941000008], [-73.9852849349999972, 40.75643487000039], [-73.98486671999957, 40.756208420000064], [-73.98444164999954, 40.757104870000049], [-73.98401049999926, 40.7588230209000033], [-73.983594298999959, 40.760026932000073], [-73.98315937999962, 40.760923386000059], [-73.9826242899994, 40.760248184000034], [-73.981950988999974, 40.760233860000059], [-73.9812792199999, 40.760923386000059], [-73.98050853999, 40.760461453000343], [-73.979006249299983, 40.760698318000038], [-73.979006249299983, 40.760248184000034]]}</td>
</tr>
</tbody>
</table>

**Example:** Charting a Geometry Service Area Around a Point

The following request generates service areas that are 5-minute walking distances from start station geometry points and charts them on an Esri map.

```plaintext
DEFINE FILE esri-citibike
WKID/A10='4326';
START_STATION_POINT/A200=GIS_POINT(WKID, START_STATION_LONGITUDE, START_STATION_LATITUDE);
DISTANCE/A10='5';
TRAVEL_MODE/A10='WalkTime';
STATION_SERVICE_AREA/TX80 (GEOGRAPHIC_ROLE=GEOMETRY_AREA) =
 GIS_SERVICE_AREA(STATION_SERVICE_AREA, DISTANCE, TRAVEL_MODE);
END
```

704
25. Simplified Geography Functions

GRAPH FILE ESRI-CITIBIKE
PRINT
  START_STATION_NAME
  END_STATION_NAME
  DISTANCE
ON TABLE PCHOLD FORMAT JSCHART
ON TABLE SET LOOKGRAPH CHOROPLETH
ON TABLE SET EMBEDHEADING ON
ON TABLE SET AUTOFIT ON
ON TABLE SET STYLE *
  TYPE=REPORT, TITLETEXT='Map', PAGESIZE=E, CHART-LOOK=com.esri.map, $
  TYPE=DATA, COLUMN=N1, /*START_STATION_NAME*/
    BUCKET=tooltip, $
  TYPE=DATA, COLUMN=N2, /*END_STATION_NAME*/
    BUCKET=tooltip, $
  TYPE=DATA, COLUMN=N3, /*DISTANCE*/
    BUCKET=tooltip, $
*GRAPH_JS_FINAL
  "legend": {"visible": true},
  "extensions" : { "com.esri.map" :
    "scalebar" :
      {
        "scalebarUnit": "dual",
        "attachTo" : "bottom-left"
      },
    "baseMapInfo": {
      "drawBasemapControl" : false,
      "showArcGISBasemaps" : false,
      "customBaseMaps" : [
        {"ibiBaseLayer" : "dark-gray"}
      ]
    },
    "overlayLayers":
      [{
        "ibiDataLayer": {"map-geometry" : {"map_by_field" : "STATION_SERVICE_AREA"}}, "title" : "Chart"}
      ],
    "introAnimation": "{\"enabled\":false}"
  }
*END
ENDSTYLE
HEADING
  "Chart Geometry Service Area"
END
The output is shown in the following image.

**GIS_SERV_AREA_XY: Calculating a Service Area Around a Given Coordinate**

The GIS_SERV_AREA_XY function uses a GIS service to calculate the geometry area with access boundaries within the given time or distance from the provided coordinate. The output is returned in text format.

**Note:** This function uses GIS services and requires an Esri ArcGIS adapter connection with named credentials.

**Syntax:**

How to Calculate a Geometry Area Around a Coordinate

\[
\text{GIS\_SERV\_AREA\_XY}(\text{longitude}, \text{latitude}, \text{distance}, \text{travel\_mode}[, \text{wkid}])
\]

where:

- \text{longitude}
  
  Alphanumeric
  
  Is the longitude of the starting point.

- \text{latitude}
  
  Alphanumeric
  
  Is the latitude of the starting point.
**distance**  
Integer  
Is the travel limitation in either time or distance units.

**travel_mode**  
Alphanumeric  
Is a valid travel mode as defined in gis_serv_area.mas in the Catalog directory, located in drive:\ibi\WebFOCUS\srv\home\catalog. The accepted travel modes are:

- 'Miles'. This is the default value.
- 'TravelTime'.
- 'TruckTravelTime'.
- 'WalkTime'.
- 'Kilometers'.

**wkid**  
Alphanumeric  
Is the spatial reference ID for the coordinate. WKID is an abbreviation for Well-Known ID, which identifies a projected or geographic coordinate system. The default value is '4326', which represents decimal degrees.
Example: Calculating a Service Area Around a Coordinate

The following request calculates the geometry area that is a five-minute walk around a station, using the longitude and latitude that specify the station location.

```plaintext
DEFINE FILE esri/esri-citibike
DISTANCE/I4=5;
WKID/A10='4326';
TRAVEL_MODE/A10='WalkTime';
STATION_SERVICE_AREA/TX80 (GEOGRAPHIC_ROLE=GEOMETRY_AREA)=
 GIS_SERV_AREA_XY(START_STATION_LONGITUDE, START_STATION_LATITUDE,
 DISTANCE, TRAVEL_MODE, WKID);
END
TABLE FILE esri/esri-citibike
PRINT
 START_STATION_ID AS 'Station ID'
 START_STATION_NAME AS 'Station Name'
 STATION_SERVICE_AREA
 AS '5-Minute Walk Service Area Around Station Coordinate'
WHERE START_STATION_ID EQ 479 OR 512;
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, SIZE=12,$
ENDSTYLE
END
```
The following request generates service areas that are 5-minute walking distances from start station coordinates and charts them on an Esri map.

```
DEFINE FILE esri-citibike
WKID/A10=©4326©;
DISTANCE/A10=©5©;
TRAVEL_MODE/A10=©WalkTime©;
STATION_SERVICE_AREA/TX80 (GEOGRAPHIC_ROLE=GEOMETRY_AREA)=GIS_SERV_AREA_XY(START_STATION_LONGITUDE, START_STATION_LATITUDE, DISTANCE, TRAVEL_MODE, WKID);
END
```

### Example: Charting a Geometry Service Area Around a Coordinate

The following request generates service areas that are 5-minute walking distances from start station coordinates and charts them on an Esri map.

```
DEFINE FILE esri-citibike
WKID/A10='4326';
DISTANCE/A10='5';
TRAVEL_MODE/A10='WalkTime';
STATION_SERVICE_AREA/TX80 (GEOGRAPHIC_ROLE=GEOMETRY_AREA) =
 GIS_SERV_AREA_XY(START_STATION_LONGITUDE, START_STATION_LATITUDE,
 DISTANCE, TRAVEL_MODE, WKID);
END
```
GIS_SERV_AREA_XY: Calculating a Service Area Around a Given Coordinate

GRAPH FILE ESRI-CITIBIKE
PRINT
START_STATION_NAME
END_STATION_NAME
DISTANCE
ON TABLE PCHOLD FORMAT JSCHART
ON TABLE SET LOOKGRAPH CHOROPLETH
ON TABLE SET EMBEDHEADING ON
ON TABLE SET AUTOFIT ON
ON TABLE SET STYLE *
TYPE=REPORT, TITLE=Map', PAGESIZE=E, CHART-LOOK=com.esri.map, $
TYPE=DATA, COLUMN=N1, /*START_STATION_NAME*/
BUCKET=tooltip, $
TYPE=DATA, COLUMN=N2, /*END_STATION_NAME*/
BUCKET=tooltip, $
TYPE=DATA, COLUMN=N3, /*DISTANCE*/
BUCKET=tooltip, $
*GRAPH_JS_FINAL
"legend": {"visible": true},
"extensions" : { "com.esri.map" :
{ "scalebar" :
{ "scalebarUnit": "dual",
"attachTo" : "bottom-left"
},
"baseMapInfo": {
"drawBasemapControl" : false,
"showArcGISBasemaps" : false,
"customBaseMaps" : [
{"ibiBaseLayer" : "dark-gray"}
]
},
"overlayLayers":
[{
"ibiDataLayer":{"map-geometry" : {"map_by_field" : "STATION_SERVICE_AREA"}}, "title" : "Chart"]
},
"introAnimation": "{\"enabled\":false}"
}
*END
ENDSTYLE
HEADING
"Chart Geometry Service Area"
END
The output is shown in the following image.
GIS_SERV_AREA_XY: Calculating a Service Area Around a Given Coordinate
SQL character functions manipulate alphanumeric fields and character strings. They can be used in SQL Translator requests and, where supported by the DBMS, in Direct SQL Passthru requests.

In this chapter:

- **LOCATE: Returning the Position of a Substring in a String**

**LOCATE: Returning the Position of a Substring in a String**

Given a substring, a source string and a starting position (the default is 1), LOCATE returns the position of the first occurrence of the substring, starting the search at the starting position. If the substring is not found, LOCATE returns zero (0). The search is case insensitive.

**Syntax:**

How to Return the Position of a Substring in a String

LOCATE(substr, source [, start])

where:

- **substr**
  Alphanumeric
  Is the search string.

- **source**
  Alphanumeric
  Is the source string.

- **start**
  Numeric
  Is the optional starting position for the search. If omitted, it defaults to 1.
Example: Returning the Position of a Substring in a String

The following SQL SELECT statement searches for the character `a` in FULLNAME, starting at position 3, and starting at position 1.

```
SQL
SELECT FULLNAME,
 LOCATE('a', FULLNAME, 3) AS 'START AT 3',
 LOCATE('a', FULLNAME) AS 'START AT 1'
FROM
WF_RETAIL_CUSTOMER T1
FETCH FIRST 5 ROWS ONLY;
```

The output is shown in the following image.

```
Search for the Character 'a'

<table>
<thead>
<tr>
<th>Full Name</th>
<th>START AT 3</th>
<th>START AT 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyler Nolan</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Joshua Bull</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Zara Wood</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Callum McKenzie</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Bradley Charlton</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
```
The SQL functions described in this chapter perform a variety of conversions, tests, and manipulations.

They can be used in SQL Translator requests and, where supported by the DBMS, in Direct SQL Passthru requests.

In this chapter:

- CHR: Returning the ASCII Character Given a Numeric Code

CHR: Returning the ASCII Character Given a Numeric Code

Given a number code as an argument, CHR returns the ASCII character.

**Syntax:**

How to Return the ASCII Character Given a Numeric Code

```
CHR(number)
```

where:

- **number**
  Numeric

Is the numeric code to be translated to an ASCII character.

**Example:**

Returning the ASCII Character Given a Numeric Code

The following SELECT statement places a colon character between last name and first name.

```
SQL
SELECT
LAST_NAME AS ' ', CHR(58) AS ': ', FIRST_NAME AS ' '
FROM EMPLOYEE
;
```


The output is shown in the following image.

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEVENS</td>
<td>ALFRED</td>
</tr>
<tr>
<td>SMITH</td>
<td>MARY</td>
</tr>
<tr>
<td>JONES</td>
<td>DIANE</td>
</tr>
<tr>
<td>SMITH</td>
<td>RICHARD</td>
</tr>
<tr>
<td>BANNING</td>
<td>JOHN</td>
</tr>
<tr>
<td>IRVING</td>
<td>JOAN</td>
</tr>
<tr>
<td>ROMANS</td>
<td>ANTHONY</td>
</tr>
<tr>
<td>MCCOY</td>
<td>JOHN</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>ROGER</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>MARY</td>
</tr>
<tr>
<td>CROSS</td>
<td>BARBARA</td>
</tr>
</tbody>
</table>
The trigonometric functions provide trigonometric calculations, inverse trigonometric calculations, and angle conversion functions.

In this chapter:

- ACOS: Calculating an Angle Given its Cosine
- ASIN: Calculating an Angle Given its Sine
- ATAN: Calculating an Angle Given its Tangent
- ATAN2: Calculating an Angle Given the Coordinates of its Tangent
- COS: Calculating the Cosine of an Angle
- COT: Calculating the Cotangent of an Angle
- DEGREES: Converting Radians to Degrees
- PI: Returning the Constant Pi
- RADIANS: Converting Degrees to Radians
- SIN: Calculating the Sine of an Angle
- TAN: Calculating the Tangent of an Angle

ACOS: Calculating an Angle Given its Cosine

Given the cosine of an angle in radians, ACOS (arccosine) returns an angle between 0 (zero) and pi radians.

Syntax: How to Calculate an Angle Given its Cosine

`ACOS(expression)`
where:

expression

Numeric

Is the cosine of an angle.

**Example:** Calculating the Arccosine of a Value

The following request calculates the arccosine of 0, PI/2 radians, PI/4 radians, and PI radians.

```
DEFINE FILE ggsales
PI1 = PI();
PI2 = PI()/2;
PI4 = PI()/4;
COS1 = COS(0);
COS2 = COS(PI2);
COS3 = COS(PI4);
COS4 = COS(PI1);
END

TABLE FILE ggsales
PRINT
COS1 COS2 COS3 COS4
OVER
COMPUTE
ARCCOS1/D12.2 = ACOS(COS1);
ARCCOS2/D12.2 = ACOS(COS2);
ARCCOS3/D12.2 = ACOS(COS3);
ARCCOS4/D12.2 = ACOS(COS4);
BY DATE
WHERE RECORDLIMIT EQ 1
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Date</th>
<th>COS1</th>
<th>COS2</th>
<th>COS3</th>
<th>COS4</th>
<th>ARCCOS1</th>
<th>ARCCOS2</th>
<th>ARCCOS3</th>
<th>ARCCOS4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997/04/01</td>
<td>1.00</td>
<td>0.00</td>
<td>0.71</td>
<td>-1.00</td>
<td>0.00</td>
<td>1.57</td>
<td>0.79</td>
<td>3.14</td>
</tr>
</tbody>
</table>

**ASIN: Calculating an Angle Given its Sine**

Given the sine of an angle in radians, ASIN (arcsine) returns an angle between -(pi/2) and pi/2 radians.
Syntax: How to Calculate an Angle Given its Sine

\[ \text{ASIN}(\text{expression}) \]

where:

\[ \text{expression} \]

Numeric

Is the sine of an angle.

Example: Calculating the Arcsine of a Value

The following request calculates the arcsine of 0, PI/2 radians, PI/4 radians, and PI radians.

```
DEFINE FILE ggsales
PI1 = PI();
PI2 = PI()/2;
PI4 = PI()/4;
SIN1 = SIN(0);
SIN2 = SIN(PI2);
SIN3 = SIN(PI4);
SIN4 = SIN(PI1);
END

TABLE FILE ggsales
PRINT
SIN1 SIN2 SIN3 SIN4
OVER
COMPUTE
ARCSIN1/D12.2 = ASIN(SIN1);
ARCCSIN2/D12.2 = ASIN(SIN2);
ARCSIN3/D12.2 = ASIN(SIN3);
ARCSIN4/D12.2 = ASIN(SIN4);
END
```

The output is shown in the following image.
ATAN: Calculating an Angle Given its Tangent

Given the tangent of an angle in radians, ATAN (arctangent) returns an angle between -(pi/2) and pi/2 radians.

Syntax: How to Calculate an Angle Given its Tangent

ATAN(expression)

where:

expression

Numeric

Is the tangent of an angle.

Example: Calculating the Arctangent of a Value

The following request calculates the arctangent of 0, PI/4 radians, and PI radians.

DEFINE FILE ggsales
PI1 = PI();
PI4 = PI()/4;
TAN1 = TAN(0);
TAN3 = TAN(PI4);
TAN4 = TAN(PI1);
END

TABLE FILE ggsales
PRINT
TAN1 TAN2 TAN3 TAN4
OVER
COMPUTE
ARCTAN1/D12.2 = ATAN(TAN1);
ARCTAN3/D12.2 = ATAN(TAN3);
ARCTAN4/D12.2 = ATAN(TAN4);
BY DATE
WHERE RECORDLIMIT EQ 1
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
ATAN2: Calculating an Angle Given the Coordinates of its Tangent

Given the coordinates of the tangent of an angle in radians, ATAN2 (arctangent2) returns an angle between -pi and pi radians.

**Syntax:** How to Calculate an Angle Given the Coordinates of its Tangent

\[
\text{ATAN2}(x, y)
\]

where:

- \(x\)
  - Numeric
  - Is the x-coordinate in radians of the tangent of an angle.

- \(y\)
  - Numeric
  - Is the y-coordinate in radians of the tangent of an angle.
**Example:** Calculating the Arctangent of a Set of Coordinates

The following request calculates the arctangent of (\(\pi,0\)), (\(\pi/4,\pi/4\)), and (\(\pi,\pi\)).

```plaintext
DEFINE FILE ggsales
PI4 = PI()/4;
END

TABLE FILE ggsales
PRINT
TAN1 TAN2 TAN3 TAN4
OVER
COMPUTE
ATAN2A/D12.2 = ATAN2(PI(),0);
ATAN2B/D12.2 = ATAN2(PI4,PI4);
ATAN2C/D12.2 = ATAN2(PI(),PI());

BY DATE
WHERE RECORDLIMIT EQ 1
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Date</th>
<th>ATAN2A</th>
<th>ATAN2B</th>
<th>ATAN2C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997/04/01</td>
<td>1.57</td>
<td>.79</td>
<td>.79</td>
</tr>
</tbody>
</table>

**COS: Calculating the Cosine of an Angle**

Given an angle in radians, **COS** calculates the cosine of the angle.

**Syntax:** How to Calculate the Cosine of an Angle

```plaintext
COS(expression)
```

where:

`expression`

Numeric

Is an angle in radians.
Example: Calculating the Cosine of an Angle

The following request calculates the cosine of 0, PI/2 radians, PI/4 radians, and PI radians, then calculates the arccosine of those cosines.

```
DEFINE FILE ggsales
PI1 = PI();
PI2 = PI()/2;
PI4 = PI()/4;
END

TABLE FILE ggsales
PRINT COMPUTE
COSINE1 = COS(0);
COSINE2 = COS(PI2);
COSINE3 = COS(PI4);
COSINE4 = COS(PI1);
BY DATE
WHERE RECORDLIMIT EQ 1
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Date</th>
<th>COSINE1</th>
<th>COSINE2</th>
<th>COSINE3</th>
<th>COSINE4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997/04/01</td>
<td>1.00</td>
<td>.00</td>
<td>.71</td>
<td>-1.00</td>
</tr>
</tbody>
</table>

COT: Calculating the Cotangent of an Angle

Given an angle in radians, COT calculates the cotangent of the angle.

Syntax: How to Calculate the Cotangent of an Angle

```
COT(expression)
```

where:

```
expression
```

Numeric

Is an angle in radians.
**Example:** Calculating the Cotangent of an Angle

The following request calculates the cotangent of PI/2 and PI/4 radians.

```plaintext
DEFINE FILE ggsales
 PI2 = PI()/2;
 PI4 = PI()/4;
END

TABLE FILE ggsales
PRINT COMPUTE
 COTGENT2 = COT(PI2);
 COTGENT3 = COT(PI4);
ENDBY DATE
WHERE RECORDLIMIT EQ 1
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,
ENDSTYLE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Date</th>
<th>COT1</th>
<th>COT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997/04/01</td>
<td>.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

**DEGREES: Converting Radians to Degrees**

DEGREES converts an angle in radians to an angle in degrees.

**Syntax:** How to Convert Radians to Degrees

```
DEGREES(expression)
```

where:

- `expression`

  Numeric

  Is an angle in radians.
Example: Converting Radians to Degrees

The following request converts 0, PI/2, PI/4, and PI radians to degrees.

```
DEFINE FILE ggsales
PI2 = PI()/2;
PI4 = PI()/4;
END

TABLE FILE ggsales
PRINT COMPUTE
DEG1/D12.2 = DEGREES(0);
DEG2/D12.2 = DEGREES(PI2);
DEG3/D12.2 = DEGREES(PI4);
DEG4/D12.2 = DEGREES(PI());
BY DATE
WHERE RECORDLIMIT EQ 1
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

The output is shown in the following image.

```
Date DEG1 DEG2 DEG3 DEG4
1997/04/01 .00 90.00 45.00 180.00
```

PI: Returning the Constant Pi

PI returns the constant pi as a floating-point number.

Syntax: How to Returning the Value Pi

```
PI()
```
Example: Returning the Constant Pi

The following request returns the constant pi rounded to two decimal places and rounded to 10 decimal places.

```
TABLE FILE ggsales
PRINT COMPUTE
PI2/D12.2 = PI();
PI10/D12.10 = PI();
BY DATE
WHERE RECORDLIMIT EQ 1
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Date</th>
<th>PI2</th>
<th>PI10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997/04/01</td>
<td>3.14</td>
<td>3.1415926536</td>
</tr>
</tbody>
</table>

RADIANS: Converting Degrees to Radians

RADIANS converts an angle in degrees to an angle in radians.

Syntax: How to Convert Degrees to Radians

```
RADIANS(expression)
```

where:

- `expression` Numeric
  - Is an angle in degrees.
**Example:** Converting Radians to Degrees

The following request converts 0, 45, 90, and 180 degrees to radians.

```plaintext
TABLE FILE ggsales
PRINT COMPUTE
RAD1/D12.2 = RADIANS(0);
RAD2/D12.2 = RADIANS(45);
RAD3/D12.2 = RADIANS(90);
RAD4/D12.2 = RADIANS(180);
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Date</th>
<th>RAD1</th>
<th>RAD2</th>
<th>RAD3</th>
<th>RAD4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997/04/01</td>
<td>.00</td>
<td>.79</td>
<td>1.57</td>
<td>3.14</td>
</tr>
</tbody>
</table>

**SIN: Calculating the Sine of an Angle**

Given an angle in radians, SIN calculates the sine of the angle.

**Syntax:** How to Calculate the Sine of an Angle

`SIN(expression)`

where:

`expression`  
Numeric  
Is an angle in radians.
**Example:** Calculating the Sine of an Angle

The following request calculates the sine of 0, \( \pi/2 \) radians, \( \pi/4 \) radians, and \( \pi \) radians.

```plaintext
DEFINE FILE ggsales
PI1 = PI();
PI2 = PI()/2;
PI4 = PI()/4;
END

TABLE FILE ggsales
PRINT COMPUTE
SINE1 = SIN(0);
SINE2 = SIN(PI2);
SINE3 = SIN(PI4);
SINE4 = SIN(PI1);
BY DATE
WHERE RECORDLIMIT EQ 1
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Date</th>
<th>SINE1</th>
<th>SINE2</th>
<th>SINE3</th>
<th>SINE4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997/04/01</td>
<td>.00</td>
<td>1.00</td>
<td>.71</td>
<td>.00</td>
</tr>
</tbody>
</table>

**TAN: Calculating the Tangent of an Angle**

Given an angle in radians, TAN calculates the tangent of the angle.

**Syntax:** How to Calculate the Tangent of an Angle

\[ \text{TAN(expression)} \]

where:

- **expression**
  - Numeric
  - Is an angle in radians.
Example: Calculating the Tangent of an Angle

The following request calculates the tangent of 0, PI/4 radians, and PI radians.

```
DEFINE FILE ggsales
PI1 = PI();
PI4 = PI()/4;
END

TABLE FILE ggsales
PRINT COMPUTE
TANGENT1 = TAN(0);
TANGENT2 = TAN(PI4);
TANGENT3 = TAN(PI1);
BY DATE
WHERE RECORDLIMIT EQ 1
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END
```

The output is shown in the following image.

<table>
<thead>
<tr>
<th>Date</th>
<th>TANGENT1</th>
<th>TANGENT2</th>
<th>TANGENT3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997/04/01</td>
<td>.00</td>
<td>1.00</td>
<td>.00</td>
</tr>
</tbody>
</table>
TAN: Calculating the Tangent of an Angle
Creating a Subroutine

You can create custom subroutines to use in addition to the functions provided by WebFOCUS. The process of creating a subroutine consists of the following steps:

- Writing a subroutine using any language that supports subroutine calls. Some of the most common languages are FORTRAN, COBOL, PL/I, Assembler, and C. For details, see Writing a Subroutine on page 731.

- Compiling the subroutine. For details, see Compiling and Storing a Subroutine on page 742.

- Storing the subroutine in a separate file; do not include it in the main program. For details, see Compiling and Storing a Subroutine on page 742.

- Testing the subroutine. For details, see Testing the Subroutine on page 743.

Note: On z/OS, all subroutines called by WebFOCUS must be fully LE compliant.

In this appendix:

- Writing a Subroutine
- Compiling and Storing a Subroutine
- Testing the Subroutine
- Using a Custom Subroutine: The MTHNAM Subroutine
- Subroutines Written in REXX

Writing a Subroutine

You can write a subroutine in any language that supports subroutines. If you intend to make your subroutine available to other users, be sure to document what your subroutine does, what the arguments are, what formats they have, and in what order they must appear in the subroutine call.

When you write a subroutine you need to consider the requirements and limits that affect it. These are:

- Naming conventions. For details, see Naming a Subroutine on page 733.
Argument considerations. For details, see Creating Arguments on page 733.

Language considerations. For details, see Language Considerations on page 734.

Programming considerations. For details, see Programming a Subroutine on page 737.

If you write a program named INTCOMP that calculates the amount of money in an account earning simple interest, the program reads a record, tests if the data is acceptable, and then calls a subroutine called SIMPLE that computes the amount of money. The program and the subroutine are stored together in the same file.

The program and the subroutine shown here are written in pseudocode (a method of representing computer code in a general way):

Begin program INTCOMP.
Execute this loop until end-of-file.
   Read next record, fields: PRINCIPAL, DATE_PUT, YRRATE.
   If PRINCIPAL is negative or greater than 100,000, reject record.
   If DATE_PUT is before January 1, 1975, reject record.
   If YRRATE is negative or greater than 20%, reject record.
   Call subroutine SIMPLE (PRINCIPAL, DATE_PUT, YRRATE, TOTAL).
   Print PRINCIPAL, YEARRATE, TOTAL.
End of loop.
End of program.

Subroutine SIMPLE (AMOUNT, DATE, RATE, RESULT).
Retrieve today's date from the system.
Let NO_DAYS = Days from DATE until today's date.
Let DAY_RATE = RATE / 365 days in a year.
Let RESULT = AMOUNT * (NO_DAYS * DAY_RATE + 1).
End of subroutine.

If you move the SIMPLE subroutine into a file separate from the main program and compile it, you can call the subroutine. The following report request shows how much money employees would accrue if they invested salaries in accounts paying 12%:

TABLE FILE EMPLOYEE
PRINT LAST_NAME DAT_INC SALARY AND COMPUTE
   INVESTED/D10.2 = SIMPLE(SALARY, DAT_INC, 0.12, INVESTED);
BY EMP_ID
END

Note: The subroutine is designed to return only the amount of the investment, not the current date because a subroutine can return only a single value each time it is called.
Naming a Subroutine

A subroutine name can be up to eight characters long unless the language you are using to write the subroutine requires a shorter name. A name must start with a letter and can consist of a combination of letters and/or numbers. Special symbols are not permitted.

Creating Arguments

When you create arguments for a subroutine, you must consider the following issues:

- **Maximum number of arguments.** A subroutine may contain up to 200 arguments. You can bypass this restriction by creating a subroutine that accepts multiple calls, as described in *Including More Than 200 Arguments in a Subroutine Call* on page 739.

- **Argument types.** You can use the same types of arguments in a subroutine as in a function. For details on these argument types, see *Argument Types* on page 63.

- **Input arguments.** Input arguments are passed to a subroutine using standard conventions. Register one points to the list of arguments.

  You should not assume that input parameters are stored in contiguous memory.

- **Output arguments.** A subroutine returns only one output argument. This argument must be the last in the subroutine. You can choose any format for the output argument except in Dialogue Manager which requires the argument to have the format of the output field.

- **Internal processing.** A subroutine’s arguments are processed as follows:

  - An alphanumeric argument is not changed.

  - A numeric argument is converted to floating-point double-precision format except in an operating system RUN command or when storing the output in a variable.

- **Dialogue Manager requirements.** If you are writing a subroutine specifically for Dialogue Manager, the subroutine may need to perform a conversion. For details on using a subroutine with Dialogue Manager, see *Calling a Function From a Dialogue Manager Command* on page 70.

- **COBOL requirements.** All parameters must be defined at the same level in the COBOL FD. Alternatively, you can concatenate all of the parameters into one string, and break them apart within the subroutine.

  The lengths of the calling arguments as defined in WebFOCUS must match the lengths of the corresponding arguments defined in the subroutine.
Any deviation from these rules may result in problems in using the subroutine. It is recommended that you modify the subroutine to conform to the stated rules and then link it above the line. In order to load subroutines above the line, the following are the required link-edit options for compiling and storing the subroutine:

- AMODE 31 (Addressing Mode - 31-bit addressing)
- RMODE ANY (System can load this routine anywhere)

**Language Considerations**

When writing a subroutine, you must consider the following language issues:

**Language and memory.** If you write a subroutine in a language that brings libraries into memory (for example, FORTRAN and COBOL), the libraries reduce the amount of memory available to the subroutine.

**FORTRAN.** TSO supports FORTRAN input/output operations.

**COBOL.** When writing a subroutine in COBOL:

- The subroutine must use the GOBACK command to return to the calling program. STOPRUN is not supported.
- Numeric arguments received from a request must be declared as COMP-2 (double precision floating point).
- The format described in the DEFINE or COMPUTE command determines the format of the output argument:

<table>
<thead>
<tr>
<th>WebFOCUS Format</th>
<th>Picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n$</td>
<td>$Xn$</td>
</tr>
<tr>
<td>$I$</td>
<td>S9(9) COMP</td>
</tr>
<tr>
<td>$P$</td>
<td>S9(n) [V9(m)]</td>
</tr>
</tbody>
</table>

where:

\[(1+n+m)/2 = 8\] for small packed numbers.

\[(1+n+m)/2 = 16\] for large packed numbers.
When writing a subroutine in PL/I:

- The RETURNS attribute cannot be used.
- The following attribute must be in the procedure (PROC) statement:

  OPTIONS (COBOL)

- Alphanumeric arguments received from a request must be declared as

  CHARACTER (n)

  where:

  n

  Is the field length as defined by the request. Do not use the VARYING attribute.

- Numeric arguments received from a request must be declared as

  DECIMAL FLOAT (16)

  or

  BINARY FLOAT (53)
The format described in the DEFINE or COMPUTE command determines the format of the output argument:

<table>
<thead>
<tr>
<th>WebFOCUS Format</th>
<th>PL/I Declaration for Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>An</td>
<td>CHARACTER (n)</td>
</tr>
<tr>
<td>I</td>
<td>BINARY FIXED (31)</td>
</tr>
<tr>
<td>F</td>
<td>DECIMAL FLOAT (6) or BINARY FLOAT (21)</td>
</tr>
<tr>
<td>D</td>
<td>DECIMAL FLOAT (16) or BINARY FLOAT (53)</td>
</tr>
<tr>
<td>P</td>
<td>DECIMAL FIXED (15) (for small packed numbers, 8 bytes)</td>
</tr>
<tr>
<td></td>
<td>DECIMAL FIXED (31) (for large packed numbers, 16 bytes)</td>
</tr>
</tbody>
</table>

Variables that are not arguments with the STATIC attribute must be declared. This avoids dynamically allocating these variables every time the subroutine is executed.

C language. When writing a subroutine in C:

- Do not return a value with the return statement.
- Declare double-precision fields as Double.
- The format defined in the DEFINE or COMPUTE command determines the format of the output argument:

<table>
<thead>
<tr>
<th>WebFOCUS Format</th>
<th>C Declaration for Output</th>
</tr>
</thead>
</table>
| An              | char *xxx
n                   |

Alphanumeric fields are not terminated with a null byte and cannot be processed by many of the string manipulation subroutines in the run-time library.
<table>
<thead>
<tr>
<th>WebFOCUS Format</th>
<th>C Declaration for Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>long *xxx</td>
</tr>
<tr>
<td>F</td>
<td>float *xxx</td>
</tr>
<tr>
<td>D</td>
<td>double *xxx</td>
</tr>
<tr>
<td>P</td>
<td>No equivalent in C.</td>
</tr>
</tbody>
</table>

**Programming a Subroutine**

Consider the following when planning your programming requirements:

- Write the subroutine to include an argument that specifies the output field.
- If the subroutine initializes a variable, it must initialize it each time it is executed (serial reusability).
- Since a single request may execute a subroutine numerous times, code the subroutine as efficiently as possible.
- If you create your subroutine in a text file or text library, the subroutine must be 31-bit addressable.
- The last argument, which is normally used for returning the result of the subroutine, can also be used to provide input from the subroutine.

You can add flexibility to your subroutine by using a programming technique. A programming technique can be one of the following:

- Executing a subroutine at an entry point. An entry point enables you to use one algorithm to produce different results. For details, see *Executing a Subroutine at an Entry Point* on page 738.
- Creating a subroutine with multiple subroutine calls. Multiple calls enable the subroutine to process more than 200 arguments. For details, see *Including More Than 200 Arguments in a Subroutine Call* on page 739.
Executing a Subroutine at an Entry Point

A subroutine is usually executed starting from the first statement. However, a subroutine can be executed starting from any place in the code designated as an entry point. This enables a subroutine to use one basic algorithm to produce different results. For example, the DOWK subroutine calculates the day of the week on which a date falls. By specifying the subroutine name DOWK, you obtain a 3-letter abbreviation of the day. If you specify the entry name DOWKL, you obtain the full name. The calculation, however, is the same.

Each entry point has a name. To execute a subroutine at an entry point, specify the entry point name in the subroutine call instead of the subroutine name. How you designate an entry point depends on the language you are using.

Syntax: How to Execute a Subroutine at an Entry Point

```
{subroutine|entrypoint} (input1, input2,...outfield)
```

where:

subroutine

Is the name of the subroutine.

entrypoint

Is the name of the entry point to execute the subroutine at.

input1, input2,...

Are the subroutine’s arguments.

outfield

Is the field that contains the result, or the format of the output value enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain Data, you must specify the name of the field.
Example: Executing a Subroutine at an Entry Point

The FTOC subroutine, written in pseudocode below, converts Fahrenheit temperature to Centigrade. The entry point FTOK (designated by the Entry command) sets a flag that causes 273 to be subtracted from the Centigrade temperature to find the Kelvin temperature. The subroutine is:

Subroutine FTOC (FAREN, CENTI).
Let FLAG = 0.
Go to label X.
Entry FTOK (FAREN, CENTI).
Let FLAG = 1.
Label X.
Let CENTI = (5/9) * (FAREN - 32).
If FLAG = 1 then CENTI = CENTI - 273.
Return.
End of subroutine.

The following is a shorter way to write the subroutine. Notice that the \textit{kelv} output argument listed for the entry point is different from the \textit{centi} output argument listed at the beginning of the subroutine:

Subroutine FTOC (FAREN, CENTI).
Entry FTOK (FAREN, KELV).
Let CENTI = (5/9) * (FAREN - 32).
KELV = CENTI - 273.
Return.
End of Subroutine.

To obtain the Centigrade temperature, specify the subroutine name FTOC in the subroutine call. The subroutine processes as:

\texttt{CENTIGRADE/D6.2 = FTOC (TEMPERATURE, CENTIGRADE);}

To obtain the Kelvin temperature, specify the entry name FTOK in the subroutine call. The subroutine processes as:

\texttt{KELVIN/D6.2 = FTOK (TEMPERATURE, KELVIN);}

Including More Than 200 Arguments in a Subroutine Call

A subroutine can specify a maximum of 200 arguments including the output argument. To process more than 200 arguments, the subroutine must specify two or more call statements to pass the arguments to the subroutine.
Use the following technique for writing a subroutine with multiple calls:

1. Divide the subroutine into segments. Each segment receives the arguments passed by one corresponding subroutine call.

   The argument list in the beginning of your subroutine must represent the same number of arguments in the subroutine call, including a call number argument and an output argument.

   Each call contains the same number of arguments. This is because the argument list in each call must correspond to the argument list in the beginning of the subroutine. You may process some of the arguments as dummy arguments if you have an unequal number of arguments. For example, if you divide 32 arguments among six segments, each segment processes six arguments; the sixth segment processes two arguments and four dummy arguments.

   Subroutines may require additional arguments as determined by the programmer who creates the subroutine.

2. Include a statement at the beginning of the subroutine that reads the call number (first argument) and branches to a corresponding segment. Each segment processes the arguments from one call. For example, number one branches to the first segment, number two to the second segment, and so on.

3. Have each segment store the arguments it receives in other variables (which can be processed by the last segment) or accumulate them in a running total.

   End each segment with a command returning control back to the request (RETURN command).

4. The last segment returns the final output value to the request.

You can also use the entry point technique to write subroutines that process more than 200 arguments. For details, see *Executing a Subroutine at an Entry Point* on page 738.
Syntax: How to Create a Subroutine With Multiple Call Statements

```
field = subroutine (1, group1, field)
;field = subroutine (2, group2, field);
.
.
.outfield = subroutine (n, groupn, outfield);
```

where:

* **field**
  
  Is the name of the field that contains the result of the segment or the format of the field enclosed in single quotation marks. This field must have the same format as **outfield**.
  
  Do not specify **field** for the last call statement; use **outfield**.

* **subroutine**
  
  Is the name of the subroutine up to eight characters long.

* **n**
  
  Is a number that identifies each subroutine call. It must be the first argument in each subroutine call. The subroutine uses this call number to branch to segments of code.

* **group1, group2,**...
  
  Are lists of input arguments passed by each subroutine call. Each group contains the same number of arguments, and no more than 26 arguments each.
  
  The final group may contain dummy arguments.

* **outfield**
  
  Is the field that contains the result, or the format of the output value enclosed in single quotation marks.
  
  In Dialogue Manager, you must specify the format. In Maintain Data, you must specify the name of the field.

Example: Creating a Subroutine Divided Into Segments

The ADD32 subroutine, written in pseudocode, sums 32 numbers. It is divided into six segments, each of which adds six numbers from a subroutine call. (The total number of input arguments is 36 but the last four are dummy arguments.) The sixth segment adds two arguments to the SUM variable and returns the result. The sixth segment does not process any values supplied for the four dummy arguments.
The subroutine is:

Subroutine ADD32 (NUM, A, B, C, D, E, F, TOTAL).
If NUM is 1 then goto label ONE
else if NUM is 2 then goto label TWO
else if NUM is 3 then goto label THREE
else if NUM is 4 then goto label FOUR
else if NUM is 5 then goto label FIVE
else goto label SIX.

Label ONE.
Let SUM = A + B + C + D + E + F.
Return.

Label TWO
Let SUM = SUM + A + B + C + D + E + F
Return

Label THREE
Let SUM = SUM + A + B + C + D + E + F
Return

Label FOUR
Let SUM = SUM + A + B + C + D + E + F
Return

Label FIVE
Let SUM = SUM + A + B + C + D + E + F
Return

Label SIX
LET TOTAL = SUM + A + B
Return
End of subroutine

To use the ADD32 subroutine, list all six call statements, each call specifying six numbers. The last four numbers, represented by zeros, are dummy arguments. The DEFINE command stores the total of the 32 numbers in the SUM32 field.

DEFINE FILE EMPLOYEE
DUMMY/D10 = ADD32 (1, 5, 7, 13, 9, 4, 2, DUMMY);
DUMMY/D10 = ADD32 (2, 5, 16, 2, 9, 28, 3, DUMMY);
DUMMY/D10 = ADD32 (3, 17, 12, 8, 4, 29, 6, DUMMY);
DUMMY/D10 = ADD32 (4, 28, 3, 22, 7, 18, 1, DUMMY);
DUMMY/D10 = ADD32 (5, 8, 19, 7, 25, 15, 4, DUMMY);
SUM32/D10 = ADD32 (6, 3, 27, 0, 0, 0, 0, SUM32);
END

Compiling and Storing a Subroutine

After you write a subroutine, you need to compile and store it. This topic discusses compiling and storing your subroutine for Windows and z/OS.
Compiling and Storing a Subroutine on z/OS

Compile the subroutine, then link-edit it and store the module in a load library. If your subroutine calls other subroutines, compile and link-edit all the subroutines together in a single module. Do not store the subroutine in the FUSELIB load library (FUSELIB.LOAD), as it may be overwritten when your site installs the next release of WebFOCUS.

If the subroutine is written in PL/I, include the following when link-editing the subroutine

```
ENTRY subroutine
```

where:
```
subroutine
```

Is the name of the subroutine.

Compiling and Storing a Subroutine on UNIX

Run the program GENCPGM, which creates a .DLL file. Then check the location of your dynamic link functions library file as specified by the IBICPG environment variable, and save the .DLL file to this location.

Compiling and Storing a Subroutine on Windows

Run the program GENCPGM, which creates a .DLL file. Then check the location of your dynamic link functions library file as specified by the IBICPG environment variable, and save the .DLL file to this location.

Testing the Subroutine

After compiling and storing a subroutine, you can test it in a report request. In order to access the subroutine, you need to issue the ALLOCATE command for z/OS.

If an error occurs during testing, check to see if the error is in the request or in the subroutine.

Procedure: How to Determine the Location of Error

You can determine the location of an error with the following:

1. Write a dummy subroutine that has the same arguments but returns a constant.
2. Execute the request with the dummy subroutine.

If the request executes the dummy subroutine normally, the error is in your subroutine. If the request still generates an error, the error is in the request.
Using a Custom Subroutine: The MTHNAM Subroutine

This topic discusses the MTHNAM subroutine as an example. The MTHNAM subroutine converts a number representing a month to the full name of that month. The subroutine processes as follows:

1. Receives the input argument from the request as a double-precision number.
2. Adds .000001 to the number which compensates for rounding errors. Rounding errors can occur since floating-point numbers are approximations and may be inaccurate in the last significant digit.
3. Moves the number into an integer field.
4. If the number is less than one or greater than 12, it changes the number to 13.
5. Defines a list containing the names of months and an error message for the number 13.
6. Sets the index of the list equal to the number in the integer field. It then places the corresponding array element into the output argument. If the number is 13, the argument contains the error message.
7. Returns the result as an output field.

Writing the MTHNAM Subroutine

The MTHNAM subroutine can be written in FORTRAN, COBOL, PL/I, BAL Assembler, and C.

Reference: MTHNAM Subroutine Written in FORTRAN

This is a FORTRAN version of the MTHNAM subroutine where:

MTH

Is the double-precision number in the input argument.

MONTH

Is the name of the month. Since the character string 'September' contains nine letters, MONTH is a three element array. The subroutine passes the three elements back to your application which concatenates them into one field.

A

Is a two dimensional, 13 by 3 array, containing the names of the months. The last three elements contain the error message.

IMTH

Is the integer representing the month.
The subroutine is:

```fortran
SUBROUTINE MTHNAM (MTH,MONTH)
REAL*8 MTH
INTEGER*4 MONTH(3), A(13, 3), IMTH
DATA
+ A(1,1)'/JANU/', A(1,2)'/ARY '/, A(1,3)'/ '/,
+ A(2,1)'/FEBR/', A(2,2)'/UARY'/, A(2,3)'/ '/,
+ A(3,1)'/MARC/', A(3,2)'/H '/, A(3,3)'/ '/,
+ A(4,1)'/APRI'/, A(4,2)'/L '/, A(4,3)'/ '/,
+ A(5,1)'/MAY '/, A(5,2)' '/, A(5,3)' '/,
+ A(6,1)'/JUNE'/, A(6,2)' '/, A(6,3)' '/,
+ A(7,1)'/JULY'/, A(7,2)' '/, A(7,3)' '/,
+ A(8,1)'/AUGU'/, A(8,2)'/ST '/, A(8,3)' '/,
+ A(9,1)'/SEPT'/, A(9,2)'/EMBE'/, A(9,3)'R '/,
+ A(10,1)'/OCTO'/, A(10,2)'/BER '/, A(10,3)' '/,
+ A(11,1)'/NOVE'/, A(11,2)'/MBER'/, A(11,3)' '/,
+ A(12,1)'/DECE'/, A(12,2)'/MBER'/, A(12,3)' '/,
+ A(13,1)'**ER'/, A(13,2)'ROR'/, A(13,3)'* '/
IMTH=MTH+0.000001
IF (IMTH .LT. 1 .OR. IMTH .GT. 12) IMTH=13
DO 1 I=1,3
1 MONTH(I)=A(IMTH, I)
RETURN
END

Reference: MTHNAM Subroutine Written in COBOL

This is a COBOL version of the MTHNAM subroutine where:

MONTH-TABLE

Is a field containing the names of the months and the error message.

MLINE

Is a 13-element array that redefines the MONTH-TABLE field. Each element (called A) contains the name of a month; the last element contains the error message.

A

Is one element in the MLINE array.

IX

Is an integer field that indexes MLINE.

IMTH

Is the integer representing the month.

MTH

Is the double-precision number in the input argument.
MONTH

Is the name of the month corresponding to the integer in IMTH.

The subroutine is:

IDENTIFICATION DIVISION.
PROGRAM-ID. MTHNAM.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
WORKING-STORAGE SECTION.
 01 MONTH-TABLE.
 05 FILLER PIC X(9) VALUE 'JANUARY '.
 05 FILLER PIC X(9) VALUE 'FEBRUARY '.
 05 FILLER PIC X(9) VALUE 'MARCH '.
 05 FILLER PIC X(9) VALUE 'APRIL '.
 05 FILLER PIC X(9) VALUE 'MAY '.
 05 FILLER PIC X(9) VALUE 'JUNE '.
 05 FILLER PIC X(9) VALUE 'JULY '.
 05 FILLER PIC X(9) VALUE 'AUGUST '.
 05 FILLER PIC X(9) VALUE 'SEPTEMBER'.
 05 FILLER PIC X(9) VALUE 'OCTOBER '.
 05 FILLER PIC X(9) VALUE 'NOVEMBER '.
 05 FILLER PIC X(9) VALUE 'DECEMBER '.
 05 FILLER PIC X(9) VALUE '**ERROR**'.
 01 MLIST REDEFINES MONTH-TABLE.
 05 MLINE OCCURS 13 TIMES INDEXED BY IX.
 10 A PIC X(9).
 01 IMTH PIC S9(5) COMP.
LINKAGE SECTION.
 01 MTH COMP-2.
 01 MONTH PIC X(9).
PROCEDURE DIVISION USING MTH, MONTH.
BEG-1.
 ADD 0.000001 TO MTH.
 MOVE MTH TO IMTH.
 IF IMTH < +1 OR > 12
 SET IX TO +13
 ELSE
 SET IX TO IMTH.
 MOVE A (IX) TO MONTH.
 GOBACK.

Reference: MTHNAM Subroutine Written in PL/I

This is a PL/I version of the MTHNAM subroutine where:

MTHNUM

Is the double-precision number in the input argument.
FULLMTH

Is the name of the month corresponding to the integer in MONTHNUM.

MONTHNUM

Is the integer representing the month.

MONTH_TABLE

Is a 13-element array containing the names of the months. The last element contains the error message.

The subroutine is:

MTHNAM: PROC(MTHNUM, FULLMTH) OPTIONS(COBOL);
DECLARE MTHNUM DECIMAL FLOAT (16) ;
DECLARE FULLMTH CHARACTER (9) ;
DECLARE MONTHNUM FIXED BIN (15,0) STATIC ;
DECLARE MONTH_TABLE(13) CHARACTER (9) STATIC
INIT ('JANUARY',
 'FEBRUARY',
 'MARCH',
 'APRIL',
 'MAY',
 'JUNE',
 'JULY',
 'AUGUST',
 'SEPTEMBER',
 'OCTOBER',
 'NOVEMBER',
 'DECEMBER',
 '**ERROR**') ;

MONTHNUM = MTHNUM + 0.00001 ;
IF MONTHNUM < 1 | MONTHNUM > 12 THEN
 MONTHNUM = 13 ; FULLMTH = MONTH_TABLE(MONTHNUM) ;
RETURN;
END MTHNAM;
Reference: MTHNAM Subroutine Written in BAL Assembler

This is a BAL Assembler version of the MTHNAM subroutine:

```assembly
* ======== MTHNAM Subroutine Written in BAL Assembler ======== *
* A SIMPLE MAIN ASSEMBLE ROUTINE THAT CALLS THE LE CALLABLE SERVICES *
* ===================================================================== *
MTHNAM  CEEENTRY PPA=MAINPPA,AUTO=WORKSIZE,MAIN=NO USING WORKAREA,13
*
    L  3,0(0,1)          LOAD ADDR OF FIRST ARG INTO R3
LD    4,=D'0.0'       CLEAR OUT FPR4 AND FPR5
LE    6,0(0,3)       FP NUMBER IN FPR6
LPER  4,6           ABS VALUE IN FPR4
AW    4,=D'0.00001' ADD ROUNDING CONSTANT
AW    4,DZERO        SHIFT OUT FRACTION
STD   4,FPNUM       MOVE TO MEMORY
L     2,FPNUM+4     INTEGER PART IN R2
TM    0(3),B'10000000' CHECK SIGN OF ORIGINAL NO
    BNO      POS      BRANCH IF POSITIVE
    LCR      2,2       COMPLEMENT IF NEGATIVE
*
    POS     LR     3,2       COPY MONTH NUMBER INTO R3
    C     2,=F'0'       IS IT ZERO OR LESS?
    BNP    INVALID     YES. SO INVALID
    C     2,=F'12'      IS IT GREATER THAN 12?
    BNP    VALID       NO. SO VALID
    INVALID   LA     3,13(0,0) SET R3 TO POINT TO ITEM 13 (ERROR)
*
    VALID   SR     2,2       CLEAR OUT R2
    M     2,=F'9'     MULTIPLY BY SHIFT IN TABLE
*
    LA  6,MTH(3)     GET ADDR OF ITEM IN R6
```
L 4,4(0,1) GET ADDR OF SECOND ARG IN R4
MVC 0(9,4),0(6) MOVE IN TEXT

* TERMINATE THE CEE ENVIRONMENT AND RETURN TO THE CALLER
*
CEETERM RC=0
*
===
* CONSTANTS
* ==
DS 0D ALIGNMENT
FPNUM DS D FLOATING POINT NUMBER
DZERO DC X'4E00000000000000' SHIFT CONSTANT
MTH DC CL9'DUMMYITEM' MONTH TABLE
 DC CL9'JANUARY'
 DC CL9'FEBRUARY'
 DC CL9'MARCH'
 DC CL9'APRIL'
 DC CL9'MAY'
 DC CL9'JUNE'
 DC CL9'JULY'
 DC CL9'AUGUST'
 DC CL9'SEPTEMBER'
 DC CL9'OCTOBER'
 DC CL9'NOVEMBER'
 DC CL9'DECEMBER'
 DC CL9 '**ERROR**'
*
MAINPPA CEEPPA CONSTANTS DESCRIBING THE CODE BLOCK
* ==
* THE WORKAREA AND DSA
* ==
WORKAREA DSECT
 ORG *+CEEDSASZ LEAVE SPACE FOR THE DSA FIXED PART
PLIST DS 0D
PARM1 DS A
PARM2 DS A
PARM3 DS A
PARM4 DS A
PARM5 DS A
*
FOCPARM1 DS F SAVE FIRST PARAMETER PASSED
FOCPARM2 DS F SAVE SECOND PARAMETER PASSED
*
 DS 0D
WORKSIZE EQU *-WORKAREA
 CEEDSA MAPPING OF THE DYNAMIC SAVE AREA
 CEECAA MAPPING OF THE COMMON ANCHOR AREA
*
END MTHNAM NOMINATE MTHNAM AS THE ENTRY POINT
/*
Reference: **MTHNAM Subroutine Written in C**

This is a C language version of the MTHNAM subroutine:

```c
void mthnam(double *, char *);
void mthnam(mth, month)
  double *mth;
  char *month;
{
                        "February ",
                        "March ",
                        "April ",
                        "May ",
                        "June ",
                        "July ",
                        "August ",
                        "September",
                        "October ",
                        "November ",
                        "December ",
                        "**Error**");

    int imth, loop;
    imth = *mth + .00001;
    imth = (imth < 1 || imth > 12 ? 13 : imth);
    for (loop=0;loop < 9;loop++)
      month[loop] = nmonth[imth-1][loop];
}
```

Calling the MTHNAM Subroutine From a Request

You can call the MTHNAM subroutine from a report request.

Example: Calling the MTHNAM Subroutine

The DEFINE command extracts the month portion of the pay date. The MTHNAM subroutine then converts it into the full name of the month, and stores the name in the PAY_MONTH field. The report request prints the monthly pay of Alfred Stevens.

```
DEFINE FILE EMPLOYEE
  MONTH_NUM/M = PAY_DATE;
  PAY_MONTH/A12 = MTHNAM (MONTH_NUM, PAY_MONTH);
END

TABLE FILE EMPLOYEE
  PRINT PAY_MONTH GROSS
  BY EMP_ID BY FIRST_NAME BY LAST_NAME
  BY PAY_DATE
  IF LN IS STEVENS
END
```
A. Creating a Subroutine

The output is:

<table>
<thead>
<tr>
<th>EMP_ID</th>
<th>FIRST_NAME</th>
<th>LAST_NAME</th>
<th>PAY_DATE</th>
<th>PAY_MONTH</th>
<th>GROSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>071382660</td>
<td>ALFRED</td>
<td>STEVENS</td>
<td>81/11/30</td>
<td>NOVEMBER</td>
<td>$833.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>81/12/31</td>
<td>DECEMBER</td>
<td>$833.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82/01/29</td>
<td>JANUARY</td>
<td>$916.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82/02/26</td>
<td>FEBRUARY</td>
<td>$916.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82/03/31</td>
<td>MARCH</td>
<td>$916.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82/04/30</td>
<td>APRIL</td>
<td>$916.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82/05/28</td>
<td>MAY</td>
<td>$916.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82/06/30</td>
<td>JUNE</td>
<td>$916.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82/07/30</td>
<td>JULY</td>
<td>$916.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82/08/31</td>
<td>AUGUST</td>
<td>$916.67</td>
</tr>
</tbody>
</table>

Subroutines Written in REXX

A request can call a subroutine coded in REXX. These subroutines, also called FUSREXX macros, provide a 4GL option to the languages supported for user-written subroutines.

REXX subroutines are supported in the z/OS environment. A REXX subroutine contains REXX source code. Compiled REXX code is not supported.

A REXX subroutine contains REXX source code. Compiled REXX code is not supported.

REXX subroutines are not necessarily the same in all operating environments. Therefore, some of the examples may use REXX functions that are not available in your environment.

Because of CPU requirements, the use of REXX subroutines in large production jobs should be monitored carefully.

For more information on REXX subroutines, see your REXX documentation.

Reference: Storing and Searching for a REXX Subroutine

To store a REXX subroutine, DDNAME FUSREXX must be allocated to a PDS. This library is searched before other z/OS libraries.

The search order for a REXX subroutine is:

1. FUSREXX.
2. Standard z/OS search order.
Syntax: How to Call a REXX Subroutine

```plaintext
DEFINE FILE filename
fieldname/(An|In) = subname(inlen1, inparm1, ..., outlen, outparm);
END

or

{DEFINE|COMPUTE} fieldname/(An|In) = subname(inlen1, inparm1, ..., outlen, outparm);

or

-SET &var = subname(inlen1, inparm1, ..., outlen, outparm);

where:

*fieldname*

Is the field that contains the result.

*An, In*

Is the format of the field that contains the result.

*subname*

Is the name of the REXX subroutine.

*inlen1, inparm1 ...

Are the input parameters. Each parameter consists of a length and an alphanumeric parameter value. You can supply the value, the name of an alphanumeric field that contains the value, or an expression that returns the value. Up to 13 input parameter pairs are supported. Each parameter value can be up to 256 bytes long.

Dialogue Manager converts numeric arguments to floating-point double-precision format. Therefore, you can only pass alphanumeric input parameters to a REXX subroutine using -SET.

*outlen, outparm*

Is the output parameter pair, consisting of a length and a result. In most cases, the result should be alphanumeric, but integer results are also supported. The result can be a field or a Dialogue Manager variable that contains the value, or the format of the value enclosed in single quotation marks. The return value can be a minimum of one byte long and a maximum (for an alphanumeric value) of 256 bytes.

**Note:** If the value returned is an integer, `outlen` must be 4 because WebFOCUS reserves four bytes for integer fields.
Is the name of the Dialogue Manager variable that contains the result.

**Example:** Returning the Day of the Week

The REXX subroutine DOW returns the day of the week corresponding to the date an employee was hired. The routine contains one input parameter pair and one return field pair.

```rexx
DEFINE FILE EMPLOYEE
 1. AHDT/A6 = EDIT(HIRE_DATE) ;
 2. DAY_OF_WEEK/A9 WITH AHDT = DOW(6, AHDT, 9, DAY_OF_WEEK);
END

TABLE FILE EMPLOYEE
PRINT LAST_NAME HIRE_DATE DAY_OF_WEEK
END
```

The procedure processes as follows:

1. The EDIT function converts HIRE_DATE to alphanumeric format and stores the result in a field with the format A6.
2. The result is stored in the DAY_OF_THE_WEEK field, and can be up to nine bytes long.

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>HIRE_DATE</th>
<th>DAY_OF_WEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEVENS</td>
<td>80/06/02</td>
<td>Monday</td>
</tr>
<tr>
<td>SMITH</td>
<td>81/07/01</td>
<td>Wednesday</td>
</tr>
<tr>
<td>JONES</td>
<td>82/05/01</td>
<td>Saturday</td>
</tr>
<tr>
<td>SMITH</td>
<td>82/01/04</td>
<td>Monday</td>
</tr>
<tr>
<td>BANNING</td>
<td>82/08/01</td>
<td>Sunday</td>
</tr>
<tr>
<td>IRVING</td>
<td>82/01/04</td>
<td>Monday</td>
</tr>
<tr>
<td>ROMANS</td>
<td>82/07/01</td>
<td>Thursday</td>
</tr>
<tr>
<td>MCCOY</td>
<td>81/07/01</td>
<td>Wednesday</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>82/04/01</td>
<td>Thursday</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>82/02/02</td>
<td>Tuesday</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>82/04/01</td>
<td>Thursday</td>
</tr>
<tr>
<td>CROSS</td>
<td>81/11/02</td>
<td>Monday</td>
</tr>
</tbody>
</table>

The REXX subroutine appears below. It reads the input date, reformats it to MM/DD/YY format, and returns the day of the week using a REXX DATE call.

```rexx
/* DOW routine. Return WEEKDAY from YYMMDD format date */
Arg ymd .
Return Date('W',Translate('34/56/12',ymd,'123456'),'U')
```

Using Functions
Example:  Passing Multiple Arguments to a REXX Subroutine

The REXX subroutine INTEREST has four input parameters.

```
DEFINE FILE EMPLOYEE
1. 1. AHDT/A6 = EDIT(HIRE_DATE);
2. 2. ACSAL/A12 = EDIT(CURR_SAL);
3. 3. DCSAL/D12.2 = CURR_SAL;
4. 4. PV/A12 = INTEREST(6, AHDT, 6, '&YMD', 3, '6.5', 12, ACSAL, 12, PV);
END
```

```
TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME HIRE_DATE DCSAL PV
END
```

The procedure processes as follows:

1. EDIT converts HIRE_DATE to alphanumeric format and stores the result in AHDT.
2. EDIT converts CURR_SAL to alphanumeric format and stores the result in ACSAL.
3. CURR_SAL is converted to a floating-point double-precision field that includes commas, and the result is stored in DCSAL.
4. The second input field is six bytes long. Data is passed as a character variable &YMD in YYMMD format.
   The third input field is a character value of 6.5, which is three bytes long to account for the decimal point in the character string.
   The fourth input field is 12 bytes long. This passes the character field ACSAL.
   The return field is up to 12 bytes long and is named PV.

The output is:

```
LAST_NAME FIRST_NAME HIRE_DATE DCSAL PV
----------- ----------- ---------- ----- --
STEVENS ALFRED 80/06/02 11,000.00 14055.14
SMITH MARY 81/07/01 13,200.00 15939.99
JONES DIANE 82/05/01 18,480.00 21315.54
SMITH RICHARD 82/01/04 9,500.00 11155.60
BANNING JOHN 82/08/01 29,700.00 33770.53
IRVING JOAN 82/01/04 26,862.00 31543.35
ROMANS ANTHONY 82/07/01 21,120.00 24131.19
MCCOY JOHN 81/07/01 18,480.00 22315.99
BLACKWOOD ROSEMARIE 82/04/01 21,780.00 25238.25
MCKNIGHT ROGER 82/02/02 16,100.00 18822.66
GREENSPAN MARY 82/04/01 9,000.00 10429.03
CROSS BARBARA 81/11/02 27,062.00 32081.82
```
The REXX subroutine appears below. The REXX Format command is used to format the return value.

/* Simple INTEREST program. dates are yymmdd format */
Arg start_date,now_date,percent,open_balance, .

begin = Date('B',Translate('34/56/12',start_date,'123456'),'U')
stop = Date('B',Translate('34/56/12',now_date,'123456'),'U')
valnow = open_balance * (((stop - begin) * (percent / 100)) / 365)

Return Format(valnow,9,2)

Example:  Accepting Multiple Tokens in a Parameter

A REXX subroutine can accept multiple tokens in a parameter. The following procedure passes employee information (PAY_DATE and MO_PAY) as separate tokens in the first parameter. It passes three input parameters and one return field.

DEFINE FILE EMPLOYEE
1.  COMPID/A256 = FN | ' ' | LN | ' ' | DPT | ' ' | EID ;
2.  APD/A6 = EDIT(PAY_DATE);
3.  APAY/A12 = EDIT(MO_PAY);
4.  OK4RAISE/A1 = OK4RAISE(256, COMPID, 6, APD, 12, APAY, 1, OK4RAISE);
END

TABLE FILE EMPLOYEE
PRINT EMP_ID FIRST_NAME LAST_NAME DEPARTMENT
IF OK4RAISE EQ '1'
END

The procedure processes as follows:

1.  COMPID is the concatenation of several character fields passed as the first parameter and stored in a field with the format A256. Each of the other parameters is a single argument.
2.  EDIT converts PAY_DATE to alphanumeric format.
3.  EDIT converts MO_PAY to alphanumeric format.
4.  OK4RAISE executes, and the result is stored in OK4RAISE.

The output is:

<table>
<thead>
<tr>
<th>EMP_ID</th>
<th>FIRST_NAME</th>
<th>LAST_NAME</th>
<th>DEPARTMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>071382660</td>
<td>ALFRED</td>
<td>STEVENS</td>
<td>PRODUCTION</td>
</tr>
</tbody>
</table>
The REXX subroutine appears below. Commas separate FUSREXX parameters. The ARG command specifies multiple variable names before the first comma and, therefore, separates the first FUSREXX parameter into separate REXX variables, using blanks as delimiters between the variables.

```rexx
/* OK4RAISE routine. Parse separate tokens in the 1st parm, */
/* then more parms */

Arg fname lname dept empid, pay_date, gross_pay, .

If dept = 'PRODUCTION' & pay_date < '820000'
Then retval = '1'
Else retval = '0'

Return retval
```

REXX subroutines should use the REXX RETURN subroutine to return data. REXX EXIT is acceptable, but is generally used to end an EXEC, not a FUNCTION.

---

Correct
/* Some FUSREXX function */
Arg input
some rexx process ..
Return data_to_WebFOCUS

Not as Clear
/* Another FUSREXX function */
Arg input
some rexx process ...
Exit 0

---

**Formats and REXX Subroutines**

A REXX subroutine requires input data to be in alphanumeric format. Most output is returned in alphanumeric format. If the format of an input argument is numeric, use the EDIT or FTOA functions to convert the argument to alphanumeric. You can then use the EDIT or ATODBL functions to convert the output back to numeric.

The output length in the subroutine call must be four. Character variables cannot be more than 256 bytes. This limit also applies to REXX subroutines. FUSREXX routines return variable length data. For this reason, you must supply the length of the input arguments and the maximum length of the output data.

A REXX subroutine does not require any input parameters, but requires one return parameter, which must return at least one byte of data. It is possible for a REXX subroutine not to need input, such as a function that returns USERID.
A REXX subroutine does not support WebFOCUS date input arguments. When working with dates you can do one of the following:

- Pass an alphanumeric field with date display options and have the subroutine return a date value.

  Date fields contain the integer number of days since the base date 12/31/1900. REXX has a date function that can accept and return several types of date formats, including one called Base format ('B') that contains the number of days since the REXX base date 01/01/0001. You must account for the difference, in number of days, between the WebFOCUS base date and the REXX base date and convert the result to integer.

- Pass a date value converted to alphanumeric format. You must account for the difference in base dates for both the input and output arguments.

**Example:** Returning a Result in Alphanumeric Format

The NUMCNT subroutine returns the number of copies of each classic movie in alphanumeric format. It passes one input parameter and one return field.

```
TABLE FILE MOVIES
PRINT TITLE AND COMPUTE
1. ACOPIES/A3 = EDIT(COPIES); AS 'COPIES'
 AND COMPUTE
2. TXTCOPIES/A8 = NUMCNT(3, ACOPIES, 8, TXTCOPIES);
 WHERE CATEGORY EQ 'CLASSIC'
END
```

The procedure processes as follows:

1. The EDIT field converts COPIES to alphanumeric format, and stores the result in ACOPIES.
2. The result is stored in an 8-byte alphanumeric field TXTCOPIES.

The output is:

```
<table>
<thead>
<tr>
<th>TITLE</th>
<th>COPIES</th>
<th>TXTCOPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAST OF EDEN</td>
<td>001</td>
<td>One</td>
</tr>
<tr>
<td>CITIZEN KANE</td>
<td>003</td>
<td>Three</td>
</tr>
<tr>
<td>CYRANO DE BERGERAC</td>
<td>001</td>
<td>One</td>
</tr>
<tr>
<td>MARTY</td>
<td>001</td>
<td>One</td>
</tr>
<tr>
<td>MALTESE FALCON, THE</td>
<td>002</td>
<td>Two</td>
</tr>
<tr>
<td>GONE WITH THE WIND</td>
<td>003</td>
<td>Three</td>
</tr>
<tr>
<td>ON THE WATERFRONT</td>
<td>002</td>
<td>Two</td>
</tr>
<tr>
<td>MUTINY ON THE BOUNTY</td>
<td>002</td>
<td>Two</td>
</tr>
<tr>
<td>PHILADELPHIA STORY, THE</td>
<td>002</td>
<td>Two</td>
</tr>
<tr>
<td>CAT ON A HOT TIN ROOF</td>
<td>002</td>
<td>Two</td>
</tr>
<tr>
<td>CASABLANCA</td>
<td>002</td>
<td>Two</td>
</tr>
</tbody>
</table>
```
The subroutine is:

```rexx
/* NUMCNT routine. */
/* Pass a number from 0 to 10 and return a character value */
Arg numbr.
data = 'Zero One Two Three Four Five Six Seven Eight Nine Ten'
numbr = numbr + 1 /* so 0 equals 1 element in array */
Return Word(data,numbr)
```

**Example:**  Returning a Result in Integer Format

In the following example, the NUMDAYS subroutine finds the number of days between HIRE_DATE and DAT_INC and returns the result in integer format.

```rexx
DEFINE FILE EMPLOYEE
1. AHDT/A6 = EDIT(HIRE_DATE);
2. ADI/A6 = EDIT(DAT_INC);
3. BETWEEN/I6 = NUMDAYS(6, AHDT, 6, ADI, 4, 'I6') ;
END

TABLE FILE EMPLOYEE
PRINT LAST_NAME HIRE_DATE DAT_INC BETWEEN
IF BETWEEN NE 0
END
```

The procedure processes as follows:

1.   EDIT converts HIRE_DATE to alphanumeric format and stores the result in AHDT.
2.   EDIT converts DAT_INC to alphanumeric format and stores the result in ADI.
3.   NUMDAYS finds the number of days between AHDT and ADI and stores the result in integer format.

The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>HIRE_DATE</th>
<th>DAT_INC</th>
<th>BETWEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEVENS</td>
<td>80/06/02</td>
<td>82/01/01</td>
<td>578</td>
</tr>
<tr>
<td>STEVENS</td>
<td>80/06/02</td>
<td>81/01/01</td>
<td>213</td>
</tr>
<tr>
<td>SMITH</td>
<td>81/07/01</td>
<td>82/01/01</td>
<td>184</td>
</tr>
<tr>
<td>JONES</td>
<td>82/05/01</td>
<td>82/06/01</td>
<td>31</td>
</tr>
<tr>
<td>SMITH</td>
<td>82/01/04</td>
<td>82/05/14</td>
<td>130</td>
</tr>
<tr>
<td>IRVING</td>
<td>82/01/04</td>
<td>82/05/14</td>
<td>130</td>
</tr>
<tr>
<td>MCCOY</td>
<td>81/07/01</td>
<td>82/01/01</td>
<td>184</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>82/02/02</td>
<td>82/05/14</td>
<td>101</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>82/04/01</td>
<td>82/06/11</td>
<td>71</td>
</tr>
<tr>
<td>CROSS</td>
<td>81/11/02</td>
<td>82/04/09</td>
<td>158</td>
</tr>
</tbody>
</table>
The subroutine appears below. The return value is converted from REXX character to HEX and formatted to be four bytes long.

```rexx
/* NUMDAYS routine. */
/* Return number of days between 2 dates in yymmdd format */
/* The value returned will be in hex format */

Arg first,second .

base1 = Date('B', Translate('34/56/12', first, '123456'), 'U')
base2 = Date('B', Translate('34/56/12', second, '123456'), 'U')

Return D2C(base2 - base1, 4)
```

**Example:** Passing a Date Value as an Alphanumeric Field With Date Options

In the following example, a date is used by passing an alphanumeric field with date options to the DATEREX1 subroutine. DATEREX1 takes two input arguments: an alphanumeric date in A8YYMD format and a number of days in character format. It returns a smart date in YYMD format that represents the input date plus the number of days. The format A8YYMD corresponds to the REXX Standard format ('S').

The number 693959 represents the difference, in number of days, between the WebFOCUS base date and the REXX base date:

```rexx
/* REXX DATEREX1 routine. Add indate (format A8YYMD) to days */
Arg indate, days .
Return D2C(Date('B', indate, 'S')+ days - 693959, 4)
```

The following request uses the DATEREX1 macro to calculate the date that is 365 days from the hire date of each employee. The input arguments are the hire date and the number of days to add. Because HIRE_DATE is in I6YMD format, it must be converted to A8YYMD before being passed to the macro:

```rexx
TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME HIRE_DATE
AND COMPUTE
 ADATE/YYMD = HIRE_DATE; NOPRINT
AND COMPUTE
 INDATE/A8YYMD= ADATE; NOPRINT
AND COMPUTE
 NEXT_DATE/YYMD = DATEREX1(8, INDATE, 3, '365', 4, NEXT_DATE);
BY LAST_NAME NOPRINT
END
```
The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>HIRE_DATE</th>
<th>NEXT_DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANNING</td>
<td>JOHN</td>
<td>82/08/01</td>
<td>1983/08/01</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
<td>82/04/01</td>
<td>1983/04/01</td>
</tr>
<tr>
<td>CROSS</td>
<td>BARBARA</td>
<td>81/11/02</td>
<td>1982/11/02</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>MARY</td>
<td>82/04/01</td>
<td>1983/04/01</td>
</tr>
<tr>
<td>IRVING</td>
<td>JOAN</td>
<td>82/01/04</td>
<td>1983/01/04</td>
</tr>
<tr>
<td>JONES</td>
<td>DIANE</td>
<td>82/05/01</td>
<td>1983/05/01</td>
</tr>
<tr>
<td>MCCOY</td>
<td>JOHN</td>
<td>81/07/01</td>
<td>1982/07/01</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>ROGER</td>
<td>82/02/02</td>
<td>1983/02/02</td>
</tr>
<tr>
<td>ROMANS</td>
<td>ANTHONY</td>
<td>82/07/01</td>
<td>1983/07/01</td>
</tr>
<tr>
<td>SMITH</td>
<td>MARY</td>
<td>81/07/01</td>
<td>1982/07/01</td>
</tr>
<tr>
<td>SMITH</td>
<td>RICHARD</td>
<td>82/01/04</td>
<td>1983/01/04</td>
</tr>
<tr>
<td>STEVENS</td>
<td>ALFRED</td>
<td>80/06/02</td>
<td>1981/06/02</td>
</tr>
</tbody>
</table>

**Example:** Passing a Date as a Date Converted to Alphanumeric Format

In the following example, a date is passed to the subroutine as a smart date converted to alphanumeric format. The DATEREX2 subroutine takes two input arguments: an alphanumeric number of days that represents a smart date, and a number of days to add. It returns a smart date in YYMD format that represents the input date plus the number of days. Both the input date and output date are in REXX base date ('B') format.

The number 693959 represents the difference, in number of days, between the WebFOCUS base date and the REXX base date:

/* REXX DATEREX2 routine. Add indate (original format YYMD) to days */
Arg indate, days .
Return D2C(Date('B',indate+693959,'B') + days - 693959, 4)

The following request uses DATEREX2 to calculate the date that is 365 days from the hire date of each employee. The input arguments are the hire date and the number of days to add. Because HIRE_DATE is in I6YMD format, it must be converted to an alphanumeric number of days before being passed to the macro:

```rexx
TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME HIRE_DATE
AND COMPUTE
 ADATE/YYMD = HIRE_DATE; NOPRINT
AND COMPUTE
 INDATE/A8 = EDIT(ADATE); NOPRINT
AND COMPUTE
 NEXT_DATE/YYMD = DATEREX2(8,INDATE,3,'365',4,NEXT_DATE);
BY LAST_NAME NOPRINT
END
```
The output is:

<table>
<thead>
<tr>
<th>LAST_NAME</th>
<th>FIRST_NAME</th>
<th>HIRE_DATE</th>
<th>NEXT_DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANNING</td>
<td>JOHN</td>
<td>82/08/01</td>
<td>1983/08/01</td>
</tr>
<tr>
<td>BLACKWOOD</td>
<td>ROSEMARIE</td>
<td>82/04/01</td>
<td>1983/04/01</td>
</tr>
<tr>
<td>CROSS</td>
<td>BARBARA</td>
<td>81/11/02</td>
<td>1982/11/02</td>
</tr>
<tr>
<td>GREENSPAN</td>
<td>MARY</td>
<td>82/04/01</td>
<td>1983/04/01</td>
</tr>
<tr>
<td>IRVING</td>
<td>JOAN</td>
<td>82/01/04</td>
<td>1983/01/04</td>
</tr>
<tr>
<td>JONES</td>
<td>DIANE</td>
<td>82/05/01</td>
<td>1983/05/01</td>
</tr>
<tr>
<td>MCCOY</td>
<td>JOHN</td>
<td>81/07/01</td>
<td>1982/07/01</td>
</tr>
<tr>
<td>MCKNIGHT</td>
<td>ROGER</td>
<td>82/02/02</td>
<td>1983/02/02</td>
</tr>
<tr>
<td>ROMANS</td>
<td>ANTHONY</td>
<td>82/07/01</td>
<td>1983/07/01</td>
</tr>
<tr>
<td>SMITH</td>
<td>MARY</td>
<td>81/07/01</td>
<td>1982/07/01</td>
</tr>
<tr>
<td>SMITH</td>
<td>RICHARD</td>
<td>82/01/04</td>
<td>1983/01/04</td>
</tr>
<tr>
<td>STEVENS</td>
<td>ALFRED</td>
<td>80/06/02</td>
<td>1981/06/02</td>
</tr>
</tbody>
</table>
ASCII and EBCDIC Codes

The table in this appendix lists ASCII and EBCDIC codes for printable and non-printable characters.

**In this appendix:**
- ASCII and EBCDIC Code Chart

### ASCII and EBCDIC Code Chart

This chart shows the standard ASCII characters in numerical order with the corresponding decimal and hexadecimal values.

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>ASCII</th>
<th>EBCDIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>NUL</td>
<td>NUL</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>SOH</td>
<td>SOH</td>
</tr>
<tr>
<td>2</td>
<td>02</td>
<td>STX</td>
<td>STX</td>
</tr>
<tr>
<td>3</td>
<td>03</td>
<td>ETX</td>
<td>ETX</td>
</tr>
<tr>
<td>4</td>
<td>04</td>
<td>EOT</td>
<td>SEL</td>
</tr>
<tr>
<td>5</td>
<td>05</td>
<td>ENQ</td>
<td>HT</td>
</tr>
<tr>
<td>6</td>
<td>06</td>
<td>ACK</td>
<td>RNL</td>
</tr>
<tr>
<td>7</td>
<td>07</td>
<td>BEL</td>
<td>DEL</td>
</tr>
<tr>
<td>8</td>
<td>08</td>
<td>BS</td>
<td>GE</td>
</tr>
<tr>
<td>9</td>
<td>09</td>
<td>HT</td>
<td>SPS</td>
</tr>
<tr>
<td>10</td>
<td>0A</td>
<td>LF</td>
<td>RPT</td>
</tr>
<tr>
<td>11</td>
<td>0B</td>
<td>VT</td>
<td>VT</td>
</tr>
<tr>
<td>12</td>
<td>0C</td>
<td>FF</td>
<td>FF</td>
</tr>
<tr>
<td>Decimal</td>
<td>Hex</td>
<td>ASCII</td>
<td>EBCDIC</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>13</td>
<td>OD</td>
<td>CR</td>
<td>carriage return</td>
</tr>
<tr>
<td>14</td>
<td>OE</td>
<td>SO</td>
<td>shift out</td>
</tr>
<tr>
<td>15</td>
<td>OF</td>
<td>SI</td>
<td>shift in</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>DLE</td>
<td>data link escape</td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td>DC1</td>
<td>device control 1</td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td>DC2</td>
<td>device control 2</td>
</tr>
<tr>
<td>19</td>
<td>13</td>
<td>DC3</td>
<td>device control 3</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>DC4</td>
<td>device control 4</td>
</tr>
<tr>
<td>21</td>
<td>15</td>
<td>NAK</td>
<td>negative acknowledge</td>
</tr>
<tr>
<td>22</td>
<td>16</td>
<td>SYN</td>
<td>synchronous idle</td>
</tr>
<tr>
<td>23</td>
<td>17</td>
<td>ETB</td>
<td>end of transmission block</td>
</tr>
<tr>
<td>24</td>
<td>18</td>
<td>CAN</td>
<td>cancel</td>
</tr>
<tr>
<td>25</td>
<td>19</td>
<td>EM</td>
<td>end of medium</td>
</tr>
<tr>
<td>26</td>
<td>1A</td>
<td>SUB</td>
<td>substitute</td>
</tr>
<tr>
<td>27</td>
<td>1B</td>
<td>ESC</td>
<td>escape</td>
</tr>
<tr>
<td>28</td>
<td>1C</td>
<td>FS</td>
<td>file separator</td>
</tr>
<tr>
<td>29</td>
<td>1D</td>
<td>GS</td>
<td>group separator</td>
</tr>
<tr>
<td>30</td>
<td>1E</td>
<td>RS</td>
<td>record separator</td>
</tr>
<tr>
<td>Decimal</td>
<td>Hex</td>
<td>ASCII</td>
<td>EBCDIC</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td>--------------------------------------------------------</td>
</tr>
<tr>
<td>31</td>
<td>1F</td>
<td>US</td>
<td>unit separator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IUS/ITB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>interchange unit separator / intermediate transmission</td>
</tr>
<tr>
<td>32</td>
<td>20</td>
<td>SP</td>
<td>space</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>digit select</td>
</tr>
<tr>
<td>33</td>
<td>21</td>
<td>!</td>
<td>exclamation point</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>start of significance</td>
</tr>
<tr>
<td>34</td>
<td>22</td>
<td>&quot;</td>
<td>straight double quotation mark</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>field separator</td>
</tr>
<tr>
<td>35</td>
<td>23</td>
<td>#</td>
<td>number sign</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WUS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>word underscore</td>
</tr>
<tr>
<td>36</td>
<td>24</td>
<td>$</td>
<td>dollar sign</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BYP/INP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bypass/inhibit presentation</td>
</tr>
<tr>
<td>37</td>
<td>25</td>
<td>%</td>
<td>percent sign</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>line feed</td>
</tr>
<tr>
<td>38</td>
<td>26</td>
<td>&amp;</td>
<td>ampersand</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ETB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>end of transmission block</td>
</tr>
<tr>
<td>39</td>
<td>27</td>
<td>'</td>
<td>apostrophe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>escape</td>
</tr>
<tr>
<td>40</td>
<td>28</td>
<td>(</td>
<td>left parenthesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>set attribute</td>
</tr>
<tr>
<td>41</td>
<td>29</td>
<td>)</td>
<td>right parenthesis</td>
</tr>
<tr>
<td>42</td>
<td>2A</td>
<td>*</td>
<td>asterisk</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SM/SW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>set model switch</td>
</tr>
<tr>
<td>43</td>
<td>2B</td>
<td>+</td>
<td>addition sign</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CSP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>control sequence prefix</td>
</tr>
<tr>
<td>44</td>
<td>2C</td>
<td>,</td>
<td>comma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MFA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>modify field attribute</td>
</tr>
<tr>
<td>45</td>
<td>2D</td>
<td>-</td>
<td>subtraction sign</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>enquiry</td>
</tr>
<tr>
<td>46</td>
<td>2E</td>
<td>.</td>
<td>period</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>acknowledge</td>
</tr>
<tr>
<td>47</td>
<td>2F</td>
<td>/</td>
<td>right slash</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bell</td>
</tr>
<tr>
<td>48</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Decimal</td>
<td>Hex</td>
<td>ASCII</td>
<td>EBCDIC</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>49</td>
<td>31</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>32</td>
<td>2</td>
<td>SYN: synchronous idle</td>
</tr>
<tr>
<td>51</td>
<td>33</td>
<td>3</td>
<td>IR: index return</td>
</tr>
<tr>
<td>52</td>
<td>34</td>
<td>4</td>
<td>PP: presentation position</td>
</tr>
<tr>
<td>53</td>
<td>35</td>
<td>5</td>
<td>TRN</td>
</tr>
<tr>
<td>54</td>
<td>36</td>
<td>6</td>
<td>NBS: numeric backspace</td>
</tr>
<tr>
<td>55</td>
<td>37</td>
<td>7</td>
<td>EOT: end of transmission</td>
</tr>
<tr>
<td>56</td>
<td>38</td>
<td>8</td>
<td>SBS: subscript</td>
</tr>
<tr>
<td>57</td>
<td>39</td>
<td>9</td>
<td>IT: indent tab</td>
</tr>
<tr>
<td>58</td>
<td>3A</td>
<td>:</td>
<td>RFF: required form feed</td>
</tr>
<tr>
<td>59</td>
<td>3B</td>
<td>;</td>
<td>CU3: customer use 3</td>
</tr>
<tr>
<td>60</td>
<td>3C</td>
<td>&lt;</td>
<td>DC4: device control 4</td>
</tr>
<tr>
<td>61</td>
<td>3D</td>
<td>=</td>
<td>NAK: negative acknowledge</td>
</tr>
<tr>
<td>62</td>
<td>3E</td>
<td>&gt;</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>3F</td>
<td>?</td>
<td>SUB: substitute</td>
</tr>
<tr>
<td>64</td>
<td>40</td>
<td>@</td>
<td>SP: space</td>
</tr>
<tr>
<td>65</td>
<td>41</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>42</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>43</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>44</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>45</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>46</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Decimal</td>
<td>Hex</td>
<td>ASCII</td>
<td>EBCDIC</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>71</td>
<td>47</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>72</td>
<td>48</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>73</td>
<td>49</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>74</td>
<td>4A</td>
<td>J</td>
<td>J</td>
</tr>
<tr>
<td>75</td>
<td>4B</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>76</td>
<td>4C</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>77</td>
<td>4D</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>78</td>
<td>4E</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>79</td>
<td>4F</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>80</td>
<td>50</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>81</td>
<td>51</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>82</td>
<td>52</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>83</td>
<td>53</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>84</td>
<td>54</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>85</td>
<td>55</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>86</td>
<td>56</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>87</td>
<td>57</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>88</td>
<td>58</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>89</td>
<td>59</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>90</td>
<td>5A</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td>91</td>
<td>5B</td>
<td>[</td>
<td>left bracket</td>
</tr>
<tr>
<td>92</td>
<td>5C</td>
<td>\</td>
<td>left slant</td>
</tr>
<tr>
<td>Decimal</td>
<td>Hex</td>
<td>ASCII</td>
<td>EBCDIC</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>93</td>
<td>5D</td>
<td>] right bracket</td>
<td>) right parenthesis</td>
</tr>
<tr>
<td>94</td>
<td>5E</td>
<td>^ hat, circumflex</td>
<td>; semicolon</td>
</tr>
<tr>
<td>95</td>
<td>5F</td>
<td>_ underscore</td>
<td>\ logical not</td>
</tr>
<tr>
<td>96</td>
<td>60</td>
<td>` grave</td>
<td>- subtraction sign</td>
</tr>
<tr>
<td>97</td>
<td>61</td>
<td>a a / right slash</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>62</td>
<td>b b</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>63</td>
<td>c c</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>64</td>
<td>d d</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>65</td>
<td>e e</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>66</td>
<td>f f</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>67</td>
<td>g g</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>68</td>
<td>h h</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>69</td>
<td>i i</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>6A</td>
<td>j j \ split vertical bar</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>6B</td>
<td>k k , comma</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>6C</td>
<td>l l % percent sign</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>6D</td>
<td>m m \ underscore</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>6E</td>
<td>n n &gt; greater-than</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>6F</td>
<td>o o ? question mark</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>70</td>
<td>p p</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>71</td>
<td>q q</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>72</td>
<td>r r</td>
<td></td>
</tr>
<tr>
<td>Decimal</td>
<td>Hex</td>
<td>ASCII</td>
<td>EBCDIC</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>115</td>
<td>73</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>74</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>75</td>
<td>u</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>76</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>77</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>78</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>79</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>7A</td>
<td>z</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>7B</td>
<td>{</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>7C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>7D</td>
<td>}</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>7E</td>
<td>~</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>7F</td>
<td>&quot;</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>81</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>82</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>83</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>84</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>85</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>86</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>87</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>88</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>Decimal</td>
<td>Hex</td>
<td>ASCII</td>
<td>EBCDIC</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>137</td>
<td>89</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>138</td>
<td>8A</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>139</td>
<td>8B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>8C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>8D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>8E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>8F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>91</td>
<td>j</td>
<td>j</td>
</tr>
<tr>
<td>146</td>
<td>92</td>
<td>k</td>
<td>k</td>
</tr>
<tr>
<td>147</td>
<td>93</td>
<td>l</td>
<td>l</td>
</tr>
<tr>
<td>148</td>
<td>94</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>149</td>
<td>95</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>150</td>
<td>96</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>151</td>
<td>97</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>152</td>
<td>98</td>
<td>q</td>
<td>q</td>
</tr>
<tr>
<td>153</td>
<td>99</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>154</td>
<td>9A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>9B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>9C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>9D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>9E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimal</td>
<td>Hex</td>
<td>ASCII</td>
<td>EBCDIC</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>159</td>
<td>9F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>A0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>A1</td>
<td>~</td>
<td>similar, tilde</td>
</tr>
<tr>
<td>162</td>
<td>A2</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>163</td>
<td>30</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>164</td>
<td>A4</td>
<td>u</td>
<td>u</td>
</tr>
<tr>
<td>165</td>
<td>A5</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>166</td>
<td>A6</td>
<td>w</td>
<td>w</td>
</tr>
<tr>
<td>167</td>
<td>A7</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>168</td>
<td>A8</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>169</td>
<td>A9</td>
<td>z</td>
<td>z</td>
</tr>
<tr>
<td>170</td>
<td>AA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>AB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>AC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>AD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>AE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>AF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>B0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>B1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>B2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>B3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>B4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimal</td>
<td>Hex</td>
<td>ASCII</td>
<td>EBCDIC</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>181</td>
<td>B5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>B6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>B7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>B8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>B9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>BA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>BB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>BC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>BD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>BE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>BF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>C0</td>
<td>{</td>
<td>left brace</td>
</tr>
<tr>
<td>193</td>
<td>C1</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>194</td>
<td>C2</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>195</td>
<td>C3</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>196</td>
<td>C4</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>197</td>
<td>C5</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>198</td>
<td>C6</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>199</td>
<td>C7</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>200</td>
<td>C8</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>201</td>
<td>C9</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>202</td>
<td>CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimal</td>
<td>Hex</td>
<td>ASCII</td>
<td>EBCDIC</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>203</td>
<td>CB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>CC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>CD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>CE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>CF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>D0</td>
<td>}</td>
<td>right brace</td>
</tr>
<tr>
<td>209</td>
<td>D1</td>
<td>J</td>
<td>J</td>
</tr>
<tr>
<td>210</td>
<td>D2</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>211</td>
<td>D3</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>212</td>
<td>D4</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>213</td>
<td>D5</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>214</td>
<td>D6</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>215</td>
<td>D7</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>216</td>
<td>D8</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>217</td>
<td>D9</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>218</td>
<td>DA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>DB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>DC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>DD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>DE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>DF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>E0</td>
<td>\</td>
<td>left slash</td>
</tr>
<tr>
<td>Decimal</td>
<td>Hex</td>
<td>ASCII</td>
<td>EBCDIC</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>225</td>
<td>E1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>E2</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>227</td>
<td>E3</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>228</td>
<td>E4</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>229</td>
<td>E5</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>230</td>
<td>E6</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>231</td>
<td>E7</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>232</td>
<td>E8</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>233</td>
<td>E9</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td>234</td>
<td>EA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>EB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>EC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>ED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>EE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>EF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>F0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>241</td>
<td>F1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>242</td>
<td>F2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>243</td>
<td>F3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>244</td>
<td>F4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>245</td>
<td>F5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>246</td>
<td>F6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Decimal</td>
<td>Hex</td>
<td>ASCII</td>
<td>EBCDIC</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>247</td>
<td>F7</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>248</td>
<td>F8</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>249</td>
<td>F9</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>250</td>
<td>FA</td>
<td></td>
<td>vertical line</td>
</tr>
<tr>
<td>251</td>
<td>FB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>FC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>253</td>
<td>FD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>FE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>FF</td>
<td></td>
<td>EO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eight ones</td>
</tr>
</tbody>
</table>
SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE "LICENSE" FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, FOCUS, iWay, Omni-Gen, Omni-HealthData, and WebFOCUS are either registered trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle Corporation and/or its affiliates.

All other product and company names and marks mentioned in this document are the property of their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system platforms for a specific software version are released at the same time. See the readme file for the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACCIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.
THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2022. TIBCO Software Inc. All Rights Reserved.
A

ABS function 550
accessing external functions 80
  OS/390 80
  UNIX 81
  VM/CMS 81
  Windows 81
accessing functions 61–63
  OS/390 81
ACOS trigonometric function 717
ADD function 484
adding function libraries 81
alphanumeric argument 64
alphanumeric strings 506
  converting 506
analytic functions 83
  INCREASE 116
  PCT_INCREASE 120
  PREVIOUS 123
  RUNNING_AVE 125
  RUNNING_MAX 128
  RUNNING_MIN 131
  RUNNING_SUM 134
ANOMALY_IF function 608
ARGLEN function 198, 199
argument formats 64
argument length 65
argument types 63
ASCII character chart 53, 763
ASCII function 536
ASIN trigonometric function 718
ASIS function 199, 200, 550
assigning date-time values 445
  COMPUTE command 445, 447
  DEFINE command 445
  IF criteria 445, 448
  WHERE criteria 445, 447
ATAN trigonometric function 720
ATAN2 trigonometric function 721
ATODBL function 506
AYM function 421
AYMD function 422
B

bar charts 551
  scales 551
BAR function 551, 552
batch allocation 80
bit strings 203, 204
BITSON function 201, 202
BITVAL function 203, 204
branching in procedures 72
  functions and 72, 73, 75
browser cookie values, retrieving 654
BUSDAYS parameter 369
business days 369
  BUSDAYS parameter 369
BYTVAL function 204–206

C

calling functions 61–63
  Dialogue Manager and 70
  FOCUS commands and 69
  from another function 75
  IF criteria 76, 77
  in Maintain 63
  RECAP command and 78, 79
  WHEN criteria 77, 78
  WHERE criteria 76
CEILING function 536
CHAR function 491
CHAR_LENGTH function 138
CHAR2INT function 282
caller functions 25, 27, 30, 31, 198
  ARGLEN 198, 199
  ASIS 199, 200
  BITSON 201, 202
  BITVAL 203, 204
  BYTVAL 204–206
  CHKFMT 206, 208, 209
  CHKNUM 208
  CTRAN 209–211
character functions 25, 27, 30, 31, 198
  CTRFLD 212, 213
  DCTRAN 265
  DIFFERENCE 141
  DSTRIP 268, 269
  EDIT 213, 214
  GETTOK 215, 217
  LCWORD 217–219, 283, 284
  LCWORD2 218–220
  LCWORD3 219
  LEFT 150
  LJUST 220
  LOCASE 222, 223
  Maintain-specific 32, 281
  OVRLAY 223, 224
  PARAG 225, 226
  POSIT 229, 230
  REGEXP_INSTR 171
  REGEXP_REPLACE 174
  REGEXP_SUBSTR 176
  REPEAT 178
  RIGHT 181
  RJUST 232, 233
  SOUNDEX 233, 234
  SPACE 186
  SPELLNM 235, 236
  SQL 713
  SQUEEZ 236, 237
  STRIP 237–239
  SUBSTR 241–243, 258
character functions 25, 27, 30, 31, 198
  TRIM 243–245
  TRIMV 260
  UPCASE 246
  variable length 253
  XMLDECOD 247
  XMLENCOD 249
character strings 198, 220
  adding 286
  bits 201, 203
  centering 212, 213
  comparing 233, 297, 298
  converting case 222, 246, 283, 285, 303
  determining length 302
  Dialogue Manager 199
  dividing 225
  extracting 286, 299
  extracting characters 213
  extracting substrings 215, 241, 243, 258, 301
  finding substrings 229, 292
  format 206
  justifying 220, 232, 293
  measuring length 198, 284
  overlaying 223, 291
  reducing spaces 236
  removing occurrences 243, 302
  right-justifying 232, 293
  spelling out numbers 235
  substrings 295, 299
character strings 198, 220
  translating characters 204, 209, 210, 282
CHECKMD5 function 306
CHECKPRIVS function 648
CHECKSUM function 307
CHGDAT function 423, 425
CHKFMT function 206, 208, 209
CHKNUM function 208
CHKPCK function 553
CHR function 715
CLASSIFY_BLR function 611
CLASSIFY_KNN function 615
CLASSIFY_RF function 617
CLASSIFY_XGB function 621
CLSDDREC 663
COALESCE function 308
commands 661
  passing 661
COMPACTFORMAT function 492
compiling subroutines 742
  OS/390 743
  UNIX 743
  Windows 743
components 442
COMPUTE command 69
  assigning date-time values 447
CONCAT function 139
controlling function parameter verification 67
conversion functions, simplified 42, 491
  CHAR 491
Index

conversion functions, simplified 42, 491
  CTRLCHAR 494
  DT_FORMAT 496
  HEXTYPE 499
  TO_INTEGER 503
  TO_NUMBER 504
conversion functions, simplified
  PHONETIC 501
converting formats 506
cookie values, retrieving 654
COS trigonometric function 722
COT trigonometric function 723
creating subroutines 731
cross-referenced data sources 335
CTTRAN function 209–211
CTRFLD function 212, 213
CTRLCHAR function 494
custom subroutines 744–746, 748, 750

data sources 305
cross-referenced 335, 339
decoding values 322
retrieving values 333–335, 339
values 305
verifying values 326, 327
date and date-time functions 35
date and time functions 368
arguments and 442
AYM 421
AYMD 422
CHGDAT 423, 425
DA 426
DADMY 426
DADYM 426
DAMDY 426
DAMYD 426
DATEADD 377
DATECVT 380
DATEDIF 382
DATEDIF 382
DATEMOV 385
DATETRAN 392
DAYDM 426
DAYMD 426, 427
DOWK 429
DOWKL 429
DTDMDY 430
DTDMY 430
DTMDY 430
DTMYD 430

D

DA functions 426
DADMY function 426
DADYM function 426
DAMDY function 426
DAMYD function 426
data sets 651, 656
data source functions 33, 305
  FIND 326, 327
  LAST 333, 334
  LOOKUP 335, 336, 338, 339

782
date and time functions 368
   DTYDM 430
   DTYMD 430
   GREGDT 432
   HADD 448–450
   HCNVRT 451, 452
   HDATE 452, 453
   HDIFF 454, 455
   HDTTM 455–457
   HGETC 459–461
   HGETZ 460
   HHMMSS 462
   HHMS 463
   HINPUT 464, 465
   HMIIDNT 466, 467
   HNAME 470, 471
   HPART 471–473
   HSETPT 473–475
   HTIME 475, 476
   JULDAT 434
   legacy 37, 419
   Maintain-specific 481
   standard 369
   TIMETOTS 476, 477
   TODAY 417
   YM 435
   YMD 429
   date argument 64
   date formats 442
      formatted-string format 443, 444
   date formats 442
      international 392
      numeric string format 443
      translated-string format 444
   date function
      DAYNAME 344
      MONTHNAME 365
   date functions 36
      work days 369
   date-time format
      ISO standard input values 445
   date-time functions 39, 457
      DT_TOLOCAL 347
      DT_TOUTC 349
      HEXITR 457
      HMASK 467
   date-time values 481
      adding 421, 422, 484
      assigning 445
      converting 475, 476
      converting formats 423, 426, 430, 434, 451, 452, 455
      determining day of week 489
      determining quarter 487
      elapsed time 435, 485
      extracting 485, 486, 490
      finding day of week 429
      finding difference 382, 428, 454
      incrementing 448
      moving dates 385
Index

date-time values 481
   retrieving 481–483
   retrieving components 471
   retrieving time 462, 463
   returning dates 417
   setting 487
   setting time 466
   storing 459, 460
   subtracting 421, 422, 488
DATEADD function 377
DATECVT function 380
DATEDIF function 382
DATEFORMAT parameter 438
DATEMOV function 385
DATETRAN function 392, 400
DAY function 485
DAYDM function 426
DAYMD function 426, 427
DAYNAME function 344
DB_EXPR function 311
DB_LOOKUP function 319
   COMPUTE command 319
   DEFINE 319
   MODIFY 319
   TABLE COMPUTE 319
DCTRAN function 265
DECODE function 322–325
decoding functions 33, 305, 322–325
decoding values 322
   from files 322, 324, 325
decoding values in a function 322–324
DEDIT function 266
DEFINE command 69
   functions and 69
DEGREES trigonometric function 724
deleting function libraries 81
Dialogue Manager 70
   functions and 70
DIFFERENCE function 141
DIGITS function 144
DMOD function 555, 556
DMY function 428
double exponential smoothing 92
   FORECAST_DOUBLEXP 92
double-byte characters 265, 268
DOWK function 429
DOWKL function 429
DPART function 408
DSTRIP function 268, 269
DSUBSTR function 269
double-byte characters 265, 268
DT_CURRENT_DATE function 345
double-byte characters 265, 268
DT_CURRENT_DATETIME function 345
double-byte characters 265, 268
DT_CURRENT_TIME function 346
DT_FORMAT function 496
double-byte characters 265, 268
DT_TOCLOCAL function 347
double-byte characters 265, 268
DT_TOUTC function 349
double-byte characters 265, 268
DTADD function 353
double-byte characters 265, 268
DTDIF function 356
double-byte characters 265, 268
DTDIMY function 430
D TDYM function 430
D TMDY function 430
D TMYD function 430
D TPART function 359
D TRUNC function 361
D TRSTRICT parameter 440, 441
D TYDM function 430
D TYMD function 430
F
F DTY function 430
F FINDMEM function 651, 652
F FQTR function 410
F FYR function 412
F FYQQ function 414
F FLOOR function 539
F FML (Financial Modeling Language) 563
    retrieving tag lists 563
    retrieving tag values 560
F FML hierarchies 559
F FMLCAP function 559
F FMLFOR function 560
F FMLINFO function 562
F FMMLIST function 563
F FMD function 555, 556
F FOCUS commands 69
F FOR lists 563
    retrieving 563
F FORECAST_DOUBLEEXP
    double exponential smoothing 92
F FORECAST_EXPAVE
    exponential moving average 89
F FORECAST_LINEAR
    linear regression equation 99
F FORECAST_MOAVE
    simple moving average 83
F FORECAST_SEASONAL
    triple exponential smoothing 94
F format conversion functions 42
    ATODBL 506
    EDIT 507, 508
E
E EBCDIC character chart 53, 763
E EDALIB.LOAD library 80
E EDIT function 213, 214, 507, 508
    enabling parameter verification 66
E ENCRYPT function 642
    entry points 738, 739
E environment variables 650
    assigning values 652
    retrieving values 650
E error messages 649
E EXP function 557, 558
E EXPN function 558
E exponential moving average 89
    FORECAST_EXPAVE 89
E external functions 21, 80
F
F FEXERR function 649, 650
F FGETENV function 650
F FIND function 326, 327

Using Functions
format conversion functions 42
  FPRINT 508
  FTOA 513, 514
  HEXBYT 514–516
  ITONUM 517, 518
  ITOPACK 518, 519
  ITOZ 520, 521
  PCKOUT 521, 522
  PTOA 522–524
  TSTOPACK 524
  UFMT 526, 527
format conversions 506
  packed numbers 521
  to alphanumeric 513, 522
  to characters 514
  to double-precision 517
  to hexadecimal 526
  to packed decimal 518
  to zoned format 520
formats 506
  alphanumeric 508
  converting 506
formatted-string format 443, 444
FPRINT function 497, 508
FPUTENV function 652, 653
FTOA function 513, 514
function arguments 63
  formats 64
  functions as 75
  in subroutines 733
function libraries 63, 81
  adding 81
  deleting 81
function types 22
  character 198, 281
  data source 33, 305
  date 36
  date and date-time 35
  date-time 39
  decoding 33, 305
  format conversion 42
  geography, simplified 51
  Maintain-specific character 32
  Maintain-specific light update support 44
  numeric 45, 549
  numeric, simplified 44
  script 47, 583
  simplified conversion 42
  system 49, 647
  system, simplified 49
  trigonometric 52
functions 19, 21, 61, 319
  -IF command and 72, 73
  -RUN command and 74, 75
  accessing 61
  analytic 83
Using Functions 787

functions 19, 21, 61, 319
branching in procedures 72, 73, 76
calling 61–63, 69, 75
character 713
COMPUTE command and 69
date and time 368, 419
DEFINE command and 69
Dialogue Manager and 70
external 21
FIND 326, 327
FIQTR 410
FIYR 412
FIYYQ 414
FMLCAP 559
FMLFOR 560
FMLINFO 561, 562
FMLLIST 563
FOCUS commands and 70
HEXTR 457
HMASK 467
internal 21
invoking 62
languages 19
MIRR 566
operating system commands and 74, 75
operating systems 19
SLEEP 666
SQL 713, 715
STRREP 239
subroutines 21, 731

functions 19, 21, 61, 319
trigonometric 717
types 22
VALIDATE command and 69
variable length character 253
variables and 71, 72
VM/CMS 81
XIRR 579
FUSELIB.LOAD library 80

G
geography functions 673
geography functions
GIS_DISTANCE 678
GIS_DRIVE_ROUTE 680
GIS_GEOCODE_ADDR 684
GIS_GEOCODE_ADDR_CITY 685
GIS_GEOCODE_ADDR_POSTAL 687
GIS_GEOMETRY 688
GIS_IN_POLYGON 692
GIS_LINE 693
GIS_POINT 697
GIS_SERV_AREA_XY 706
GIS_SERVICE_AREA 702
GET_TOKEN function 146
GETCOOKI function 654
GETENV function 643
GETHEADR function 655
GETPDS function 656–658
GETTOK function 215, 217
GETUSER function 658–660
GIS_DISTANCE function 678
GIS_DRIVE_ROUTE function 680
GIS_GEOCODE_ADDR function 684
GIS_GEOCODE_ADDR_CITY function 685
GIS_GEOCODE_ADDR_POSTAL function 687
GIS_GEOMETRY function 688
GIS_IN_POLYGON function 692
GIS_LINE function 693
GIS_POINT function 697
GIS_REVERSE_COORDINATE function 700
GIS_SERV_AREA_XY function 706
GIS_SERVICE_AREA function 702
GREGDT function 432, 435
GRPLIST function 659

HHMS function 463
HINPUT function 464, 465
HMASK function 467
HMIDNT function 466, 467
HNAME function 470, 471
holidays 369, 370, 372
holiday files 370, 372
HPART function 471–473
HSETPT function 473–475
HTIME function 475, 476
HTMTOTS function 476
HTTP header variables, retrieving 655
HYYWD function 478

I
IF criteria 75
assigning date-time values 448
functions and 76, 77
IMOD function 555, 556
IMPUTE function 328
INCREMENT function 116
INITCAP function 147
Initial_HHMMSS function 482
Initial_TODAY 482
Initial_TODAY function 482
INT function 564
INT2CHAR function 282
internal functions 21
internal modified rate of return 566
internal rate of return 579
international date formats 392
invoking functions 61, 62
ISO standard date-time formats 445
ITONUM function 517, 518
ITOPACK function 518, 519
ITOZ function 520, 521
IWC.FindAppCGIValue function 531, 532, 587, 588
IWC.GetAppCGIValue function 532, 533, 589
IWCLink function 584
IWCSwitchToSecure function 585
IWCSwitchToUnsecure function 585
IWCTrigger function 586, 587

J

JOBNAME function 660
JULDAT function 434
JULIAN function 485, 486

K

KKFCUT function 275

L

lag values 112
languages 19
LAST function 333, 334
LAST_NONBLANK function 148
LCWORD function 217–219, 283, 284
LCWORD2 function 218–220, 283, 284
LCWORD3 function 219, 220

LEADZERO parameter 375
LEFT function 150
legacy date functions 36
DMY 428
legacy dates 419
legacy versions 419
MDY 428
YMD 428

linear regression equation 99
FORECAST_LINEAR 99
LJUST function 220, 285
load libraries 80
LOCAS function
variable length 255
LOCASE function 222, 223
LOCATE function 713
LOG function 565
LOG10 function 540
LOOKUP function 335, 336, 338, 339
extended function 339
LOWER function 152, 285
LPAD function 153
LTRIM function 155
Machine Learning (Python-based) functions 607

Machine learning functions, Python

   ANOMALY_IF 608
   CLASSIFY_BLR 611
   CLASSIFY_KNN 615
   CLASSIFY_RF 617
   CLASSIFY_XGB 621
   REGRESS_KNN 624
   REGRESS_POLY 626
   REGRESS_RF 630
   REGRESS_XGB 633

Maintain-specific character functions 32, 281

   CHAR2INT 282
   INT2CHAR 282
   LCWORD 283
   LCWORD2 283, 284
   LENGTH 284
   LJUST 285
   LOWER 285
   MASK 286, 287
   NLSCHR 290, 291
   OVRLAY 291, 292
   POSIT 292, 293
   RJUST 293, 294
   SELECTS 294, 295
   STRAN 295, 296

Maintain-specific date and time functions 481

   ADD 484
   DAY 485
   HHMMSS 481, 482
   Initial_HHMMSS 482
   Initial_TODAY 482
   JULIAN 485, 486
   MONTH 486
   QUARTER 487
   SETMDY 487, 488
   standard 481
   SUB 488, 489
   TODAY 482, 483
   TODAY2 483
   WEEKDAY 489, 490
   YEAR 490

Maintain-specific functions 63

   MNTUWS function library 63
   script 583
   SELECTS 294
   STRNCMP 299
   STRTOKEN 300
Maintain-specific light update support functions 44
Maintain-specific script functions 47

MASK function 286, 287
MAX function 565, 566
MD5 hash value 306
MDY function 428
MIN function 565, 566
MIRR function 566
MNTGETTOK function 287
MNTUWS function library 63
modified rate of return 566
MONTH built-in function 486
MONTH function 486
MONTHNAME function 365
MTHNAM subroutine 744–746, 748, 750
MVSDYNAM function 661, 662

numbers 550
calculating remainders 555
generating random 574, 577
greatest integer 564
logarithms 565
maximum 565
minimum 565
raising to a power 557
square root 578
standard normal deviation 570, 571, 573
validating packed fields 553

numeric argument 64
numeric functions 45, 549, 551

ABS 550
ASCII 536
ASIS 550
BAR 551, 552
CHKPCK 553
DMOD 555, 556
EXP 557, 558
FMLCAP 559
FMLFOR 560
FMLINFO 561–563
FMOD 555, 556
IMOD 555, 556
INT 564
LOG 565
LOG10 540
MAX 565, 566
MIN 565, 566

N
naming subroutines 733
National Language Support (NLS) 290
NLS (National Language Support) 290
NLSCHR function 290, 291
NORMSDST function 570, 572–574
NORMSINV function 570, 572–574
NULLIF function 340
number of arguments 66
numbers 550
  absolute value 550
  bar charts 551

Using Functions
numeric functions 45, 549, 551
  NORMSDST 570, 572–574
  NORMSINV 570, 572–574
  PRDNOR 574–576
  PRDUNI 574, 575
  RDNORM 577, 578
  RDUNIF 577, 578
  ROUND 544
  SIGN 545
  SQRT 578, 579
  TRUNCATE 546
numeric string format 443
numeric values 549

O

operating system commands 74, 75
operating systems 19
order of arguments 66
OS/390 743
  compiling subroutines 743
  storing functions 80, 81
  storing subroutines 743
OUTLIER function 598
OVRLAY function 223, 224, 291, 292

P

packed numbers, writing to an output file 527
PARAG function 225, 226
PARTITION_AGGR 103
PARTITION_REF 112

PATTERN function 227
PATTERNS function 158
PCKOUT function 521, 522
PCT_INCREASE function 120
PHONETIC function 501
PI trigonometric function 725
POSIT function 229, 230, 292, 293
POSITION function 160
PRDNOR function 574–576
PRDUNI function 574, 575
PREVIOUS function 123
prior values 112
process IDs 660
programming subroutines 737
  arguments 739, 741
PTOA function 522–524
PUTDDREC 663
PUTENV function 643
Python functions 607
Python machine learning functions
  ANOMALY_IF 608
  CLASSIFY_BLR 611
  CLASSIFY_KNN 615
  CLASSIFY_RF 617
  CLASSIFY_XGB 621
  REGRESS_KNN 624
  REGRESS_POLY 626
  REGRESS_RF 630
  REGRESS_XGB 633

792
Q
QUARTER function 487

R
RADIANS trigonometric function 726
rate of return 566, 579
RDNORM function 577, 578
RDUNIF function 577, 578
RECAP command 78, 79
REGEX function 164
REEXP_INSTR function 171
REEXP_REPLACE function 174
REEXP_SUBSTR function 176
REGRESS_KNN function 624
REGRESS_POLY function 626
REGRESS_RF function 630
REGRESS_XGB function 633
regular expressions 163
  on z/OS 164
REPEAT function 178
REPLACE function 179
retrieving environment variable values 650
retrieving FML hierarchy captions 559
return rate functions 566
  MIRR 566
  XIRR 579
REVERSE function 231
REXX subroutines 751–760
  formats 756
RIGHT function 181

Using Functions

RJUST function 232, 233, 293, 294
rolling calculations 103
ROUND function 544
RPAD function 183
RTRIM function 185
RUN_MODEL machine learning function 636
RUNNING_AVE function 125
RUNNING_MAX function 128
RUNNING_MIN function 131
RUNNING_SUM function 134

S
scales 551
script functions 47, 583
  IWC.FineAppCGIValue 587, 588
  IWC.GetAppCGIValue 589
  IWCLink 584
  IWCSwitchToSecure 585
  IWCSwitchToUnsecure 585
  IWCTrigger 586, 587
scripts 583
SELECTS function 294, 295
SET parameters 369
  BUSDAYS 369
  DTSTRICT 440, 441
  HDAY 370, 372
  LEADZERO 375
SETMDY function 487, 488
SFTDEL function 276
SFTINS function 278
Index

SIGN function 545
SIGN SQL numeric function 545
simple moving average 83
  FORECAST_MOVAVE 83
simplified character functions 137
simplified conversion functions 491
simplified date functions 343
simplified geography functions 51
  GIS.ReverseCoordinate 700
simplified numeric functions 44
simplified system functions 49, 641
SIN trigonometric function 727
single-byte characters 265, 268
SLACK function 644
SLEEP function 666
SOUNDEX function 233, 234
SPACE function 186
SPAWN function 667, 668
SPELLNM function 235, 236
SPLIT function 187
SQL character functions
  LOCATE 713
SQL functions 713, 715
SQL misc functions
  CHR 715
SQL numeric functions
  SIGN 545
SQRT function 578, 579
SQUEEZ function 236, 237
standard date and time functions 369
standard date functions 36
standard normal deviation 570, 571, 573
statistical functions 591
storing external functions
  OS/390 80, 81
  UNIX 81
  VM/CMS 81
  Windows 81
storing subroutines 742
  OS/390 743
  UNIX 743
  Windows 743
STRAN function 295, 296
STRCMP function 297
STRICMP function 298, 299
string replacement 239, 240
STRIP function 237–239
STRNCMP function 299
STRREP function 239, 240
STRTOKEN function 299, 300
SUB function 488, 489
subroutines 21, 731
  compiling 742
  creating 731
  custom 744–746, 748, 750
  entry points 738, 739
  MTHNAM 744–746, 748, 750
  naming 733
  programming 737
  REXX 751–760
subroutines 21, 731
  storing 742
  testing 743
  writing 731
SUBSTR function 241–243, 258, 301
  variable length 258
SUBSTRING function 188
substrings 213
  comparing 299
  extracting 213, 215, 241, 243, 258, 301
  finding 229, 292
  overlaying character strings 223, 291
  substituting 295
SYSTEM function 669, 670
system functions 49, 647
  CHECKPRIVS 648
  FEXERR 649, 650
  FGETENV 650
  FINDMEM 651, 652
  FPUTENV 652, 653
  GETCOOKI 654
  GETHEADR 655
  GETPDS 656–658
  GETUSER 658–660
  GRPLIST 659
  JOBNAME 660
  MVSDYNAM 661, 662
  SPAWN 667, 668
  SYSTEM 669, 670
  SYSVAR 670
SYSVAR function 670

T
  tag lists 563
    retrieving 563
  tag values 560
  TAN trigonometric function 728
  testing subroutines 743
  time formats 444
  TIMETOTS function 476, 477
  TO_INTEGER function 503
  TO_NUMBER function 504
  TODAY function 417, 482, 483
  TODAY2 function 483
  TOKEN function 190
  translated-string format 444
  trigonometric functions 52, 717
    ACOS 717
    ASIN 718
    ATAN 720
    ATAN2 721
    COS 722
    COT 723
    DEGREES 724
    PI 725
    RADIANS 726
    SIN 727
    TAN 728
  TRIM function 243–245, 302
  TRIM_ function 192
TRILLEN function 302, 303
TRIMV function 260
triple exponential smoothing 94
    FORECAST_SEASONAL 94
TRUNCATE function 546
TSTOPACK function 524

U
UFMT function 526, 527
UNIX 81
    accessing functions 81
    compiling subroutines 743
    storing functions 81
    storing subroutines 743
UPCASE function 246, 303
UPPER function 195
user IDs 658
USERFCHK setting 66, 67
USERFNS setting 66

V
VALIDATE command 69
values 322
    decoding 322
    verifying 326, 327
variable length character functions 253
verifying function parameters 66
    controlling 67
    enabling 66

W
WebFOCUS Reporting Server functions
    GETCOOKI 654
    GETHEADR 655
WEEKDAY function 489, 490
WEEKFIRST parameter 439
WHEN criteria 77
WHERE criteria 447
    assigning date-time values 447
    functions and 76
Windows 81
    accessing external functions 81
    compiling subroutines 743
    storing subroutines 743
work days 369
    business days 369
    holidays 369, 370, 372
writing subroutines 731
    creating arguments 733
    entry points 738, 739
    languages 734
    naming subroutines 733
    programming 737, 739, 741

X
XIRR function 579
XMLDECOD function 247
XMLENCOD function 249
XTPACK function 527

Y
YEAR function 490
YM function 435
YMD function 428, 429