
D
evelop

er Stud
io A

p
p

lication
 D

evelop
m

ent •
G

ettin
g

 Started
Version 7 Release 6

Developer Studio Application
Development
Getting Started
Version 7 Release 6

Information Builders, Inc.
Two Penn Plaza
New York, NY 10121-2898

Printed on recycled paper in the U.S.A.

Functions Reference
Version 7 Release 7.03

DN3501991.0511

Cactus, EDA, EDA/SQL, FIDEL, FOCUS, Information Builders, the Information Builders logo, iWay, iWay Software,
Parlay, PC/FOCUS, RStat, TableTalk, Web390, and WebFOCUS are registered trademarks, and DataMigrator and
Magnify are trademarks of Information Builders, Inc.

Adobe, the Adobe logo, Acrobat, Adobe Reader, Flash, Adobe Flash Builder, Flex, and PostScript are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Due to the nature of this material, this document refers to numerous hardware and software products by their
trademarks. In most, if not all cases, these designations are claimed as trademarks or registered trademarks by their
respective companies. It is not this publisher’s intent to use any of these names generically. The reader is therefore
cautioned to investigate all claimed trademark rights before using any of these names other than to refer to the
product described.

Copyright © 2011, by Information Builders, Inc. and iWay Software. All rights reserved. Patent Pending. This manual,
or parts thereof, may not be reproduced in any form without the written permission of Information Builders, Inc.

iWay

Contents

Preface..11
Documentation Conventions..12

Related Publications..13

Customer Support...13

Information You Should Have...14

User Feedback..15

iWay Software Training and Professional Services..15

1. Functions Overview..17
Function Arguments...18

Function Categories...18

Character Chart for ASCII and EBCDIC..19

2. Character Functions...27
ARGLEN: Measuring the Length of a String..28

ASIS: Distinguishing Between Space and Zero...29

BITSON: Determining If a Bit Is On or Off...30

BITVAL: Evaluating a Bit String as an Integer...31

BYTVAL: Translating a Character to Decimal..32

CHKFMT: Checking the Format of a String...33

CTRAN: Translating One Character to Another..34

CTRFLD: Centering a Character String...36

EDIT: Extracting or Adding Characters...37

GETTOK: Extracting a Substring (Token)..38

LCWORD: Converting a String to Mixed-Case...40

LCWORD2: Converting a String to Mixed-Case...41

LCWORD3: Converting a String to Mixed-Case...42

LJUST: Left-Justifying a String...43

LOCASE: Converting Text to Lowercase...43

OVRLAY: Overlaying a Character String..44

Functions Reference 3

PARAG: Dividing Text Into Smaller Lines..46

PATTERN: Generating a Pattern From a String..47

POSIT: Finding the Beginning of a Substring..48

REVERSE: Reversing the Characters in a String...50

RJUST: Right-Justifying a Character String...50

SOUNDEX: Comparing Character Strings Phonetically...51

SPELLNM: Spelling Out a Dollar Amount...52

SQUEEZ: Reducing Multiple Spaces to a Single Space...54

STRIP: Removing a Character From a String..55

STRREP: Replacing Character Strings...56

SUBSTR: Extracting a Substring..57

TRIM: Removing Leading and Trailing Occurrences...59

UPCASE: Converting Text to Uppercase...60

3. Variable Length Character Functions..63
Overview...64

LENV: Returning the Length of an Alphanumeric Field...64

LOCASV: Creating a Variable Length Lowercase String...65

POSITV: Finding the Beginning of a Variable Length Substring...66

SUBSTV: Extracting a Variable Length Substring..67

TRIMV: Removing Characters From a String...69

UPCASV: Creating a Variable Length Uppercase String...70

4. Character Functions for DBCS Code Pages...73
DCTRAN: Translating A Single-Byte or Double-Byte Character to Another..............................74

DEDIT: Extracting or Adding Characters...75

DSTRIP: Removing a Single-Byte or Double-Byte Character From a String.............................76

DSUBSTR: Extracting a Substring...77

JPTRANS: Converting Japanese Specific Characters...79

5. Data Source and Decoding Functions..85
DB_LOOKUP: Retrieving Data Source Values...86

DECODE: Decoding Values...88

FIND: Verifying the Existence of a Value in a Data Source...89

LAST: Retrieving the Preceding Value..90

4 iWay Software

Contents

LOOKUP: Retrieving a Value From a Cross-referenced Data Source.....................................91

6. Date Functions...93
Overview of Date Functions..94

Using Standard Date Functions..94

Specifying Work Days...95

Enabling Leading Zeros For Date and Time Functions in Dialogue Manager..................98

DATEADD: Adding or Subtracting a Date Unit to or From a Date..99

DATECVT: Converting the Format of a Date..101

DATEDIF: Finding the Difference Between Two Dates..103

DATEMOV: Moving a Date to a Significant Point...105

DATETRAN: Formatting Dates in International Formats...107

FIYR: Obtaining the Financial Year..121

FIQTR: Obtaining the Financial Quarter..123

FIYYQ: Converting a Calendar Date to a Financial Date...125

TODAY: Returning the Current Date...127

Using Legacy Date Functions...127

Using Old Versions of Legacy Date Functions...128

AYM: Adding or Subtracting Months..129

AYMD: Adding or Subtracting Days...130

CHGDAT: Changing How a Date String Displays...131

DA Functions: Converting a Legacy Date to an Integer..133

DMY, MDY, YMD: Calculating the Difference Between Two Dates......................................134

DOWK and DOWKL: Finding the Day of the Week...135

DT Functions: Converting an Integer to a Date...136

GREGDT: Converting From Julian to Gregorian Format..137

JULDAT: Converting From Gregorian to Julian Format..138

YM: Calculating Elapsed Months..139

7. Date-Time Functions..141
Using Date-Time Functions...142

Date-Time Parameters...143

Supplying Arguments for Date-Time Functions..146

HADD: Incrementing a Date-Time Value...147

HCNVRT: Converting a Date-Time Value to Alphanumeric Format.......................................148

Functions Reference 5

Contents

HDATE: Converting the Date Portion of a Date-Time Value to a Date Format.......................149

HDIFF: Finding the Number of Units Between Two Date-Time Values..................................150

HDTTM: Converting a Date Value to a Date-Time Value...151

HGETC: Storing the Current Date and Time in a Date-Time Field..152

HHMMSS: Retrieving the Current Time..153

HINPUT: Converting an Alphanumeric String to a Date-Time Value.....................................154

HMIDNT: Setting the Time Portion of a Date-Time Value to Midnight..................................155

HNAME: Retrieving a Date-Time Component in Alphanumeric Format.................................156

HPART: Retrieving a Date-Time Component as a Numeric Value..157

HSETPT: Inserting a Component Into a Date-Time Value...158

HTIME: Converting the Time Portion of a Date-Time Value to a Number..............................159

HTMTOTS: Converting a Time to a Timestamp...160

HYYWD: Returning the Year and Week Number From a Date-Time Value............................161

8. Format Conversion Functions..163
ATODBL: Converting an Alphanumeric String to Double-Precision Format............................164

EDIT: Converting the Format of a Field..165

FPRINT: Converting Fields to Alphanumeric Format...166

FTOA: Converting a Number to Alphanumeric Format..167

HEXBYT: Converting a Decimal Integer to a Character..168

ITONUM: Converting a Large Number to Double-Precision Format......................................169

ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format..............................170

ITOZ: Converting a Number to Zoned Format...171

PCKOUT: Writing a Packed Number of Variable Length...172

PTOA: Converting a Packed-Decimal Number to Alphanumeric Format................................173

UFMT: Converting an Alphanumeric String to Hexadecimal..174

XTPACK: Writing a Packed Number With Up to 31 Significant Digits to an Output File..........175

9. Numeric Functions...177
ABS: Calculating Absolute Value...178

CHKPCK: Validating a Packed Field...178

DMOD, FMOD, and IMOD: Calculating the Remainder From a Division...............................180

EXP: Raising e to the Nth Power...181

EXPN: Evaluating a Number in Scientific Notation..182

INT: Finding the Greatest Integer..183

6 iWay Software

Contents

LOG: Calculating the Natural Logarithm...183

MAX and MIN: Finding the Maximum or Minimum Value...184

NORMSDST: Calculating Standard Cumulative Normal Distribution....................................185

NORMSINV: Calculating Inverse Cumulative Normal Distribution.......................................187

PRDNOR and PRDUNI: Generating Reproducible Random Numbers...................................188

RDNORM and RDUNIF: Generating Random Numbers...189

SQRT: Calculating the Square Root...190

10. System Functions..191
CLSDDREC: Closing All Files Opened by the PUTDDREC Function......................................192

FEXERR: Retrieving an Error Message...192

FGETENV: Retrieving the Value of an Environment Variable...193

FPUTENV: Assigning a Value to an Environment Variable..194

GETUSER: Retrieving a User ID...195

PUTDDREC: Writing a Character String as a Record in a Sequential File.............................196

SLEEP: Suspending Execution for a Given Number of Seconds...197

11. SQL Character Functions...199
CHAR_LENGTH: Finding the Length of a Character String..200

CONCAT: Concatenating Two Character Strings..201

DIGITS: Converting a Numeric Value to a Character String..202

EDIT: Editing a Value According to a Format (SQL)...202

LCASE: Converting a Character String to Lowercase...204

LTRIM: Removing Leading Spaces..204

POSITION: Finding the Position of a Substring...205

RTRIM: Removing Trailing Spaces...206

SUBSTR: Extracting a Substring From a String Value (SQL)...207

TRIM: Removing Leading or Trailing Characters (SQL)...208

UCASE: Converting a Character String to Uppercase..209

VARGRAPHIC: Converting to Double-byte Character Data..210

12. SQL Date and Time Functions..211
CURRENT_DATE: Obtaining the Date...212

CURRENT_TIME: Obtaining the Time...212

CURRENT_TIMESTAMP: Obtaining the Timestamp (Date/Time)...213

Functions Reference 7

Contents

DAY: Obtaining the Day of the Month From a Date/Timestamp...214

DAYS: Obtaining the Number of Days Since January 1, 1900..214

EXTRACT: Obtaining a Datetime Field From Date/Time/Timestamp...................................215

HOUR: Obtaining the Hour From Time/Timestamp...216

MICROSECOND: Obtaining Microseconds From Time/Timestamp......................................217

MILLISECOND: Obtaining Milliseconds From Time/Timestamp..218

MINUTE: Obtaining the Minute From Time/Timestamp...218

MONTH: Obtaining the Month From Date/Timestamp...219

SECOND: Obtaining the Second Field From Time/Timestamp..220

YEAR: Obtaining the Year From Date/Timestamp...221

13. SQL Data Type Conversion Functions..223
CAST: Converting to a Specific Data Type..224

CHAR: Converting to a Character String...225

DATE: Converting to a Date..225

DECIMAL: Converting to Decimal Format...226

FLOAT: Converting to Floating Point Format...227

INT: Converting to an Integer..227

SMALLINT: Converting to a Small Integer..228

TIME: Converting to a Time..229

TIMESTAMP: Converting to a Timestamp...230

14. SQL Numeric Functions..231
ABS: Returning an Absolute Value (SQL)...232

LOG: Returning a Logarithm (SQL)..232

SQRT Returning a Square Root (SQL)..233

15. SQL Miscellaneous Functions..235
COUNTBY: Incrementing Column Values Row by Row...236

HEX: Converting to Hexadecimal...236

IF: Testing a Condition...237

LENGTH: Obtaining the Physical Length of a Data Item...238

VALUE: Coalescing Data Values...239

16. SQL Operators..241
CASE: SQL Case Operator..242

8 iWay Software

Contents

COALESCE: Coalescing Data Values...244

NULLIF: NULLIF Operator..245

Reader Comments...255

Functions Reference 9

Contents

10 iWay Software

Contents

iWay

Preface

This documentation describes how to use DataMigrator-supplied functions to perform complex
calculations and manipulate data in your procedures.

How This Manual Is Organized

This manual includes the following chapters:

ContentsChapter/Appendix

Introduces functions and explains the different types
of available functions.

Functions Overview1

Describes character functions that manipulate
alphanumeric fields and character strings.

Character Functions2

Describes variable-length character functions which
manipulate alphanumeric fields and character strings.

Variable Length Character
Functions

3

Describes functions that manipulate strings of DBCS
and SBCS characters when the configuration uses a
DBCS code page.

Character Functions for
DBCS Code Pages

4

Describes data source and decoding functions that
search for data source records, retrieve data source
records or values, and assign values based on the
value of an input field.

Data Source and Decoding
Functions

5

Describes date functions that manipulate date values.Date Functions6

Describes date-time functions that manipulate
date-time values.

Date-Time Functions7

Describes format conversion functions that convert
fields from one format to another.

Format Conversion
Functions

8

Functions Reference 11

ContentsChapter/Appendix

Describes numeric functions that perform calculations
on numeric constants and fields.

Numeric Functions9

Describes system functions that call the operating
system to obtain information about the operating
environment or to use a system service.

System Functions10

Describes SQL character functions which manipulate
alphanumeric fields and character strings.

SQL Character Functions11

Describes SQL date and time functions which
manipulate date and time values.

SQL Date and Time
Functions

12

Describes SQL format conversion functions which
convert fields from one format to another.

SQL Data Type Conversion
Functions

13

Describes SQL numeric functions which perform
calculations on numeric constants and fields.

SQL Numeric Functions14

Describes miscellaneous SQL functions which perform
conversions, tests and manipulations.

SQL Miscellaneous
Functions

15

Describes SQL operators which used to evaluate
expressions.

SQL Operators16

Documentation Conventions
The following table lists and describes the conventions that apply in this manual.

DescriptionConvention

Denotes syntax that you must enter exactly as shown.THIS TYPEFACE or
this typeface

Represents a placeholder (or variable), a cross-reference, or an
important term.

this typeface

Indicates a default setting.underscore

Highlights a file name or command. It may also indicate a button,
menu item, or dialog box option you can click or select.

this typeface

12 iWay Software

Documentation Conventions

DescriptionConvention

Indicates keys that you must press simultaneously.Key + Key

Indicates two or three choices; type one of them, not the braces.{ }

Indicates a group of optional parameters. None is required, but
you may select one of them. Type only the parameter in the
brackets, not the brackets.

[]

Separates mutually exclusive choices in syntax. Type one of them,
not the symbol.

|

Indicates that you can enter a parameter multiple times. Type only
the parameter, not the ellipsis points (...).

...

Indicates that there are (or could be) intervening or additional
commands.

.

.

.

Related Publications
To view a current listing of our publications and to place an order, visit our Technical
Documentation Library, http://documentation.informationbuilders.com. You can also contact
the Publications Order Department at (800) 969-4636.

Customer Support
Do you have questions about this product?

Join the Focal Point community. Focal Point is our online developer center and more than a
message board. It is an interactive network of more than 3,000 developers from almost
every profession and industry, collaborating on solutions and sharing tips and techniques,
http://forums.informationbuilders.com/eve/forums.

You can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our World Wide Web site,
http://www.informationbuilders.com. It connects you to the tracking system and known-
problem database at the Information Builders support center. Registered users can open,
update, and view the status of cases in the tracking system and read descriptions of reported
software issues. New users can register immediately for this service. The technical support
section of www.informationbuilders.com also provides usage techniques, diagnostic tips,
and answers to frequently asked questions.

Functions Reference 13

Preface

http://documentation.informationbuilders.com
http://forums.informationbuilders.com/eve/forums
http://www.informationbuilders.com

Call Information Builders Customer Support Service (CSS) at (800) 736-6130 or (212) 736-
6130. Customer Support Consultants are available Monday through Friday between 8:00
a.m. and 8:00 p.m. EST to address all your questions. Information Builders consultants can
also give you general guidance regarding product capabilities and documentation. Please
be ready to provide your six-digit site code number (xxxx.xx) when you call.

To learn about the full range of available support services, ask your Information Builders
representative about InfoResponse Online, or call (800) 969-INFO.

Information You Should Have
To help our consultants answer your questions effectively, be prepared to provide the following
information when you call:

Your six-digit site code (xxxx.xx).

Your iWay Software configuration:

The iWay Software version and release. You can find your server version and release
using the Version option in the Web Console. (Note: the MVS and VM servers do not
use the Web Console.)

The communications protocol (for example, TCP/IP or LU6.2), including vendor and
release.

The stored procedure (preferably with line numbers) or SQL statements being used in
server access.

The database server release level.

The database name and release level.

The Master File and Access File.

The exact nature of the problem:

Are the results or the format incorrect? Are the text or calculations missing or
misplaced?

The error message and return code, if applicable.

Is this related to any other problem?

Has the procedure or query ever worked in its present form? Has it been changed recently?
How often does the problem occur?

What release of the operating system are you using? Has it, your security system,
communications protocol, or front-end software changed?

Is this problem reproducible? If so, how?

14 iWay Software

Information You Should Have

Have you tried to reproduce your problem in the simplest form possible? For example, if
you are having problems joining two data sources, have you tried executing a query
containing just the code to access the data source?

Do you have a trace file?

How is the problem affecting your business? Is it halting development or production? Do
you just have questions about functionality or documentation?

User Feedback
In an effort to produce effective documentation, the Documentation Services staff welcomes
your opinions regarding this manual. Please use the Reader Comments form at the end of
this manual to communicate suggestions for improving this publication or to alert us to
corrections. You can also use the Documentation Feedback form on our Web site,
http://documentation.informationbuilders.com/feedback.asp.

Thank you, in advance, for your comments.

iWay Software Training and Professional Services
Interested in training? Our Education Department offers a wide variety of training courses
for iWay Software and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes, visit
our World Wide Web site, http://www.iwaysoftware.com, or call (800) 969-INFO to speak to
an Education Representative.

Interested in technical assistance for your implementation? Our Professional Services
department provides expert design, systems architecture, implementation, and project
management services for all your business integration projects. For information, visit our
World Wide Web site, http://www.iwaysoftware.com.

Functions Reference 15

Preface

http://documentation.informationbuilders.com/feedback.asp
http://www.iwaysoftware.com
http://www.iwaysoftware.com

16 iWay Software

iWay Software Training and Professional Services

iWay

Functions Overview1
Topics:

Functions provide a convenient way to
perform certain calculations and
manipulations. They operate on one or
more arguments and return a single
value that is assigned to an
output_format. The returned value can
be stored in a field, assigned to a
Dialogue Manager variable, used in an
expression or other processing, or used
in a selection or validation test. These
functions can be used in source and
target objects.

Function Arguments

Function Categories

Character Chart for ASCII and EBCDIC

Functions Reference 17

Function Arguments
All function arguments except the last one are input arguments. The formats for these
arguments are described with each function. Unless specified, every input argument can be
provided as one of the following:

A literal (that is, a number for numeric formats or a character string enclosed in single
quotation marks for alphanumeric formats).

A field of the correct format.

A variable assigned by a Dialogue Manager command.

An expression result evaluated in the correct format.

The output argument is the last function argument. With few exceptions, it is a required
argument whose only goal is to provide a format for the output of a function. It is not a field
to put the result in. The format can be provided as either:

A character string enclosed in single quotation marks.

A field name whose format is to be used.

This field is the one to which the result of the expression evaluation is assigned. If the
output_format is alphanumeric, its size should be large enough to fit the function output
and avoid truncation; excessive size causes the output to be padded with blanks.

Function Categories
Functions are grouped into the following areas:

Character Functions on page 27

Variable Length Character Functions on page 63

Character Functions for DBCS Code Pages on page 73

Data Source and Decoding Functions on page 85

Date Functions on page 93

Using Standard Date Functions on page 94

Using Legacy Date Functions on page 127

Date-Time Functions on page 141

Format Conversion Functions on page 163

Numeric Functions on page 177

18 iWay Software

Function Arguments

System Functions on page 191

Character Chart for ASCII and EBCDIC
This chart shows the primary printable characters in the ASCII and EBCDIC character sets
and their decimal equivalents. Extended ASCII codes (above 127) are not included.

EBCDICASCIIDecimal

exclamation point!33

quotation mark"34

number sign#35

dollar sign$36

percent%37

ampersand&38

apostrophe'39

left parenthesis(40

right parenthesis)41

asterisk*42

plus sign+43

comma,44

hyphen-45

period.46

slash/47

0048

1149

2250

3351

Functions Reference 19

1. Functions Overview

EBCDICASCIIDecimal

4452

5553

6654

7755

8856

9957

colon:58

semicolon;59

less-than sign<60

equal sign=61

greater-than sign>62

question mark?63

at sign@64

AA65

BB66

CC67

DD68

EE69

FF70

GG71

HH72

II73

20 iWay Software

Character Chart for ASCII and EBCDIC

EBCDICASCIIDecimal

cent sign¢JJ74

period.KK75

less-than sign<LL76

left parenthesis(MM77

plus sign+NN78

logical or|OO79

ampersand&PP80

QQ81

RR82

SS83

TT84

UU85

VV86

WW87

XX88

YY89

exclamation point!ZZ90

dollar sign$opening bracket[91

asterisk*back slant\92

right parenthesis)closing bracket]93

semicolon;caret^94

logical not¬underscore_95

Functions Reference 21

1. Functions Overview

EBCDICASCIIDecimal

hyphen-grave accent`96

slash/aa97

bb98

cc99

dd100

ee101

ff102

gg103

hh104

ii105

jj106

comma,kk107

percent%ll108

underscore_mm109

greater-than sign>nn110

question mark?oo111

pp112

qq113

rr114

ss115

tt116

uu117

22 iWay Software

Character Chart for ASCII and EBCDIC

EBCDICASCIIDecimal

vv118

ww119

xx120

yy121

colon:zz122

number sign#opening brace{123

at sign@vertical line|124

apostrophe'closing brace}125

equal sign=tilde~126

quotation mark"127

aa129

bb130

cc131

dd132

ee133

ff134

gg135

hh136

ii137

jj145

kk146

ll147

Functions Reference 23

1. Functions Overview

EBCDICASCIIDecimal

mm148

nn149

oo150

pp151

qq152

rr153

ss162

tt163

uu164

vv165

ww166

xx167

yy168

zz169

grave accent`185

AA193

BB194

CC195

DD196

EE197

FF198

GG199

24 iWay Software

Character Chart for ASCII and EBCDIC

EBCDICASCIIDecimal

HH200

II201

JJ209

KK210

LL211

MM212

NN213

OO214

PP215

QQ216

RR217

SS226

TT227

UU228

VV229

WW230

XX231

YY232

ZZ233

00240

11241

22242

Functions Reference 25

1. Functions Overview

EBCDICASCIIDecimal

33243

44244

55245

66246

77247

88248

99249

26 iWay Software

Character Chart for ASCII and EBCDIC

iWay

Character Functions2
Character functions manipulate alphanumeric fields and character strings.

Topics:
LOCASE: Converting Text to Lowercase

ARGLEN: Measuring the Length of a String OVRLAY: Overlaying a Character String

ASIS: Distinguishing Between Space and Zero PARAG: Dividing Text Into Smaller Lines

BITSON: Determining If a Bit Is On or Off PATTERN: Generating a Pattern From a String

BITVAL: Evaluating a Bit String as an Integer POSIT: Finding the Beginning of a Substring

BYTVAL: Translating a Character to Decimal REVERSE: Reversing the Characters in a String

CHKFMT: Checking the Format of a String RJUST: Right-Justifying a Character String

CTRAN: Translating One Character to Another SOUNDEX: Comparing Character Strings
Phonetically

CTRFLD: Centering a Character String
SPELLNM: Spelling Out a Dollar Amount

EDIT: Extracting or Adding Characters
SQUEEZ: Reducing Multiple Spaces to a Single
SpaceGETTOK: Extracting a Substring (Token)

LCWORD: Converting a String to Mixed-Case STRIP: Removing a Character From a String
LCWORD2: Converting a String to Mixed-Case STRREP: Replacing Character Strings
LCWORD3: Converting a String to Mixed-Case SUBSTR: Extracting a Substring

TRIM: Removing Leading and Trailing
Occurrences

LJUST: Left-Justifying a String

UPCASE: Converting Text to Uppercase

Functions Reference 27

ARGLEN: Measuring the Length of a String

How to:

Measure the Length of a Character String

The ARGLEN function measures the length of a character string within a field, excluding
trailing spaces. The field format in a Master File specifies the length of a field, including
trailing spaces.

In Dialogue Manager, you can measure the length of a supplied character string using the
.LENGTH suffix.

How to Measure the Length of a Character StringSyntax:

ARGLEN(length, source_string, output)

where:

length

Integer

Is the length of the field containing the character string, or a field that contains the
length.

source_string

Alphanumeric

Is the name of the field containing the character string.

output

Integer

Measuring the Length of a Character StringExample:

ARGLEN determines the length of the character string in LAST_NAME and stores the result
in a column with the format I3:

ARGLEN(15, LAST_NAME, 'I3')

For SMITH, the result is 5.

For BLACKWOOD, the result is 9.

28 iWay Software

ARGLEN: Measuring the Length of a String

ASIS: Distinguishing Between Space and Zero

How to:

Distinguish Between a Space and a Zero

The ASIS function distinguishes between a space and a zero in Dialogue Manager. It
differentiates between a numeric string, a constant or variable defined as a numeric string
(number within single quotation marks), and a field defined simply as numeric. ASIS forces
a variable to be evaluated as it is entered rather than be converted to a number. It is used
in Dialogue Manager equality expressions only.

How to Distinguish Between a Space and a ZeroSyntax:

ASIS(argument)

where:

argument

Alphanumeric

Is the value to be evaluated.

If you specify an alphanumeric literal, enclose it in single quotation marks. If you specify
an expression, use parentheses, as needed, to ensure the correct order of evaluation.

Distinguishing Between a Space and a ZeroExample:

The first request does not use ASIS. No difference is detected between variables defined
as a space and 0.

-SET &VAR1 = ' ';
-SET &VAR2 = 0;
-IF &VAR2 EQ &VAR1 GOTO ONE;
-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 NOT TRUE
-QUIT
-ONE
-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 TRUE

The output is:

VAR1 EQ VAR2 0 TRUE

Functions Reference 29

2. Character Functions

The next request uses ASIS to distinguish between the two variables.

-SET &VAR1 = ' ';
-SET &VAR2 = 0;
-IF &VAR2 EQ ASIS(&VAR1) GOTO ONE;
-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 NOT TRUE
-QUIT
-ONE
-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 TRUE

The output is:

VAR1 EQ VAR2 0 NOT TRUE

BITSON: Determining If a Bit Is On or Off

How to:

Determine If a Bit Is On or Off

The BITSON function evaluates an individual bit within a character string to determine whether
it is on or off. If the bit is on, BITSON returns a value of 1. If the bit is off, it returns a value
of 0. This function is useful in interpreting multi-punch data, where each punch conveys an
item of information.

How to Determine If a Bit Is On or OffSyntax:

BITSON(bitnumber, source_string, output)

where:

bitnumber

Integer

Is the number of the bit to be evaluated, counted from the left-most bit in the character
string.

source_string

Alphanumeric

Is the character string to be evaluated. The character string is in multiple eight-bit blocks.

30 iWay Software

BITSON: Determining If a Bit Is On or Off

output

Integer

Evaluating a Bit in a FieldExample:

BITSON evaluates the 24th bit of LAST_NAME:

BITSON(24, LAST_NAME, 'I1')

For SMITH, the result is 1.

For CROSS, the result is 9.

BITVAL: Evaluating a Bit String as an Integer

How to:

Evaluate a Bit String

The BITVAL function evaluates a string of bits within a character string. The bit string can
be any group of bits within the character string and can cross byte and word boundaries.
The function evaluates the subset of bits in the string as an integer value.

How to Evaluate a Bit StringSyntax:

BITVAL(source_string, startbit, number, output)

where:

source_string

Alphanumeric

Is the character string to be evaluated.

startbit

Integer

Is the number of the first bit in the bit string, counting from the left-most bit in the
character string. If this argument is less than or equal to 0, the function returns a value
of zero.

number

Integer

Is the number of bits in the subset of bits. If this argument is less than or equal to 0,
the function returns a value of zero.

Functions Reference 31

2. Character Functions

output

Integer

Evaluating a Bit StringExample:

BITVAL evaluates the bits 12 through 20 of LAST_NAME and stores the result in a column
with the format I5:

BITVAL(LAST_NAME, 12, 9, 'I5')

For SMITH, the result is 332.

For JONES, the result is 365.

BYTVAL: Translating a Character to Decimal

How to:

Translate a Character

The BYTVAL function translates a character to the ASCII, EBCDIC, or Unicode decimal value
that represents it, depending on the operating system.

How to Translate a CharacterSyntax:

BYTVAL(character, output)

where:

character

Alphanumeric

Is the character to be translated. If you supply more than one character, the function
evaluates the first.

output

Integer

Translating the First Character of a FieldExample:

BYTVAL translates the first character of LAST_NAME into its ASCII decimal value and stores
the result in a column with the format I3.

BYTVAL(LAST_NAME,'I3')

For SMITH, the result is 83.

For JONES the result is 74.

32 iWay Software

BYTVAL: Translating a Character to Decimal

CHKFMT: Checking the Format of a String

How to:

Check the Format of a Character String

The CHKFMT function checks a character string for incorrect characters or character types.
It compares each character string to a second string, called a mask, by comparing each
character in the first string to the corresponding character in the mask. If all characters in
the character string match the characters or character types in the mask, CHKFMT returns
the value 0. Otherwise, CHKFMT returns a value equal to the position of the first character
in the character string not matching the mask.

If the mask is shorter than the character string, the function checks only the portion of the
character string corresponding to the mask. For example, if you are using a four-character
mask to test a nine-character string, only the first four characters in the string are checked;
the rest are returned as a no match with CHKFMT giving the first non-matching position as
the result.

How to Check the Format of a Character StringSyntax:

CHKFMT(numchar, source_string, 'mask', output)

where:

numchar

Integer

Is the number of characters being compared to the mask.

string

Alphanumeric

Is the character string to be checked.

'mask'

Alphanumeric

Functions Reference 33

2. Character Functions

Is the mask, which contains the comparison characters enclosed in single quotation
marks.

Some characters in the mask are generic and represent character types. If a character
in the string is compared to one of these characters and is the same type, it matches.
Generic characters are:

A is any letter between A and Z (uppercase or lowercase).

9 is any digit between 0–9.

X is any letter between A–Z or any digit between 0-9.

$ is any character.

Any other character in the mask represents only that character. For example, if the third
character in the mask is B, the third character in the string must be B to match.

output

Integer

Checking the Format of a FieldExample:

CHKFMT examines EMP_ID for nine numeric characters starting with 11 and stores the result
in a column with the format I3.

CHKFMT(9, EMP_ID, '119999999', 'I3')

For 071382660, the result is 1.

For 119265415, the result is 0.

For 23764317, the result is 2.

CTRAN: Translating One Character to Another

How to:

Translate One Character to Another

The CTRAN function translates a character within a character string to another character
based on its decimal value. This function is especially useful for changing replacement
characters to unavailable characters, or to characters that are difficult to input or unavailable
on your keyboard. It can also be used for inputting characters that are difficult to enter when
responding to a Dialogue Manager -PROMPT command, such as a comma or apostrophe. It
eliminates the need to enclose entries in single quotation marks.

34 iWay Software

CTRAN: Translating One Character to Another

To use CTRAN, you must know the decimal equivalent of the characters in internal machine
representation. Note that the coding chart for conversion is platform dependent, hence your
platform and configuration option determines whether ASCII, EBCDIC, or Unicode coding is
used. Printable EBCDIC or ASCII characters and their decimal equivalents are listed in
Character Chart for ASCII and EBCDIC on page 19.

In Unicode configurations, this function uses values in the range:

0 to 255 for 1-byte characters.

256 to 65535 for 2-byte characters.

65536 to 16777215 for 3-byte characters.

16777216 to 4294967295 for 4-byte characters (primarily for EBCDIC).

How to Translate One Character to AnotherSyntax:

CTRAN(length, source_string, decimal, decvalue, output)

where:

length

Integer

Is the number of characters in the source string,.

source_string

Alphanumeric

Is the character string to be translated.

decimal

Integer

Is the ASCII or EBCDIC decimal value of the character to be translated.

decvalue

Integer

Is the ASCII or EBCDIC decimal value of the character to be used as a substitute for
decimal.

output

Alphanumeric

Functions Reference 35

2. Character Functions

Translating Spaces to Underscores on an ASCII PlatformExample:

CTRAN translates the spaces in ADDRESS_LN3 (ASCII decimal value of 32) to underscores
(ASCII decimal value of 95) and stores the result in a column with the format A20.

CTRAN(20, PRODNAME, 32, 95, 'A20')

For RUTHERFORD NJ 07073, the result is RUTHERFORD_NJ_07073_.

For NEW YORK NY 10039, the result is NEW_YORK_NY_10039___.

CTRFLD: Centering a Character String

How to:

Center a Character String

The CTRFLD function centers a character string within a field. The number of leading spaces
is equal to or one less than the number of trailing spaces.

CTRFLD is useful for centering the contents of a field and its report column, or a heading
that consists only of an embedded field. HEADING CENTER centers each field value including
trailing spaces. To center the field value without the trailing spaces, first center the value
within the field using CTRFLD.

How to Center a Character StringSyntax:

CTRFLD(source_string, length, output)

where:

source_string

Alphanumeric

Is the character string enclosed in single quotation marks, or a field or variable that
contains the character string.

length

Integer

Is the number of characters in source_string and output. This argument must be greater
than 0. A length less than 0 can cause unpredictable results.

36 iWay Software

CTRFLD: Centering a Character String

output

Alphanumeric

Centering a FieldExample:

CTRFLD centers LAST_NAME and stores the result in a column with the format A12:

CTRFLD(LAST_NAME, 12, 'A12')

EDIT: Extracting or Adding Characters

How to:

Extract or Add Characters

The EDIT function extracts characters from the source string and adds characters to the
output string, according to the mask. It can extract a substring from different parts of the
source string. It can also insert characters from the source string into an output string. For
example, it can extract the first two characters and the last two characters of a string to
form a single output string.

EDIT compares the characters in a mask to the characters in a source string. When it
encounters a nine (9) in the mask, EDIT copies the corresponding character from the source
field to the output string. When it encounters a dollar sign ($) in the mask, EDIT ignores the
corresponding character in the source string. When it encounters any other character in the
mask, EDIT copies that character to the corresponding position in the output string. This
process ends when the mask is exhausted.

Note:

EDIT does not require an output argument because the result is alphanumeric and its
size is determined from the mask value.

EDIT can also convert the format of a field. For information on converting a field with
EDIT, see EDIT: Converting the Format of a Field on page 165.

Functions Reference 37

2. Character Functions

How to Extract or Add CharactersSyntax:

EDIT(source_string, 'mask');

where:

source_string

Alphanumeric

Is a character string from which to pick characters. Each 9 in the mask represents one
digit, so the size of source_string must be at least as large as the number of 9's in the
mask.

mask

Alphanumeric

Is a string of mask characters enclosed in single quotation marks. The length of the
mask, excluding characters other than 9 and $, determines the length of the output
field.

Extracting CharactersExample:

EDIT extracts the first initials from the FNAME column.

EDIT(FNAME, '9$$$$$$$$$')

For GREGORY, the result is G.

For STEVEN, the result is S.

GETTOK: Extracting a Substring (Token)

How to:

Extract a Substring (Token)

The GETTOK function divides a character string into substrings, called tokens. The data must
have a specific character, called a delimiter, that occurs in the string and separates the
string into tokens. GETTOK returns the token specified by the token_number argument.
GETTOK ignores leading and trailing blanks in the source character string.

For example, suppose you want to extract the fourth word from a sentence. In this case,
use the space character for a delimiter and the number 4 for token_number. GETTOK divides
the sentence into words using this delimiter, then extracts the fourth word. If the string is
not divided by the delimiter, use the PARAG function for this purpose. See PARAG: Dividing
Text Into Smaller Lines on page 46.

38 iWay Software

GETTOK: Extracting a Substring (Token)

How to Extract a Substring (Token)Syntax:

GETTOK(source_string, inlen, token_number, 'delim', outlen, output)

where:

source_string

Alphanumeric

Is the source string from which to extract the token.

inlen

Integer

Is the number of characters in source_string. If this argument is less than or equal to
0, the function returns spaces.

token_number

Integer

Is the number of the token to extract. If this argument is positive, the tokens are counted
from left to right. If this argument is negative, the tokens are counted from right to left.
For example, -2 extracts the second token from the right. If this argument is 0, the
function returns spaces. Leading and trailing null tokens are ignored.

'delim'

Alphanumeric

Is the delimiter in the source string enclosed in single quotation marks. If you specify
more than one character, only the first character is used.

outlen

Integer

Is the size of the token extracted. If this argument is less than or equal to 0, the function
returns spaces. If the token is longer than this argument, it is truncated; if it is shorter,
it is padded with trailing spaces.

output

Alphanumeric

Note that the delimiter is not included in the extracted token.

Extracting a TokenExample:

GETTOK extracts the last token from ADDRESS_LN3 and stores the result in a column with
the format A10:

GETTOK(ADDRESS_LN3, 20, -1, ' ', 10, 'A10')

Functions Reference 39

2. Character Functions

In this case, the last token will be the zip code.

For RUTHERFORD NJ 07073, the result is 07073.

For NEW YORK NY 10039, the result is 10039.

LCWORD: Converting a String to Mixed-Case

How to:

Convert a Character String to Mixed-Case

The LCWORD function converts the letters in a character string to mixed-case. It converts
every alphanumeric character to lowercase except the first letter of each new word and the
first letter after a single or double quotation mark, which it convers to uppercase. For example,
O'CONNOR is converted to O'Connor and JACK'S to Jack'S.

LCWORD skips numeric and special characters in the source string and continues to convert
the following alphabetic characters. The result of LCWORD is a string in which the initial
uppercase characters of all words are followed by lowercase characters.

How to Convert a Character String to Mixed-CaseSyntax:

LCWORD(length, source_string, output)

where:

length

Integer

Is the number of characters in source_string and output.

string

Alphanumeric

Is the character string to be converted.

output

Alphanumeric

Converting a Character String to Mixed-CaseExample:

LCWORD converts LAST_NAME to mixed-case and stores the result in a column with theformat
A15:

LCWORD(15, LAST_NAME, 'A15')

For STEVENS, the result is Stevens.

40 iWay Software

LCWORD: Converting a String to Mixed-Case

For SMITH, the result is Smith.

LCWORD2: Converting a String to Mixed-Case

How to:

Convert a Character String to Mixed-Case

The LCWORD2 function converts the letters in a character string to mixed-case by converting
the first letter of each word to uppercase and converting every other letter to lowercase. In
addition, a double quotation mark or a space indicates that the next letter should be converted
to uppercase.

For example, "SMITH" would be changed to "Smith" and "JACK S" would be changed to
"Jack S".

How to Convert a Character String to Mixed-CaseSyntax:

LCWORD2(length, string, output)

where:

length

Integer

Is the length, in characters, of the character string or field to be converted, or a field
that contains the length.

string

Alphanumeric

Is the character string to be converted, or a temporary field that contains the string.

output

Alphanumeric

The length must be greater than or equal to length.

Converting a Character String to Mixed-CaseExample:

LCWORD2 converts the string O'CONNOR’s to mixed-case:

The value returned is O’Connor’s.

Functions Reference 41

2. Character Functions

LCWORD3: Converting a String to Mixed-Case

How to:

Convert a Character String to Mixed-Case Using LCWORD3

The LCWORD3 function converts the letters in a character string to mixed-case by converting
the first letter of each word to uppercase and converting every other letter to lowercase. In
addition, a single quotation mark indicates that the next letter should be converted to
uppercase, as long as it is neither followed by a blank nor the last character in the input
string.

For example, 'SMITH' would be changed to 'Smith' and JACK'S would be changed to Jack's.

How to Convert a Character String to Mixed-Case Using LCWORD3Syntax:

LCWORD3(length, string, output)

where:

length

Integer

Is the length, in characters, of the character string or field to be converted, or a field
that contains the length.

string

Alphanumeric

Is the character string to be converted, or a field that contains the string.

output

Alphanumeric

The length must be greater than or equal to length.

Converting a Character String to Mixed-Case Using LCWORD3Example:

For the string O'CONNOR’s, LCWORD3 rerturns O'Connor's.

For the string o'connor’s, LCWORD3 also rerturns O'Connor's.

42 iWay Software

LCWORD3: Converting a String to Mixed-Case

LJUST: Left-Justifying a String

How to:

Left-Justify a Character String

LJUST left-justifies a character string.

How to Left-Justify a Character StringSyntax:

LJUST(length, source_string, output)

where:

length

Integer

Is the number of characters in source_string and output.

source_string

Alphanumeric

Is the character string to be justified.

output

Alphanumeric

Left-Justifying a StringExample:

LJUST left-justifies FNAME and stores the result in a column with the format A25:

LJUST(15, FNAME, 'A25')

LOCASE: Converting Text to Lowercase

How to:

Convert Text to Lowercase

The LOCASE function converts alphanumeric text to lowercase.

Functions Reference 43

2. Character Functions

How to Convert Text to LowercaseSyntax:

LOCASE(length, source_string, output)

where:

length

Integer

Is the number of characters in source_string and output. The length must be greater than
0 .

source_string

Alphanumeric

Is the character string to convert.

output

Alphanumeric

Converting a String to LowercaseExample:

LOCASE converts LAST_NAME to lowercase and stores the result in a column with the format
A15:

LOCASE(15, LAST_NAME, 'A15')

For SMITH, the result is smith.

For JONES, the result is jones.

OVRLAY: Overlaying a Character String

How to:

Overlay a Character String

The OVRLAY function overlays a base character string with a substring. The function enables
you to edit part of an alphanumeric field without replacing the entire field.

44 iWay Software

OVRLAY: Overlaying a Character String

How to Overlay a Character StringSyntax:

OVRLAY(source_string, length, substring, sublen, position, output)

where:

source_string

Alphanumeric

Is the base character string.

stringlen

Integer

Is the number of characters in source_string and output. If this argument is less than or
equal to 0, unpredictable results occur.

substring

Alphanumeric

Is the substring that will overlay source_string.

sublen

Integer

Is the number of characters in substring. If this argument is less than or equal to 0, the
function returns spaces.

position

Integer

Is the position in source_string at which the overlay begins. If this argument is less than
or equal to 0, the function returns spaces. If this argument is larger than stringlen, the
function returns the source string.

output

Alphanumeric

Note that if the overlaid string is longer than the output field, the string is truncated to
fit the field.

Replacing Characters in a Character StringExample:

OVRLAY replaces the last three characters of EMP_ID with CURR_JOBCODE to create a new
identification code and stores the result in a column with the format A9:

OVRLAY(EMP_ID, 9, CURR_JOBCODE, 3, 7, 'A9')

For EMP_ID of 326179357 with CURR_JOBCODE of B04, the result is 26179B04.

For EMP_ID of 818692173 with CURR_JOBCODE of A17, the result is 818692A17.

Functions Reference 45

2. Character Functions

PARAG: Dividing Text Into Smaller Lines

How to:

Divide Text Into Smaller Lines

The PARAG function divides a character string into substrings by marking them with a
delimiter. It scans a specific number of characters from the beginning of the string and
replaces the last space in the group scanned with the delimiter, thus creating a first substring,
also known as a token. It then scans the next group of characters in the line, starting from
the delimiter, and replaces its last space with a second delimiter, creating a second token.
It repeats this process until it reaches the end of the line.

Once each token is marked off by the delimiter, you can use the function GETTOK to place
the tokens into different fields (see GETTOK: Extracting a Substring (Token) on page 38). If
PARAG does not find any spaces in the group it scans, it replaces the first character after
the group with the delimiter. Therefore, make sure that any group of characters has at least
one space. The number of characters scanned is provided as the maximum token size.

For example, if you have a field called 'subtitle' which contains a large amount of text
consisting of words separated by spaces, you can cut the field into roughly equal substrings
by specifying a maximum token size to divide the field. If the field is 350 characters long,
divide it into three substrings by specifying a maximum token size of 120 characters. This
technique enables you to print lines of text in paragraph form.

Tip: If you divide the lines evenly, you may create more sub-lines than you intend. For example,
suppose you divide 120-character text lines into two lines of 60 characters maximum, but
one line is divided so that the first sub-line is 50 characters and the second is 55. This
leaves room for a third sub-line of 15 characters. To correct this, insert a space (using weak
concatenation) at the beginning of the extra sub-line, then append this sub-line (using strong
concatenation) to the end of the one before it. Note that the sub-line will be longer than 60
characters.

How to Divide Text Into Smaller LinesSyntax:

PARAG(length, source_string, 'delimiter', max_token_size, output)

where:

length

Integer

Is the number of characters in source_string and output.

46 iWay Software

PARAG: Dividing Text Into Smaller Lines

source_string

Alphanumeric

Is a string to divide into tokens.

delimiter

Alphanumeric

Is the delimiter enclosed in single quotation marks. Choose a character that does not
appear in the text.

max_token_size

Integer

Is the upper limit for the size of each token.

output

Alphanumeric

Dividing Text Into Smaller LinesExample:

PARAG divides ADDRESS_LN2 into smaller lines of not more than ten characters, using a
comma as the delimiter. The result is stored in a column with the format A20:

PARAG(20, ADDRESS_LN2, ',', 10, 'A20')

For 147-15 NORTHERN BLD, the result is 147-15,NORTHERN,BLD.

For 13 LINDEN AVE., the result is 13 LINDEN,AVE.

PATTERN: Generating a Pattern From a String

How to:

Generate a Pattern From an Input String

The PATTERN function examines a source string and produces a pattern that indicates the
sequence of numbers, uppercase letters, and lowercase letters in the source string. This
function is useful for examining data to make sure that it follows a standard pattern.

In the output pattern:

Any character from the input that represents a single-byte digit becomes the character
9.

Any character that represents an uppercase letter becomes A, and any character that
represents a lowercase letter becomes a. For European NLS mode (Western Europe,
Central Europe), A and a are extended to apply to accented alphabets.

Functions Reference 47

2. Character Functions

For Japanese, double-byte characters and Hankaku-katakana become C (uppercase).
Note that double-byte includes Hiragana, Katakana, Kanji, full-width alphabets, full-width
numbers, and full-width symbols. This means that all double-byte letters such as Chinese
and Korean are also represented as C.

Special characters remain unchanged.

An unprintable character becomes the character X.

How to Generate a Pattern From an Input StringSyntax:

PATTERN (length, source_string, output)

where:

length

Numeric

Is the length of source_string.

source_string

Alphanumeric

Is the source string.

output

Alphanumeric

Producing a Pattern From Alphanumeric DataExample:

PATTERN generates a pattern for each instance of TESTFLD. The result is stored in a column
with the format A14:

PATTERN (14, TESTFLD, 'A14')

For 212-736-6250, the result is 999-999-9999.

For 800-969-INFO, the result is 1999-999-AAAA.

POSIT: Finding the Beginning of a Substring

How to:

Find the Beginning of a Substring

The POSIT function finds the starting position of a substring within a source string. For
example, the starting position of the substring DUCT in the string PRODUCTION is 4. If the
substring is not in the parent string, the function returns the value 0.

48 iWay Software

POSIT: Finding the Beginning of a Substring

How to Find the Beginning of a SubstringSyntax:

POSIT(source_string, length, substring, sublength, output)

where:

source_string

Alphanumeric

Is the string to parse.

length

Integer

Is the number of characters in the source string. If this argument is less than or equal
to 0, the function returns a 0.

substring

Alphanumeric

Is the substring whose position you want to find.

sublength

Integer

Is the number of characters insubstring. If this argument is less than or equal to 0, or
if it is greater than length, the function returns a 0.

output

Integer

Finding the Position of a LetterExample:

POSIT determines the position of the first capital letter I in LAST_NAME and stores the result
in a column with the format I2:

POSIT(LAST_NAME, 15, 'I', 1, 'I2')

For STEVENS, the result is 0.

For SMITH, the result is 3.

For IRVING, the result is 1.

Functions Reference 49

2. Character Functions

REVERSE: Reversing the Characters in a String

How to:

Reverse the Characters in a String

The REVERSE function reverses the characters in a string.

How to Reverse the Characters in a StringSyntax:

REVERSE(length, source_string, output)

where:

length

Integer

Is the number of characters in source_string and output.

source_string

Alphanumeric

Is the character string to reverse.

output

Alphanumeric

Reversing the Characters in a StringExample:

REVERSE reverses the characters in PRODCAT and stores the result in a column with the
format A15:

REVERSE(15, PRODCAT, 'A15')

For VCRs, the result is sRCV.

For DVD, the result is DVD.

RJUST: Right-Justifying a Character String

How to:

Right-Justify a Character String

The RJUST function right-justifies a character string. All trailing blacks become leading blanks.
This is useful when you display alphanumeric fields containing numbers.

50 iWay Software

REVERSE: Reversing the Characters in a String

How to Right-Justify a Character StringSyntax:

RJUST(length, source_string, output)

where:

length

Integer

Is the number of characters in source_string and output Their lengths must be the same
to avoid justification problems.

source_string

Alphanumeric

Is the character string to right justify.

output

Alphanumeric

Right-Justifying a StringExample:

RJUST right-justifies LAST_NAME and stores the result in a column with the format A15:

RJUST(15, LAST_NAME, 'A15')

SOUNDEX: Comparing Character Strings Phonetically

How to:

Compare Character Strings Phonetically

The SOUNDEX function analyzes a character string phonetically, without regard to spelling.
It converts character strings to four character codes. The first character must be the first
character in the string. The last three characters represent the next three significant sounds
in the source string.

Functions Reference 51

2. Character Functions

How to Compare Character Strings PhoneticallySyntax:

SOUNDEX(length, source_string, output)

where:

length

Alphanumeric

Is the number of characters in source_string. The number must be from 01 to 99,
expressed with two digits (for example '01'); a number larger than 99 causes the function
to return asterisks (*) as output.

source_string

Alphanumeric

Is the string to analyze.

output

Alphanumeric

Comparing Character Strings PhoneticallyExample:

SOUNDEX analyzes LAST_NAME phonetically and stores the result in a column with the
format A4.

SOUNDEX('15', LAST_NAME, 'A4')

SPELLNM: Spelling Out a Dollar Amount

How to:

Spell Out a Dollar Amount

The SPELLNM function spells out an alphanumeric string or numeric value containing two
decimal places as dollars and cents. For example, the value 32.50 is THIRTY TWO DOLLARS
AND FIFTY CENTS.

How to Spell Out a Dollar AmountSyntax:

SPELLNM(outlength, number, output)

where:

outlength

Integer

Is the number of characters in output.

52 iWay Software

SPELLNM: Spelling Out a Dollar Amount

If you know the maximum value of number, use the following table to determine the
value of outlength:

...outlength should beIf number is less than...

37$10

45$100

59$1,000

74$10,000

82$100,000

96$1,000,000

number

Alphanumeric or Numeric (9.2)

Is the number to be spelled out. This value must contain two decimal places.

output

Alphanumeric

Spelling Out a Dollar AmountExample:

SPELLNM spells out the values in CURR_SAL and stores the result in a column with the
format A82:

SPELLNM(82, CURR_SAL, 'A82')

For $13,200.00, the result is THIRTEEN THOUSAND TWO HUNDRED DOLLARS AND NO
CENTS.

For $18,480.00, the result is EIGHTEEN THOUSAND FOUR HUNDRED EIGHTY DOLLARS AND
NO CENTS.

Functions Reference 53

2. Character Functions

SQUEEZ: Reducing Multiple Spaces to a Single Space

How to:

Reduce Multiple Spaces to a Single Space

The SQUEEZ function reduces multiple contiguous spaces within a character string to a
single space. The resulting character string has the same length as the original string but
is padded on the right with spaces.

How to Reduce Multiple Spaces to a Single SpaceSyntax:

SQUEEZ(length, source_string, output)

where:

length

Integer

Is the number of characters in source_string and output.

source_string

Alphanumeric

Is the character string to squeeze.

output

Alphanumeric

Reducing Multiple Spaces to a Single SpaceExample:

SQUEEZ reduces multiple spaces in NAME to a single blank and stores the result in a column
with the format A30:

SQUEEZ(30, NAME, 'A30')

For MARY SMITH, the result is MARY SMITH.

For DIANE JONES, the result is DIANE JONES.

For JOHN MCCOY, the result is JOHN MCCOY.

54 iWay Software

SQUEEZ: Reducing Multiple Spaces to a Single Space

STRIP: Removing a Character From a String

How to:

Remove a Character From a String

The STRIP function removes all occurrences of a specific character from a string. The resulting
character string has the same length as the original string but is padded on the right with
spaces.

How to Remove a Character From a StringSyntax:

STRIP(length, source_string, char, output)

where:

length

Integer

Is the number of characters in source_string and output.

source_string

Alphanumeric

Is the string from which the character will be removed.

char

Alphanumeric

Is the character to be removed from the string. If more than one character is provided,
the left-most character will be used as the strip character.

Note: To remove single quotation marks, use two consecutive quotation marks. You
must then enclose this character combination in single quotation marks.

output

Alphanumeric

Removing Occurrences of a Character From a StringExample:

STRIP removes all occurrences of a period (.) from DIRECTOR and stores the result in a field
with the format A17:

STRIP(17, DIRECTOR, '.', 'A17')

For ZEMECKIS R., the result is ZEMECKIS R.

For BROOKS J.L., the result is BROOKS JL.

Functions Reference 55

2. Character Functions

STRREP: Replacing Character Strings

How to:

Replace Character Strings

Reference:

Usage Notes for STRREP Function

The STRREP replaces all instances of a specified string within a source string. It also supports
replacement by null strings.

How to Replace Character StringsSyntax:

STRREP (inlength, instring, searchlength, searchstring, replength,
repstring, outlength, output)

where:

inlength

Numeric

Is the number of characters in the source string.

instring

Alphanumeric

Is the source string.

searchlength

Numeric

Is the number of characters in the (shorter length) string to be replaced.

searchstring

Alphanumeric

Is the character string to be replaced.

replength

Numeric

Is the number of characters in the replacement string. Must be zero (0) or greater.

repstring

Alphanumeric

Is the replacement string (alphanumeric). Ignored if replength is zero (0).

56 iWay Software

STRREP: Replacing Character Strings

outlength

Numeric

Is the number of characters in the resulting output string. Must be 1 or greater.

output

Alphanumeric

Usage Notes for STRREP FunctionReference:

The maximum string length is 4095.

Replacing Commas and Dollar SignsExample:

STRREP finds and replaces commas and then dollar signs and stores the result in field with
the format A17:

STRREP(15,CS_ALPHA,1,',',0,'X',14,'A14')
STRREP(14,CS_NOCOMMAS,1,'$',4,'USD ',17,'A17')

For $29,700.00, the result is USD 29700.00.

For $9,000.00, the result is USD 9000.00.

SUBSTR: Extracting a Substring

How to:

Extract a Substring

The SUBSTR function extracts a substring based on where it begins and its length in the
source string.

How to Extract a SubstringSyntax:

SUBSTR(length, source_string, start, end, sublength, output)

where:

length

Integer

Is the the number of characters in source_string.

source_string

Alphanumeric

Is the string from which to extract a substring .

Functions Reference 57

2. Character Functions

start

Integer

Is the starting position of the substring in the source string. If start is less than one or
greater than length, the function returns spaces.

end

Integer

Is the ending position of the substring. If this argument is less than start or greater than
length, the function returns spaces.

sublength

Integer

Is the number of characters in the substring (normally end - start + 1). If sublength is
longer than end - start +1, the substring is padded with trailing spaces. If it is shorter,
the substring is truncated. This value should be the declared length of output. Only
sublength characters will be processed.

output

Alphanumeric

Extracting a StringExample:

SUBSTR extracts the first three characters from LAST_NAME, and stores the results in a
column with the format A3:

SUBSTR(15, LAST_NAME, 1, 3, 3, 'A3')

For BANNING, the result is BAN.

For MCKNIGHT, the result is MCK.

58 iWay Software

SUBSTR: Extracting a Substring

TRIM: Removing Leading and Trailing Occurrences

How to:

Remove Leading and Trailing Occurrences

The TRIM function removes leading and/or trailing occurrences of a pattern within a character
string.

How to Remove Leading and Trailing OccurrencesSyntax:

TRIM(trim_where, source_string, length, pattern, sublength, output)

where:

trim_where

Alphanumeric

Is one of the following, which indicates where to remove the pattern:

'L' removes leading occurrences.

'T' removes trailing occurrences.

'B' removes both leading and trailing occurrences.

source_string

Alphanumeric

Is the string to trim .

string_length

Integer

Is the number of characters in the source string.

pattern

Alphanumeric

Is the character string pattern to remove.

sublength

Integer

Is the number of characters in the pattern.

Functions Reference 59

2. Character Functions

output

Alphanumeric

Removing Leading OccurrencesExample:

TRIM removes leading occurrences of the characters BR from DIRECTOR and stores the
result in a column with the format A17:

TRIM('L', DIRECTOR, 17, 'BR', 2, 'A17')

For BROOKS R., the result is OOKS R.

For ABRAHAMS J., the result is ABRAHAMS J.

UPCASE: Converting Text to Uppercase

How to:

Convert Text to Uppercase

The UPCASE function converts a character string to uppercase. It is useful for sorting on a
field that contains both mixed-case and uppercase values. Sorting on a mixed-case field
produces incorrect results because the sorting sequence in EBCDIC always places lowercase
letters before uppercase letters, while the ASCII sorting sequence always places uppercase
letters before lowercase. To obtain correct results, define a new field with all of the values
in uppercase, and sort on that.

How to Convert Text to UppercaseSyntax:

UPCASE(length, source_string, output)

where:

length

Integer

Is the number of characters in source_string and output.

input

Alphanumeric

Is the string to convert.

output

Alphanumeric of type Anv or An

If the format of the output_format is AnV, then the length returned is equal to the smaller
of the source_string length and the upper_limit length.

60 iWay Software

UPCASE: Converting Text to Uppercase

Converting a Mixed-Case String to UppercaseExample:

UPCASE converts LAST_NAME_MIXED to uppercase and stores the result in a column with
the format A15:

UPCASE(15, LAST_NAME_MIXED, 'A15')

For Banning, the result is BANNING.

For McKnight, the result is MCKNIGHT.

Functions Reference 61

2. Character Functions

62 iWay Software

UPCASE: Converting Text to Uppercase

iWay

Variable Length Character Functions3
Topics:

The character format AnV is supported
in synonyms for FOCUS, XFOCUS, and
relational data sources. This format is
used to represent the VARCHAR (variable
length character) data types supported
by relational database management
systems.

Overview

LENV: Returning the Length of an
Alphanumeric Field

LOCASV: Creating a Variable Length
Lowercase String

POSITV: Finding the Beginning of a
Variable Length Substring

SUBSTV: Extracting a Variable Length
Substring

TRIMV: Removing Characters From a
String

UPCASV: Creating a Variable Length
Uppercase String

Functions Reference 63

Overview
For relational data sources, AnV keeps track of the actual length of a VARCHAR column. This
information is especially valuable when the value is used to populate a VARCHAR column
in a different RDBMS. It affects whether trailing blanks are retained in string concatenation
and, for Oracle, string comparisons (the other relational engines ignore trailing blanks in
string comparisons).

In a FOCUS or XFOCUS data source, AnV does not provide true variable length character
support. It is a fixed-length character field with an extra two leading bytes to contain the
actual length of the data stored in the field. This length is stored as a short integer value
occupying two bytes. Because of the two bytes of overhead and the additional processing
required to strip them, AnV format is not recommended for use with non-relational data
sources.

AnV fields can be used as arguments to all Information Builders-supplied functions that
expect alphanumeric arguments. An AnV input parameter is treated as an An parameter and
is padded with blanks to its declared size (n). If the last parameter specifies an AnV format,
the function result is converted to type AnV with actual length set equal to its size.

The functions described in this topic are designed to work specifically with the AnV data type
parameters.

LENV: Returning the Length of an Alphanumeric Field

How to:

Find the Length of an Alphanumeric Field

LENV returns the actual length of an AnV field or the size of an An field.

How to Find the Length of an Alphanumeric FieldSyntax:

LENV(source_string, output)

where:

source_string

Alphanumeric of type An or AnV

Is the source string or field. If it is an An format field, the function returns its size, n.
For a character string enclosed in quotation marks or a variable, the size of the string
or variable is returned. For a field of AnV format, its length, taken from the length-in-bytes
of the field, is returned.

64 iWay Software

Overview

output

Integer

Finding the Length of an AnV FieldExample:

LENV returns the length of TITLEV and stores the result in a column with the format I2:

LENV(TITLEV, 'I2')

For ALICE IN WONDERLAND, the result is 19.

For SLEEPING BEAUTY, the result is 15.

LOCASV: Creating a Variable Length Lowercase String

How to:

Create a Variable Length Lowercase String

The LOCASV function converts alphabetic characters in the source string to lowercase and
is similar to LOCASE. LOCASV returns AnV output whose actual length is the lesser of the
actual length of the AnV source string and the value of the input parameter upper_limit.

How to Create a Variable Length Lowercase StringSyntax:

LOCASV(upper_limit, source_string, output)

where:

upper_limit

Integer

Is the limit for the length of the source string.

source_string

Alphanumeric of type An or AnV

Is the string to be converted to lowercase. If it is a field, it can have An or AnV format.
If it is a field of type AnV, its length is taken from the length in bytes stored in the field.
If upper_limit is smaller than the actual length, the source string is truncated to this
upper limit.

output

Alphanumeric of type An or AnV

If the output format is AnV, the actual length returned is equal to the smaller of the
source string length and the upper limit.

Functions Reference 65

3. Variable Length Character Functions

Creating a Variable Length Lowercase StringExample:

LOCASV converts LAST_NAME to lowercase and specifies a length limit of five characters.
The results are stored in a column with the format A15V:

LOCASV(5, LAST_NAME, 'A15V')

For SMITH, the result is smith.

For JONES, the result is jones.

POSITV: Finding the Beginning of a Variable Length Substring

How to:

Find the Beginning of a Variable Length Substring

The POSITV function finds the starting position of a substring within a larger string. For
example, the starting position of the substring DUCT in the string PRODUCTION is 4. If the
substring is not in the parent string, the function returns the value 0. This is similar to POSIT;
however, the lengths of its AnV parameters are based on the actual lengths of those
parameters in comparison with two other parameters that specify their sizes.

How to Find the Beginning of a Variable Length SubstringSyntax:

POSITV(source_string, upper_limit, substring, sub_limit, output)

where:

source_string

Alphanumeric of type An or AnV

Is the source string that contains the substring whose position you want to find. If it is
a field of AnV format, its length is taken from the length bytes stored in the field. If
upper_limit is smaller than the actual length, the source string is truncated to this upper
limit.

upper_limit

Integer

Is a limit for the length of the source string.

substring

Alphanumeric of type An or AnV

Is the substring whose position you want to find. If it is a field of type AnV, its length is
taken from the length bytes stored in the field. If sub_limit is smaller than the actual
length, the source string is truncated to this limit.

66 iWay Software

POSITV: Finding the Beginning of a Variable Length Substring

sub_limit

Integer

Is limit for the length of the substring.

output

Integer

Finding the Starting Position of a Variable Length PatternExample:

POSITV finds the starting position of a comma in TITLEV, which would indicate a trailing
definite or indefinite article in a movie title (such as ", THE" in SMURFS, THE). LENV is used
to determine the length of title. The result is stored in a column with the format I4:

POSITV(TITLEV,LENV(TITLEV,'I4'), ',', 1,'I4')

For “SMURFS, THE”, the result is 7.

For “SHAGGY DOG, THE”, the result is 11.

SUBSTV: Extracting a Variable Length Substring

How to:

Extract a Variable Length Substring

The SUBSTV function extracts a substring from a string and is similar to SUBSTR. However,
the end position for the string is calculated from the starting position and the substring
length. Therefore, it has fewer parameters than SUBSTR. Also, the actual length of the output
field, if it is an AnV field, is determined based on the substring length.

How to Extract a Variable Length SubstringSyntax:

SUBSTV(upper_limit, source_string, start, sub_limit, output)

where:

upper_limit

Integer

Is the limit for the length of the source string.

Functions Reference 67

3. Variable Length Character Functions

source_string

Alphanumeric of type An or AnV

Is the character string that contains the substring you want to extract. If it is a field of
type AnV, its length is taken from the length bytes stored in the field. If upper_limit is
smaller than the actual length, the source string is truncated to the upper limit. The final
length value determined by this comparison is referred to as p_length (see the description
of the output parameter for related information).

start

Integer

Is the starting position of the substring in the source string. The starting position can
exceed the source string length, which results in spaces being returned.

sub_limit

Integer

Is the length, in characters, of the substring (normally end - start + 1). The end position
of the substring is end =start + sublength -1. Note that the ending position can exceed
the input string length depending on the provided values for start and sub_limit.

output

Alphanumeric of type An or AnV

If the format of output is AnV, the actual length, outlen, is computed as follows from the
values for end, start, and p_length (see the source_string parameter for related
information):

If end > p_length or end < start, then outlen = 0. Otherwise, outlen = end - start + 1.

Extracting a Variable Length SubstringExample:

SUBSTV extracts the first three characters from the TITLEV and stores the result in a column
with the format A20V:

SUBSTV(39, TITLEV, 1, 3, 'A20V')

For SMURFS, the result is SMU.

For SHAGGY DOG, the result is SHA.

68 iWay Software

SUBSTV: Extracting a Variable Length Substring

TRIMV: Removing Characters From a String

How to:

Remove Characters From a String

The TRIMV function removes leading and/or trailing occurrences of a pattern within a character
string. TRIMV is similar to TRIM. However, TRIMV allows the source string and the pattern
to be removed to have AnV format.

TRIMV is useful for converting an An field to an AnV field (with the length in bytes containing
the actual length of the data up to the last non-blank character).

How to Remove Characters From a StringSyntax:

TRIMV(trim_where, source_string, upper_limit, pattern, pattern_limit,
output)

where:

trim_where

Alphanumeric

Is one of the following, which indicates where to remove the pattern:

'L' removes leading occurrences.

'T' removes trailing occurrences.

'B' removes both leading and trailing occurrences.

source_string

Alphanumeric of type An or AnV

Is the source string to be trimmed. If it is a field of type AnV, its length is taken from
the length in bytes stored in the field. If upper_limit is smaller than the actual length,
the source string is truncated to this upper limit.

slength_limit

Integer

Is limit for the length of the source string.

pattern

Alphanumeric of type An or AnV

Is the pattern to remove. If it is a field of type AnV, its length is taken from the length
in bytes stored in the field. If pattern_limit is smaller than the actual length, the pattern
is truncated to this limit.

Functions Reference 69

3. Variable Length Character Functions

plength_limit

Integer

Is the limit for the length of the pattern.

output

Alphanumeric of type An or AnV

If the output format is AnV, the length is set to the number of characters left after
trimming.

Creating an AnV Field by Removing Trailing BlanksExample:

TRIMV removes trailing blanks from TITLE and stores the result in a column with the format
A39V:

TRIMV('T', TITLE, 39, ' ', 1, 'A39V')

UPCASV: Creating a Variable Length Uppercase String

How to:

Create a Variable Length Uppercase String

UPCASV converts alphabetic characters to uppercase, and is similary to UPCASE. However,
UPCASV can return AnV output whose actual length is the lesser of the actual length of the
AnV source string and an input parameter that specifies the upper limit.

How to Create a Variable Length Uppercase StringSyntax:

UPCASV(upper_limit, source_string, output)

where:

upper_limit

Integer

Is the limit for the length of the source string.

source_string

Alphanumeric of type An or AnV

is the string to convert to uppercase. If it is a field of type AnV, its length is taken from
the length in bytes stored in the field. If upper_limit is smaller than the actual length,
the source string is truncated to the upper limit.

70 iWay Software

UPCASV: Creating a Variable Length Uppercase String

output

Alphanumeric of type An or AnV

If the output format is AnV, the length returned is equal to the smaller of the source
string length and upper_limit.

Creating a Variable Length Uppercase StringExample:

UPCASEV converts LAST_NAME_MIXED to uppercase and stores the result in a column with
the format A15V:

UPCASEV(15, LAST_NAME_MIXED, 'A15V5')

For Banning, the result is BANNING.

For McKnight, the result is MCKNIGHT.

Functions Reference 71

3. Variable Length Character Functions

72 iWay Software

UPCASV: Creating a Variable Length Uppercase String

iWay

Character Functions for DBCS Code Pages4
Topics:

The functions in this topic manipulate
strings of DBCS and SBCS characters
when your configuration uses a DBCS
code page.

DCTRAN: Translating A Single-Byte or
Double-Byte Character to Another

DEDIT: Extracting or Adding Characters

DSTRIP: Removing a Single-Byte or
Double-Byte Character From a String

DSUBSTR: Extracting a Substring

JPTRANS: Converting Japanese
Specific Characters

Functions Reference 73

DCTRAN: Translating A Single-Byte or Double-Byte Character to Another

How to:

Translate a Single-Byte or Double-Byte Character to Another

The DCTRAN function translates a single-byte or double-byte character within a character
string to another character based on its decimal value. To use DCTRAN, you need to know
the decimal equivalent of the characters in internal machine representation.

How to Translate a Single-Byte or Double-Byte Character to AnotherSyntax:

DCTRAN(length, source_string, inhexchar, outhexchar, output_format)

where:

length

Double

Is the number of characters in the source string .

source_string

Alphanumeric

Is the character string to be translated.

inhexchar

Double

Is the ASCII or EBCDIC decimal value of the character to be translated.

outhexchar

Double

Is the ASCII or EBCDIC decimal value of the character to be used as a substitute for
inhexchar.

output

Alphanumeric

74 iWay Software

DCTRAN: Translating A Single-Byte or Double-Byte Character to Another

Using DCTRAN to Translate Double-Byte CharactersExample:

In the following:

DEDIT: Extracting or Adding Characters

How to:

Extract or Add DBCS or SBCS Characters

If your configuration uses a DBCS code page, you can use the DEDIT function to extract
characters from or add characters to a string.

DEDIT works by comparing the characters in a mask to the characters in a source field.
When it encounters a nine (9) in the mask, DEDIT copies the corresponding character from
the source field to the new field. When it encounters a dollar sign ($) in the mask, DEDIT
ignores the corresponding character in the source field. When it encounters any other
character in the mask, DEDIT copies that character to the corresponding position in the new
field.

How to Extract or Add DBCS or SBCS CharactersSyntax:

DEDIT(inlength, source_string, mask_length, mask, output)

where:

inlength

Integer

Is the number of bytes in source_string. The string can have a mixture of DBCS and SBCS
characters. Therefore, the number of bytes represents the maximum number of characters
possible in the source string.

source_string

Alphanumeric

Is the string to edit.

mask_length

Integer

Is the number of characters in mask.

Functions Reference 75

4. Character Functions for DBCS Code Pages

mask

Alphanumeric

Is the string of mask characters.

Each nine (9) in the mask causes the corresponding character from the source field to
be copied to the new field.

Each dollar sign ($) in the mask causes the corresponding character in the source field
to be ignored.

Any other character in the mask is copied to the new field.

output

Alphanumeric

Adding and Extracting DBCS CharactersExample:

The following example copies alternate characters from the source string to the new field,
starting with the first character in the source string, and then adds several new characters
at the end of the extracted string:

The following example copies alternate characters from the source string to the new field,
starting with the second character in the source string, and then adds several new characters
at the end of the extracted string:

DSTRIP: Removing a Single-Byte or Double-Byte Character From a String

How to:

Remove a Single-Byte or Double-Byte Character From a String

The DSTRIP function removes all occurrences of a specific single-byte or double-byte character
from a string. The resulting character string has the same length as the original string but
is padded on the right with spaces.

76 iWay Software

DSTRIP: Removing a Single-Byte or Double-Byte Character From a String

How to Remove a Single-Byte or Double-Byte Character From a StringSyntax:

DSTRIP(length, source_string, char, output)

where:

length

Double

Is the number of characters in source_string and outfield.

source_string

Alphanumeric

Is the string from which the character will be removed.

char

Alphanumeric

Is the character to be removed from the string. If more than one character is provided,
the left-most character will be used as the strip character.

Note: To remove single quotation marks, use two consecutive quotation marks. You
must then enclose this character combination in single quotation marks.

output

Alphanumeric

Removing a Double-Byte Character From a StringExample:

In the following:

DSUBSTR: Extracting a Substring

How to:

Extract a Substring

If your configuration uses a DBCS code page, you can use the DSUBSTR function to extract
a substring based on its length and position in the source string.

Functions Reference 77

4. Character Functions for DBCS Code Pages

How to Extract a SubstringSyntax:

DSUBSTR(inlength, source_string, start, end, sublength, output)

where:

inlength

Integer

Is the length of the source string in bytes. The string can have a mixture of DBCS and
SBCS characters. Therefore, the number of bytes represents the maximum number of
characters possible in the source string.

source_string

Alphanumeric

Is the string from which the substring will be extracted .

start

Integer

Is the starting position (in number of characters) of the substring in the source string.
If this argument is less than one or greater than end, the function returns spaces.

end

Integer

Is the ending position (in number of characters) of the substring. If this argument is less
than start or greater than inlength, the function returns spaces.

sublength

Integer

Is the length of the substring, in characters (normally end - start + 1). If sublength is
longer than end - start +1, the substring is padded with trailing spaces. If it is shorter,
the substring is truncated. This value should be the declared length of output. Only
sublength characters will be processed.

78 iWay Software

DSUBSTR: Extracting a Substring

output

Alphanumeric

Extracting a SubstringExample:

The following example extracts the 3-character substring in positions 4 through 6 from a 15-
byte string of characters:

JPTRANS: Converting Japanese Specific Characters

How to:

Convert Japanese Specific Characters

Reference:

Usage Notes for the JPTRANS Function

The JPTRANS function converts Japanese specific characters.

How to Convert Japanese Specific CharactersSyntax:

JPTRANS ('type_of_conversion', length, source_string, 'output_format')

where:

type_of_conversion

Is one of the following options indicating the type of conversion you want to apply to
Japanese specific characters. These are the single component input types:

DescriptionConversion Type

Converts Zenkaku (Fullwidth) alphabets to Zenkaku uppercase.'UPCASE'

Converts Zenkaku alphabets to Zenkaku lowercase.'LOCASE'

Converts alphanumerics from Hankaku (Halfwidth) to Zenkaku.'HNZNALPHA'

Converts ASCII symbols from Hankaku to Zenkaku.'HNZNSIGN'

Converts Katakana from Hankaku to Zenkaku.'HNZNKANA'

Functions Reference 79

4. Character Functions for DBCS Code Pages

DescriptionConversion Type

Converts space (blank) from Hankaku to Zenkaku.'HNZNSPACE'

Converts alphanumerics from Zenkaku to Hankaku.'ZNHNALPHA'

Converts ASCII symbols from Zenkaku to Hankaku.'ZNHNSIGN'

Converts Katakana from Zenkaku to Hankaku.'ZNHNKANA'

Converts space from Zenkaku to Hankaku.'ZNHNSPACE'

Converts Hiragana to Zenkaku Katakana.'HIRAKATA'

Converts Zenkaku Katakana to Hiragana.'KATAHIRA'

Converts codepage from 930 to 939.'930TO939'

Converts codepage from 939 to 930.'939TO930'

length

Integer

Is the number of characters in the source_string.

source_string

Alphanumeric

Is the string to convert.

output_format

Alphanumeric

Is the name of the field that contains the output, or the format enclosed in single
quotation marks.

80 iWay Software

JPTRANS: Converting Japanese Specific Characters

Using the JPTRANS FunctionExample:

JPTRANS('UPCASE', 20, Alpha_DBCS_Field, 'A20')

JPTRANS('LOCASE', 20, Alpha_DBCS_Field, 'A20')

JPTRANS('HNZNALPHA', 20, Alpha_SBCS_Field, 'A20')

JPTRANS('HNZNSIGN', 20, Symbol_SBCS_Field, 'A20')

JPTRANS('HNZNKANA', 20, Hankaku_Katakana_Field, 'A20')

JPTRANS('HNZNSPACE', 20, Hankaku_Katakana_Field, 'A20')

JPTRANS('ZNHNALPHA', 20, Alpha_DBCS_Field, 'A20')

JPTRANS('ZNHNSIGN', 20, Symbol_DBCS_Field, 'A20')

JPTRANS('ZNHNKANA', 20, Zenkaku_Katakana_Field, 'A20')

JPTRANS('ZNHNSPACE', 20, Zenkaku_Katakana_Field, 'A20')

JPTRANS('HIRAKATA', 20, Hiragana_Field, 'A20')

Functions Reference 81

4. Character Functions for DBCS Code Pages

JPTRANS('KATAHIRA', 20, Zenkaku_Katakana_Field, 'A20')

In the following, codepoints 0x62 0x63 0x64 are converted to 0x81 0x82 0x83, respectively:

JPTRANS('930TO939', 20, CP930_Field, 'A20')

In the following, codepoints 0x59 0x62 0x63 are converted to 0x81 0x82 0x83, respectively:

JPTRANS('939TO930', 20, CP939_Field, 'A20')

Usage Notes for the JPTRANS FunctionReference:

HNZNSIGN and ZNHNSIGN focus on the conversion of symbols.

Many symbols have a one-to-one relation between Japanese Fullwidth characters and
ASCII symbols, whereas some characters have one-to-many relations. For example, the
Japanese punctuation character (U+3001) and Fullwidth comma , (U+FF0C) will be
converted to the same comma , (U+002C). We have the following EXTRA rule for those
special cases.

HNZNSIGN:

Double Quote " (U+0022) -> Fullwidth Right Double Quote ” (U+201D)

Single Quote ' (U+0027) -> Fullwidth Right Single Quote ’ (U+2019)

Comma , (U+002C) -> Fullwidth Ideographic Comma (U+3001)

Full Stop . (U+002E) -> Fullwidth Ideographic Full Stop ? (U+3002)

Backslash \ (U+005C) -> Fullwidth Backslash \ (U+FF3C)

Halfwidth Left Corner Bracket (U+FF62) -> Fullwidth Left Corner Bracket (U+300C)

Halfwidth Right Corner Bracket (U+FF63) -> Fullwidth Right Corner Braket (U+300D)

Halfwidth Katakana Middle Dot ? (U+FF65) -> Fullwidth Middle Dot · (U+30FB)

ZNHNSIGN:

Fullwidth Right Double Quote ” (U+201D) -> Double Quote " (U+0022)

Fullwidth Left Double Quote “ (U+201C) -> Double Quote " (U+0022)

Fullwidth Quotation " (U+FF02) -> Double Quote " (U+0022)

Fullwidth Right Single Quote ’ (U+2019) -> Single Quote ' (U+0027)

Fullwidth Left Single Quote ‘ (U+2018) -> Single Quote ' (U+0027)

82 iWay Software

JPTRANS: Converting Japanese Specific Characters

Fullwidth Single Quote ' (U+FF07) -> Single Quote ' (U+0027)

Fullwidth Ideographic Comma (U+3001) -> Comma , (U+002C)

Fullwidth Comma , (U+FF0C) -> Comma , (U+002C)

Fullwidth Ideographic Full Stop ? (U+3002) -> Full Stop . (U+002E)

Fullwidth Full Stop . (U+FF0E) -> Full Stop . (U+002E)

Fullwidth Yen Sign ¥ (U+FFE5) -> Yen Sign ¥ (U+00A5)

Fullwidth Backslash \ (U+FF3C) -> Backslash \ (U+005C)

Fullwidth Left Corner Bracket (U+300C) -> Halfwidth Left Corner Bracket (U+FF62)

Fullwidth Right Corner Bracket (U+300D) -> Halfwidth Right Corner Bracket (U+FF63)

Fullwidth Middle Dot · (U+30FB) -> Halfwidth Katakana Middle Dot · (U+FF65)

HNZNKANA and ZNHNKANA focus on the conversion of Katakana

They convert not only letters but also punctuation symbols on the following list:

Fullwidth Ideographic Comma (U+3001) <-> Halfwidth Ideographic Comma (U+FF64)

Fullwidth Ideographic Full Stop (U+3002) <-> Halfwidth Ideographic Full Stop (U+FF61)

Fullwidth Left Corner Bracket (U+300C) <-> Halfwidth Left Corner Braket (U+FF62)

Fullwidth Right Corner Bracket (U+300D) <-> Halfwidth Right Corner Bracket (U+FF63)

Fullwidth Middle Dot · (U+30FB) <-> Halfwidth Katakana Middle Dot · (U+FF65)

Fullwidth Prolonged Sound (U+30FC) <-> Halfwidth Prolonged Sound (U+FF70)

JPTRANS can be nested for multiple conversions.

For example, text data may contain fullwidth numbers and fullwidth symbols. In some
situations, they should be cleaned up for ASCII numbers and symbols.

JPTRANS('ZNHNALPHA', 20, JPTRANS('ZNHNSIGN', 20, Symbol_DBCS_Field,
'A20'), 'A20')

HNZNSPACE and ZNHNSPACE focus on the conversion of a space (blank character).

Currently only conversion between U+0020 and U+3000 is supported.

Functions Reference 83

4. Character Functions for DBCS Code Pages

84 iWay Software

JPTRANS: Converting Japanese Specific Characters

iWay

Data Source and Decoding Functions5
Topics:

Data source and decoding functions
search for data source records, retrieve
data source records or values, and
assign values based on the value of an
input field.

DB_LOOKUP: Retrieving Data Source
Values

DECODE: Decoding Values

FIND: Verifying the Existence of a
Value in a Data Source

LAST: Retrieving the Preceding Value

LOOKUP: Retrieving a Value From a
Cross-referenced Data Source

Functions Reference 85

DB_LOOKUP: Retrieving Data Source Values

How to:

Retrieve a Value From a Lookup Data Source

Reference:

Usage Notes for DB_LOOKUP

The DB_LOOKUP function enables you to retrieve a value from one data source when running
a request against another data source, without joining or combining the two data sources.

DB_LOOKUP compares pairs of fields from the source and lookup data sources to locate
matching records and retrieve the value to return to the request. You can specify as many
pairs as needed to get to the lookup record that has the value you want to retrieve. If your
field list pairs do not lead to a unique lookup record, the first matching lookup record retrieved
is used.

DB_LOOKUP can be called in a DEFINE command, TABLE COMPUTE command, MODIFY
COMPUTE command, or DataMigrator flow.

There are no restrictions on the source file. The lookup file can be any non-FOCUS data
source that is supported as the cross referenced file in a cluster join. The lookup fields used
to find the matching record are subject to the rules regarding cross-referenced join fields for
the lookup data source. A fixed format sequential file can be the lookup file if it is sorted in
the same order as the source file.

How to Retrieve a Value From a Lookup Data SourceSyntax:

DB_LOOKUP(look_mf, srcfld1, lookfld1, srcfld2, lookfld2, ..., returnfld);

where:

look_mf

Is the lookup Master File.

srcfld1, srcfld2 ...

Are fields from the source file used to locate a matching record in the lookup file.

lookfld1, lookfld2 ...

Are columns from the lookup file that share values with the source fields. Only columns
in the table or file can be used; columns created with DEFINE cannot be used. For multi-
segment synonyms, only columns in the top segment can be used.

86 iWay Software

DB_LOOKUP: Retrieving Data Source Values

returnfld

Is the name of a column in the lookup file whose value is returned from the matching
lookup record. Only columns in the table or file can be used; columns created with DEFINE
cannot be used.

Usage Notes for DB_LOOKUPReference:

The maximum number of pairs that can be used to match records is 63.

If the lookup file is a fixed format sequential file, it must be sorted and retrieved in the
same order as the source file. The key field of the sequential file must be the first lookup
field specified in the DB_LOOKUP request. If it is not, no records will match.

In addition, if a DB_LOOKUP request against a sequential file is issued in a DEFINE FILE
command, you must clear the DEFINE FILE command at the end of the TABLE request
that references it, or the lookup file will remain open. It will not be reusable until closed
and may cause problems when you exit WebFOCUS or FOCUS. Other types of lookup files
can be reused without clearing the DEFINE. They will be cleared automatically when all
DEFINE fields are cleared.

If the lookup field has the MISSING=ON attribute in its Master File and the DEFINE or
COMPUTE command specifies MISSING ON, the missing value is returned when the
lookup field is missing. Without MISSING ON in both places, the missing value is converted
to a default value (blank for an alphanumeric field, zero for a numeric field).

Source records display on the report output even if they lack a matching record in the
lookup file.

Only real fields in the lookup Master File are valid as lookup and return fields.

If there are multiple rows in the lookup table where the source field is equal to the lookup
field, the first value of the return field is returned.

Retrieving a Value From a LOOKUP TableExample:

DB_LOOKUP takes the value for STORE_CODE and retrieves the STORENAME associated
with it.

DB_LOOKUP(dmcomp,STORE_CODE,STORE_CODE,STORENAME)

For 1003CA the result is Audio Expert.

For 1004MD the result is City Video For 2010AZ the result is eMart.

Functions Reference 87

5. Data Source and Decoding Functions

DECODE: Decoding Values

How to:

Supply Values in the Function

The DECODE function assigns values based on the coded value of an input field. DECODE
is useful for giving a more meaningful value to a coded value in a field. For example, the
field GENDER may have the code F for female employees and M for male employees for
efficient storage (for example, one character instead of six for female). DECODE expands
(decodes) these values to ensure correct interpretation on a report.

You can use DECODE by supplying values directly in the function or by reading values from
a separate file.

How to Supply Values in the FunctionSyntax:

DECODE fieldname(code1 result1 code2 result2...[ELSE default]);
DECODE fieldname(filename ...[ELSE default]);

where:

fieldname

Alphanumeric or Numeric

Is the name of the input field.

code

Alphanumeric or Numeric

Is the coded value that DECODE compares with the current value of fieldname. If the
value has embedded blanks, commas, or other special characters, it must be enclosed
in single quotation marks. When DECODE finds the specified value, it returns the
corresponding result. When the code is compared to the value of the field name, the
code and field name must be in the same format.

result

Alphanumeric or Numeric

Is the returned value that corresponds to the code. If the result has embedded blanks
or commas, or contains a negative number, it must be enclosed in single quotation
marks. Do not use double quotation marks (").

If the result is presented in alphanumeric format, it must be a non-null, non-blank string.
The format of the result must correspond to the datatype of the expression.

88 iWay Software

DECODE: Decoding Values

default

Alphanumeric or Numeric

Is the value returned as a result for non-matching codes. The format must be the same
as the format of result. If you omit a default value, DECODE assigns a blank or zero to
non-matching codes.

filename

Alphanumeric

Is the name of the file in which code/result pairs are stored. Every record in the file must
contain a pair.

You can use up to 40 lines to define the code and result pairs for any given DECODE function,
or 39 lines if you also use an ELSE phrase. Use either a comma or blank to separate the
code from the result, or one pair from another.

Note: DECODE has no output argument.

Supplying Values Using the DECODE FunctionExample:

DECODE returns the state abbreviation for PLANT.

DECODE PLANT(BOS 'MA' DAL 'TX' LA 'CA')

For BOS, the result is MA.

For DAL, the result is TX.

For LA, the result is CA.

FIND: Verifying the Existence of a Value in a Data Source

How to:

Verify the Existence of a Value in a Data Source

The FIND function determines if an incoming data value is in an indexed FOCUS data source
field. The function sets a temporary field to a non-zero value if the incoming value is in the
data source field, and to 0 if it is not. A value greater than zero confirms the presence of
the data value, not the number of instances in the data source field.

You can also use FIND in a VALIDATE command to determine if a transaction field value
exists in another FOCUS data source. If the field value is not in that data source, the function
returns a value of 0, causing the validation test to fail and the request to reject the
transaction.

Functions Reference 89

5. Data Source and Decoding Functions

You can use any number of FINDs in a COMPUTE or VALIDATE command. However, more
FINDs increase processing time and require more buffer space in memory.

Limit: FIND does not work on files with different DBA passwords.

The opposite of FIND is NOT FIND. The NOT FIND function sets a temporary field to 1 if the
incoming value is not in the data source and to 0 if the incoming value is in the data source.

How to Verify the Existence of a Value in a Data SourceSyntax:

FIND(fieldname [AS dbfield] IN file);

where:

fieldname

Is the name of the field that contains the incoming data value.

AS dbfield

Is the name of the data source field whose values are compared to the incoming field
values.

This field must be indexed. If the incoming field and the data source field have the same
name, omit this phrase.

file

Is the name of the indexed FOCUS data source.

Note:

FIND does not use an output argument.

Do not include a space between FIND and the left parenthesis.

Verifying the Existence of a Value in an Indexed FieldExample:

FIND determines if a supplied value in EMP_ID is in the EDUCFILE data source.

FIND(EMP_ID IN EDUCFILE)

LAST: Retrieving the Preceding Value

How to:

Retrieve the Preceding Value

The LAST function retrieves the preceding value for a field.

90 iWay Software

LAST: Retrieving the Preceding Value

The effect of LAST depends on whether it appears in an extract or load transformation:

In an extract transformation the LAST value applies to the previous record retrieved from
the data source before sorting takes place.

In a load transformation, the LAST value applies to the record in the previous record
loaded.

How to Retrieve the Preceding ValueSyntax:

LAST fieldname

where:

fieldname

Alphanumeric or Numeric

Is the field name.

Note: LAST does not use an output argument.

Retrieving the Preceding ValueExample:

LAST retrieves the previous value of DEPARTMENT:

LAST DEPARTMENT

LOOKUP: Retrieving a Value From a Cross-referenced Data Source

How to:

Retrieve a Value From a Cross-referenced Data Source

The LOOKUP function retrieves a data value from a cross-referenced FOCUS data source in
a MODIFY request. You can retrieve data from a data source cross-referenced statically in
a synonym or a data source joined dynamically to another by the JOIN command. LOOKUP
retrieves a value, but does not activate the field. LOOKUP is required because a MODIFY
request, unlike a TABLE request, cannot read cross-referenced data sources freely.

LOOKUP allows a request to use the retrieved data in a computation or message, but it does
not allow you to modify a cross-referenced data source.

LOOKUP can read a cross-referenced segment that is linked directly to a segment in the
host data source (the host segment). This means that the cross-referenced segment must
have a segment type of KU, KM, DKU, or DKM (but not KL or KLU) or must contain the cross-
referenced field specified by the JOIN command. Because LOOKUP retrieves a single cross-
referenced value, it is best used with unique cross-referenced segments.

Functions Reference 91

5. Data Source and Decoding Functions

The cross-referenced segment contains two fields used by LOOKUP:

The field containing the retrieved value. Alternatively, you can retrieve all the fields in a
segment at one time. The field, or your decision to retrieve all the fields, is specified in
LOOKUP.

For example, LOOKUP retrieves all the fields from the segment

RTN = LOOKUP(SEG.DATE_ATTEND);

The cross-referenced field. This field shares values with a field in the host segment called
the host field. These two fields link the host segment to the cross-referenced segment.
LOOKUP uses the cross-referenced field, which is indexed, to locate a specific segment
instance.

When using LOOKUP, the MODIFY request reads a transaction value for the host field. It
then searches the cross-referenced segment for an instance containing this value in the
cross-referenced field:

If there are no instances of the value, the function sets a return variable to 0. If you use
the field specified by LOOKUP in the request, the field assumes a value of blank if
alphanumeric and 0 if numeric.

If there are instances of the value, the function sets the return variable to 1 and retrieves
the value of the specified field from the first instance it finds. There can be more than
one if the cross-referenced segment type is KM or DKM, or if you specified the ALL
keyword in the JOIN command.

How to Retrieve a Value From a Cross-referenced Data SourceSyntax:

LOOKUP(field);

where:

field

Is the name of the field to retrieve in the cross-referenced file. If the field name also
exists in the host data source, you must qualify it here. Do not include a space between
LOOKUP and the left parenthesis.

Note: LOOKUP does not use an output argument.

Using the LOOKUP FunctionExample:

LOOKUP finds the enrollment date from DATE_ENROLL. The result can then be used to
validate an expression.

LOOKUP(DATE_ENROLL)

92 iWay Software

LOOKUP: Retrieving a Value From a Cross-referenced Data Source

iWay

Date Functions6
Date functions manipulate date values. There are two types of date functions:

Standard date functions for use with non-legacy dates.

Legacy date functions for use with legacy dates.

If a date is in an alphanumeric or numeric field that contains date display options (for example, I6YMD),
you must use the legacy date functions.

Topics:
Using Legacy Date Functions

Overview of Date Functions AYM: Adding or Subtracting Months

Using Standard Date Functions AYMD: Adding or Subtracting Days

DATEADD: Adding or Subtracting a Date Unit
to or From a Date

CHGDAT: Changing How a Date String Displays

DA Functions: Converting a Legacy Date to an
IntegerDATECVT: Converting the Format of a Date

DATEDIF: Finding the Difference Between Two
Dates

DMY, MDY, YMD: Calculating the Difference
Between Two Dates

DATEMOV: Moving a Date to a Significant Point DOWK and DOWKL: Finding the Day of the
Week

DATETRAN: Formatting Dates in International
Formats DT Functions: Converting an Integer to a Date

FIYR: Obtaining the Financial Year GREGDT: Converting From Julian to Gregorian
Format

FIQTR: Obtaining the Financial Quarter
JULDAT: Converting From Gregorian to Julian
FormatFIYYQ: Converting a Calendar Date to a

Financial Date
YM: Calculating Elapsed Months

TODAY: Returning the Current Date

Functions Reference 93

Overview of Date Functions
The following explains the difference between the types of date functions:

Standard date functions are for use with standard date formats, or just date formats.
A date format refers to internally stored data that is capable of holding date components,
such as century, year, quarter, month, and day. It does not include time components. A
synonym does not specify an internal data type or length for a date format. Instead, it
specifies display date components, such as D (day), M (month), Q (quarter), Y (2-digit
year), or YY (4-digit year). For example, format MDYY is a date format that has three date
components; it can be used in the USAGE attribute of a synonym. A real date value, such
as March 9, 2004, described by this format is displayed as 03/09/2004, by default.
Date formats can be full component and non-full component. Full component formats
include all three letters, for example, D, M, and Y. JUL for Julian can also be included.
All other date formats are non-full component. Some date functions require full component
arguments for date fields, while others will accept full or non-full components. A date
format was formerly called a smart date.

Legacy date functions are for use with legacy dates only. A legacy date refers to formats
with date edit options, such as I6YMD, A6MDY, I8YYMD, or A8MDYY. For example,
A6MDY is a 6-byte alphanumeric string. The suffix MDY indicates the order in which the
date components are stored in the field, and the prefix I or A indicates a numeric or
alphanumeric form of representation. For example, a value '030599' can be assigned
to a field with format A6MDY, which will be displayed as 03/05/99.

Date formats have an internal representation matching either numeric or alphanumeric
format. For example, A6MDY matches alphanumeric format, YYMD and I6DMY match numeric
format. When function output is a date in specified by output, it can be used either for
assignment to another date field of this format, or it can be used for further data manipulation
in the expression with data of matching formats. Assignment to another field of a different
date format, will yield a random result.

All but three date functions deal with only one date format. The exceptions are DATECVT,
HCNVRT, and HDATE, which convert one date type into another.

Using Standard Date Functions

In this section:

Specifying Work Days

Enabling Leading Zeros For Date and Time Functions in Dialogue Manager

When using standard date functions, you need to understand the settings that alter the
behavior of these functions, as well as the acceptable formats and how to supply values in
these formats.

94 iWay Software

Overview of Date Functions

You can affect the behavior of date functions in the following ways:

Defining which days of the week are work days and which are not. Then, when you use
a date function involving work days, dates that are not work days are ignored. For details,
see Specifying Work Days on page 95.

Determining whether to display leading zeros when a date function in Dialogue Manager
returns a date. For details, see Enabling Leading Zeros For Date and Time Functions in
Dialogue Manager on page 98.

For detailed information on each standard date function, see:

DATEADD: Adding or Subtracting a Date Unit to or From a Date on page 99

DATECVT: Converting the Format of a Date on page 101

DATEDIF: Finding the Difference Between Two Dates on page 103

DATEMOV: Moving a Date to a Significant Point on page 105

DATETRAN: Formatting Dates in International Formats on page 107

FIYR: Obtaining the Financial Year on page 121

FIQTR: Obtaining the Financial Quarter on page 123

FIYYQ: Converting a Calendar Date to a Financial Date on page 125

TODAY: Returning the Current Date on page 127

Specifying Work Days

In this section:

Specifying Business Days

Specifying Holidays

You can determine which days are work days and which are not. Work days affect the
DATEADD, DATEDIF, and DATEMOV functions. You identify work days as business days or
holidays.

Functions Reference 95

6. Date Functions

Specifying Business Days

How to:

Set Business Days

View the Current Setting of Business Days

Business days are traditionally Monday through Friday, but not every business has this
schedule. For example, if your company does business on Sunday, Tuesday, Wednesday,
Friday, and Saturday, you can tailor business day units to reflect that schedule.

How to Set Business DaysSyntax:

SET BUSDAYS = smtwtfs

where:

smtwtfs

Is the seven character list of days that represents your business week. The list has a
position for each day from Sunday to Saturday:

To identify a day of the week as a business day, enter the first letter of that day in
that day's position.

To identify a non-business day, enter an underscore (_) in that day's position.

If a letter is not in its correct position, or if you replace a letter with a character other
than an underscore, you receive an error message.

Setting Business Days to Reflect Your Work WeekExample:

The following designates work days as Sunday, Tuesday, Wednesday, Friday, and Saturday:

SET BUSDAYS = S_TW_FS

How to View the Current Setting of Business DaysSyntax:

? SET BUSDAYS

96 iWay Software

Using Standard Date Functions

Specifying Holidays

How to:

Create a Holiday File

Select a Holiday File

Reference:

Rules for Creating a Holiday File

You can specify a list of dates that are designated as holidays in your company. These dates
are excluded when using functions that perform calculations based on working days. For
example, if Thursday in a given week is designated as a holiday, the next working day after
Wednesday is Friday.

To define a list of holidays, you must:

1. Create a holiday file using a standard text editor.

2. Select the holiday file by issuing the SET command with the HDAY parameter.

Rules for Creating a Holiday FileReference:

Dates must be in YYMD format.

Dates must be in ascending order.

Each date must be on its own line.

Each year for which data exists must be included. Calling a date function with a date
value outside the range of the holiday file returns a zero for business day requests.

You may include an optional description of the holiday, separated from the date by a
space.

How to Create a Holiday FileProcedure:

1. In a text editor, create a list of dates designated as holidays using the Rules for Creating
a Holiday File on page 97.

Functions Reference 97

6. Date Functions

2. Save the file:

In Windows and UNIX: The file must be HDAYxxxx.ERR

In z/OS: The file must be a member of ERRORS named HDAYxxxx.

where:

xxxx

Is a string of text four characters long.

How to Select a Holiday FileSyntax:

SET HDAY = xxxx

where:

xxxx

Is the part of the name of the holiday file after HDAY. This string must be four characters
long.

Creating and Selecting a Holiday FileExample:

The following is the HDAYTEST file, which establishes holidays:

19910325 TEST HOLIDAY
19911225 CHRISTMAS

Enabling Leading Zeros For Date and Time Functions in Dialogue Manager

How to:

Set the Display of Leading Zeros

If you use a date and time function in Dialogue Manager that returns a numeric integer
format, Dialogue Manager truncates any leading zeros. For example, if a function returns
the value 000101 (indicating January 1, 2000), Dialogue Manager truncates the leading
zeros, producing 101, an incorrect date. To avoid this problem, use the LEADZERO parameter.

LEADZERO only supports an expression that makes a direct call to a function. An expression
that has nesting or another mathematical function always truncates leading zeros. For
example,

-SET &OUT = AYM(&IN, 1, 'I4')/100;

truncates leading zeros regardless of the LEADZERO parameter setting.

98 iWay Software

Using Standard Date Functions

How to Set the Display of Leading ZerosSyntax:

SET LEADZERO = {ON|OFF}

where:

ON

Displays leading zeros if present.

OFF

Truncates leading zeros. OFF is the default value.

Displaying Leading ZerosExample:

The AYM function adds one month to the input date of December 1999:

-SET &IN = '9912';
-RUN
-SET &OUT = AYM(&IN, 1, 'I4');
-TYPE &OUT

Using the default LEADZERO setting, this yields:

1

This represents the date January 2000 incorrectly. Setting the LEADZERO parameter in the
request as follows:

SET LEADZERO = ON
-SET &IN = '9912';
-SET &OUT = AYM(&IN, 1, 'I4');
-TYPE &OUT

results in the following:

0001

This correctly indicates January 2000.

DATEADD: Adding or Subtracting a Date Unit to or From a Date

How to:

Add or Subtract a Date Unit to or From a Date

The DATEADD function adds a unit to or subtracts a unit from a full component date format.
A unit is one of the following:

Year.

Functions Reference 99

6. Date Functions

Month. If the calculation using the month unit creates an invalid date, DATEADD corrects
it to the last day of the month. For example, adding one month to October 31 yields
November 30, not November 31 since November has 30 days.

Day.

Weekday. When using the weekday unit, DATEADD does not count Saturday or Sunday.
For example, if you add one day to Friday, first DATEADD moves to the next weekday,
Monday, then it adds a day. The result is Tuesday.

Business day. When using the business day unit, DATEADD uses the BUSDAYS parameter
setting and holiday file to determine which days are working days and disregards the
rest. If Monday is not a working day, then one business day past Sunday is Tuesday.
See Specifying Holidays on page 97 for more information.

DATEADD requires a date to be in date format. Since Dialogue Manager interprets a date
as alphanumeric or numeric, and DATEADD requires a standard date stored as an offset
from the base date, do not use DATEADD with Dialogue Manager unless you first convert
the variable used as the input date to an offset from the base date.

How to Add or Subtract a Date Unit to or From a DateSyntax:

DATEADD(date, 'component', increment)

where:

date

Date

Is a full component date.

component

Alphanumeric

Is one of the following enclosed in single quotation marks:

Y indicates a year component.

M indicates a month component.

D indicates a day component.

WD indicates a weekday component.

BD indicates a business day component.

100 iWay Software

DATEADD: Adding or Subtracting a Date Unit to or From a Date

increment

Integer

Is the number of date units added to or subtracted from date. If this number is not a
whole unit, it is rounded down to the next largest integer.

Note: DATEADD does not use an output argument. It uses the format of the date argument
for the result. As long as the result is a full component date, it can be assigned only to a
full component date field or to integer field.

Adding or Subtracting a Date Unit to or From a DateExample:

This example finds a delivery date that is 12 business days after today:

DELIV_DATE/YYMD = DATEADD('&DATEMDYY', 'BD', 12);

It returns 20040408, which will be Thursday if today is March 23 2004, Tuesday.

To make sure it is Thursday, assign it as

DELIV_DAY/W = DATEADD('&DATEMDYY', 'BD', 12);

which returns 4, representing Thursday. Note the use of the system variable &YYMD and
the natural date representation of the today's date.

Tip: There is an alternative way to add to or subtract from the date. As long as any standard
date is internally presented as a whole number of the least significant component units (that
is, a number of days for full component dates, a number of months for YYM or MY format
dates, and so on), you can add/subtract the desired number of these units directly, without
DATEADD. Note that you must assign the date result to the same format date field, or the
same field. For example, assuming YYM_DATE is a date field of format YYM, you can add
13 months to it and assign the result to the field NEW_YYM_DT, in the following statement:

NEW_YYM_DT/YYM = YYM_DATE + 13;

Otherwise, a non-full component date must be converted to a full component date before
using DATEADD.

DATECVT: Converting the Format of a Date

How to:

Convert a Date Format

The DATECVT function converts the field value of any standard date format or legacy date
format into a date foromat (offset from the base date), in the desired standard date format
or legacy date format. If you supply an invalid format, DATECVT returns a zero or a blank.

Functions Reference 101

6. Date Functions

How to Convert a Date FormatSyntax:

DATECVT(date, 'in_format', output)

where:

date

Date

Is the date to be converted. If you supply an invalid date, DATECVT returns zero. When
the conversion is performed, a legacy date obeys any DEFCENT and YRTHRESH parameter
settings supplied for that field.

in_format

Alphanumeric

Is the format of the date enclosed in single quotation marks. It is one of the following:

A non-legacy date format (for example, YYMD, YQ, M, DMY, JUL).

A legacy date format (for example, I6YMD or A8MDYY).

A non-date format (such as I8 or A6). A non-date format in in_format functions as an
offset from the base date of a YYMD field (12/31/1900).

output

Alphanumeric

Is the output format. It is one of the following:

A non-legacy date format (for example, YYMD, YQ, M, DMY, JUL).

A legacy date format (for example, I6YMD or A8MDYY).

A non-date format (such as I8 or A6). This format type causes DATECVT to convert
the date into a full component date and return it as a whole number in the format
provided.

Converting the Format of a DateExample:

This example first converts a numeric date, NUMDATE, to a character date, and then assigns
the result to a non-date alphanumeric field, CHARDATE.

CHARDATE/A13 = DATECVT (NUMDATE,'I8YYMD','A8YYMD');

Note: DATECVT does not use an output format; it uses the format of the argument
output_format for the result.

102 iWay Software

DATECVT: Converting the Format of a Date

DATEDIF: Finding the Difference Between Two Dates

How to:

Find the Difference Between Two Dates

The DATEDIF function returns the difference between two full component standard dates in
units of a specified component. A component is one of the following:

Year. Using the year unit with DATEDIF yields the inverse of DATEADD. If subtracting one
year from date X creates date Y, then the count of years between X and Y is one.
Subtracting one year from February 29 produces the date February 28.

Month. Using the month component with DATEDIF yields the inverse of DATEADD. If
subtracting one month from date X creates date Y, then the count of months between X
and Y is one. If the to-date is the end-of-month, then the month difference may be rounded
up (in absolute terms) to guarantee the inverse rule.

If one or both of the input dates is the end of the month, DATEDIF takes this into account.
This means that the difference between January 31 and April 30 is three months, not
two months.

Day.

Weekday. With the weekday unit, DATEDIF does not count Saturday or Sunday when
calculating days. This means that the difference between Friday and Monday is one day.

Business day. With the business day unit, DATEDIF uses the BUSDAYS parameter setting
and holiday file to determine which days are working days and disregards the rest. This
means that if Monday is not a working day, the difference between Friday and Tuesday
is one day. See Rules for Creating a Holiday File on page 97 for more information.

DATEDIF returns a whole number. If the difference between two dates is not a whole number,
DATEDIF truncates the value to the next largest integer. For example, the number of years
between March 2, 2001, and March 1, 2002, is zero. If the end date is before the start
date, DATEDIF returns a negative number.

Since Dialogue Manager interprets a date as alphanumeric or numeric, and DATEDIF requires
a standard date stored as an offset from the base date, do not use DATEDIF with Dialogue
Manager unless you first convert the variable used as the input date to an offset from the
base date.

Functions Reference 103

6. Date Functions

How to Find the Difference Between Two DatesSyntax:

DATEDIF('from_date', 'to_date', 'component')

where:

from_date

Date

Is the start date from which to calculate the difference. Is a full component date.

to_date

Date

Is the end date from which to calculate the difference.

component

Alphanumeric

Is one of the following enclosed in single quotation marks:

Y indicates a year unit.

M indicates a month unit.

D indicates a day unit.

WD indicates a weekday unit.

BD indicates a business day unit.

Note: DATEDIF does not use an output argument because for the result it uses the format
'I8'.

Finding the Difference Between Two DatesExample:

The example finds the number of complete months between today, March 23, 2004, and
one specific day in the past

DATEDIF('September 11 2001', '20040323', 'M')

and returns 30, which can be assigned to a numeric field.

104 iWay Software

DATEDIF: Finding the Difference Between Two Dates

Tip: There is an alternative way to find the difference between dates. As long as any standard
date is presented internally as a whole number of the least significant component units (that
is, a number of days for full component dates, a number of months for YYM or MY format
dates, etc.), you can find the difference in these component units (not any units) directly,
without DATEDIF. For example, assume OLD_YYM_DT is a date field in format MYY and
NEW_YYM_DT is another date in format YYM. Note that the least significant component for
both formats is month, M. The difference in months, then, can be found by subtracting the
field OLD_YYM_DT from NEW_YYM_DT in the following statement:

MYDIFF/I8 = NEW_YYM_DT/YYM - OLD_YYM_DT;

Otherwise, non-full component standard dates or legacy dates should be converted to full
component standard dates before using DATEDIF.

DATEMOV: Moving a Date to a Significant Point

How to:

Move a Date to a Significant Point

The DATEMOV function moves a date to a significant point on the calendar.

Since Dialogue Manager interprets a date as alphanumeric or numeric, and DATEMOV
requires a standard date stored as an offset from the base date, do not use DATEMOV with
Dialogue Manager unless you first convert the variable used as the input date to an offset
from the base date.

DATEMOV works only with full component dates.

How to Move a Date to a Significant PointSyntax:

DATEMOV(date, 'move-point')

where:

date

Date

Is the date to be moved. It must be a full component format date (for example, MDYY
or YYJUL).

move-point

Alphanumeric

Is the significant point the date is moved to enclosed in single quotation marks. An
invalid point results in a return code of zero. Valid values are:

EOM is the end of month.

Functions Reference 105

6. Date Functions

BOM is the beginning of month.

EOQ is the end of quarter.

BOQ is the beginning of quarter.

EOY is the end of year.

BOY is the beginning of year.

EOW is the end of week.

BOW is the beginning of week.

NWD is the next weekday.

NBD is the next business day.

PWD is the prior weekday.

PBD is the prior business day.

WD- is a weekday or earlier.

BD- is a business day or earlier.

WD+ is a weekday or later.

BD+ is a business day or later.

A business day calculation is affected by the BUSDAYS and HDAY parameter settings.

Note: DATEMOV does not use an output argument; it uses the format of the date argument
for the result. As long as the result is a full component date, it can be assigned only to a
full component date field or to an integer field.

Moving a Date to a Significant PointExample:

This example finds the end day of the current date week

DATEDIF('&YYMD', 'EOW')

and returns 20040326 if today is 2004, March 23rd. Note the use of the system variable
&YYMD and natural date representation in the first argument.

106 iWay Software

DATEMOV: Moving a Date to a Significant Point

DATETRAN: Formatting Dates in International Formats

How to:

Format Dates in International Formats

Reference:

Usage Notes for the DATETRAN Function

The DATETRAN function formats dates in international formats.

How to Format Dates in International FormatsSyntax:

DATETRAN (indate, '(intype)', '([formatops])', 'lang', outlen, output)

where:

indate

Is the input date (in date format) to be formatted. Note that the date format cannot be
an alphanumeric or numeric format with date display options (legacy date format).

intype

Is one of the following character strings indicating the input date components and the
order in which you want them to display, enclosed in parentheses and single quotation
marks.

These are the single component input types:

DescriptionSingle Component
Input Type

Day of week component only (original format must have only
W component).

'(W)'

Month component only (original format must have only M
component).

'(M)'

These are the two-component input types:

DescriptionTwo-Component
Input Type

Four-digit year followed by month.'(YYM)'

Functions Reference 107

6. Date Functions

DescriptionTwo-Component
Input Type

Two-digit year followed by month.'(YM)'

Month component followed by four-digit year.'(MYY)'

Month component followed by two-digit year.'(MY)'

These are the three-component input types:

DescriptionThree-
Component Input
Type

Four-digit year followed by month followed by day.'(YYMD)'

Two-digit year followed by month followed by day.'(YMD)'

Day component followed by month followed by four-digit year.'(DMYY)'

Day component followed by month followed by two-digit year.'(DMY)'

Month component followed by day followed by four-digit year.'(MDYY)'

Month component followed by day followed by two-digit year.'(MDY)'

Month component followed by day (derived from three-
component date by ignoring year component).

'(MD)'

Day component followed by month (derived from three-
component date by ignoring year component).

'(DM)'

108 iWay Software

DATETRAN: Formatting Dates in International Formats

formatops

Is a string of zero or more formatting options enclosed in parentheses and single
quotation marks. The parentheses and quotation marks are required even if you do not
specify formatting options. Formatting options fall into the following categories:

Options for suppressing initial zeros in month or day numbers. Note: Zero suppression
replaces initial zeros with blanks spaces.

Options for translating month or day components to full or abbreviated uppercase or
default case (mixed-case or lowercase depending on the language) names.

Date delimiter options and options for punctuating a date with commas.

Valid options for suppressing initial zeros in month or day numbers are listed in the
following table. Note that the initial zero is replaced by a blank space:

DescriptionFormat Option

Zero-suppresses months (displays numeric months before October
as 1 through 9 rather than 01 through 09).

m

Displays days before the tenth of the month as 1 through 9 rather
than 01 through 09.

d

Displays days before the tenth of the month as 1 through 9 rather
than 01 through 09 with a period after the number.

dp

Displays days before the tenth of the month as 1 through 9. For
English (langcode EN) only, displays an ordinal suffix (st, nd, rd,
or th) after the number.

do

Valid month and day name translation options are:

DescriptionFormat Option

Displays month as an abbreviated name with no punctuation, all
uppercase.

T

Displays month as a full name, all uppercase.TR

Displays month as an abbreviated name followed by a period, all
uppercase.

Tp

Functions Reference 109

6. Date Functions

DescriptionFormat Option

Displays month as an abbreviated name with no punctuation. The
name is all lowercase or initial uppercase, depending on language
code.

t

Displays month as a full name. The name is all lowercase or initial
uppercase, depending on language code.

tr

Displays month as an abbreviated name followed by a period. The
name displays in the default case of the specified language (for
example, all lowercase for French and Spanish, initial uppercase
for English and German).

tp

Includes an abbreviated day of the week name at the start of the
displayed date, all uppercase with no punctuation.

W

Includes a full day of the week name at the start of the displayed
date, all uppercase.

WR

Includes an abbreviated day of the week name at the start of the
displayed date, all uppercase, followed by a period.

Wp

Includes an abbreviated day of the week name at the start of the
displayed date with no punctuation. The name displays in the
default case of the specified language (for example, all lowercase
for French and Spanish, initial uppercase for English and German).

w

Includes a full day of the week name at the start of the displayed
date. The name displays in the default case of the specified
language (for example, all lowercase for French and Spanish,
initial uppercase for English and German).

wr

Includes an abbreviated day of the week name at the start of the
displayed date followed by a period. The name displays in the
default case of the specified language (for example, all lowercase
for French and Spanish, initial uppercase for English and German).

wp

Includes an abbreviated day of the week name at the end of the
displayed date, all uppercase with no punctuation.

X

Includes a full day of the week name at the end of the displayed
date, all uppercase.

XR

110 iWay Software

DATETRAN: Formatting Dates in International Formats

DescriptionFormat Option

Includes an abbreviated day of the week name at the end of the
displayed date, all uppercase, followed by a period.

Xp

Includes an abbreviated day of the week name at the end of the
displayed date with no punctuation. The name displays in the
default case of the specified language (for example, all lowercase
for French and Spanish, initial uppercase for English and German).

x

Includes a full day of the week name at the end of the displayed
date. The name displays in the default case of the specified
language (for example, all lowercase for French and Spanish,
initial uppercase for English and German).

xr

Includes an abbreviated day of the week name at the end of the
displayed date followed by a period. The name displays in the
default case of the specified language (for example, all lowercase
for French and Spanish, initial uppercase for English and German).

xp

Valid date delimiter options are:

DescriptionFormat Option

Uses a blank as the component delimiter. This is the default if
the month or day of week is translated or if comma is used.

B

Uses a period as the component delimiter..

Uses a minus sign as the component delimiter. This is the default
when the conditions for a blank default delimiter are not satisfied.

-

Uses a slash as the component delimiter./

Omits component delimiters.|

Uses appropriate Asian characters as component delimiters.K

Functions Reference 111

6. Date Functions

DescriptionFormat Option

Places a comma after the month name (following T, Tp, TR, t, tp,
or tr).

Places a comma and blank after the day name (following W, Wp,
WR, w, wp, or wr).

Places a comma and blank before the day name (following X, XR,
x, or xr).

c

Displays the Spanish or Portuguese word de or DE between the
day and month and between the month and year. The case of the
word de is determined by the case of the month name. If the month
is displayed in uppercase, DE is displayed; otherwise de is
displayed. Useful for formats DMY, DMYY, MY, and MYY.

e

Inserts a comma after the day number and before the general
delimiter character specified.

D

Inserts a comma after the year and before the general delimiter
character specified.

Y

lang

Is the two-character standard ISO code for the language into which the date should be
translated, enclosed in single quotation marks. Valid language codes are:

'AR' Arabic

'CS' Czech

'DA' Danish

'DE' German

'EN' English

'ES' Spanish

'FI' Finnish

'FR' French

'EL' Greek

'IW' Hebrew

'IT' Italian

'JA' Japanese

112 iWay Software

DATETRAN: Formatting Dates in International Formats

'KO' Korean

'LT' Lithuanian

'NL' Dutch

'NO' Norwegian

'PO' Polish

'PT' Portuguese

'RU' Russian

'SV' Swedish

'TH' Thai

'TR' Turkish

'TW' Chinese (Traditional)

'ZH' Chinese (Simplified)

outlen

Numeric

Is the length of the output field in bytes. If the length is insufficient, an all blank result
is returned. If the length is greater than required, the field is padded with blanks on the
right.

output

Alphanumeric

Usage Notes for the DATETRAN FunctionReference:

The output field, though it must be type A and not AnV, may in fact contain variable length
information, since the lengths of month names and day names can vary, and also month
and day numbers may be either one or two bytes long if a zero-suppression option is
chosen. Unused bytes are filled with blanks.

All invalid and inconsistent inputs result in all blank output strings. Missing data also
results in blank output.

The base dates (1900-12-31 and 1900-12 or 1901-01) are treated as though the
DATEDISPLAY setting were ON (that is, not automatically shown as blanks). To suppress
the printing of base dates, which have an internal integer value of 0, test for 0 before
calling DATETRAN. For example:

RESULT/A40 = IF DATE EQ 0 THEN ' ' ELSE
 DATETRAN (DATE, '(YYMD)', '(.t)', 'FR', 40, 'A40');

Functions Reference 113

6. Date Functions

Valid translated date components are contained in files named DTLNGlng where lng is
a three-character code that specifies the language. These files must be accessible for
each language into which you want to translate dates.

The DATETRAN function is not supported in Dialogue Manager.

Using the DATETRAN FunctionExample:

The following request prints the day of the week in the default case of the specific language:

DEFINE FILE VIDEOTRK
TRANS1/YYMD=20050104;
TRANS2/YYMD=20051003;

DATEW/W=TRANS1 ;
DATEW2/W=TRANS2 ;
DATEYYMD/YYMDW=TRANS1 ;
DATEYYMD2/YYMDW=TRANS2 ;

OUT1A/A8=DATETRAN(DATEW, '(W)', '(wr)', 'EN', 8 , 'A8') ;
OUT1B/A8=DATETRAN(DATEW2, '(W)', '(wr)', 'EN', 8 , 'A8') ;
OUT1C/A8=DATETRAN(DATEW, '(W)', '(wr)', 'ES', 8 , 'A8') ;
OUT1D/A8=DATETRAN(DATEW2, '(W)', '(wr)', 'ES', 8 , 'A8') ;
OUT1E/A8=DATETRAN(DATEW, '(W)', '(wr)', 'FR', 8 , 'A8') ;
OUT1F/A8=DATETRAN(DATEW2, '(W)', '(wr)', 'FR', 8 , 'A8') ;
OUT1G/A8=DATETRAN(DATEW, '(W)', '(wr)', 'DE', 8 , 'A8') ;
OUT1H/A8=DATETRAN(DATEW2, '(W)', '(wr)', 'DE', 8 , 'A8') ;
END

TABLE FILE VIDEOTRK
HEADING
"FORMAT wr"
""
"Full day of week name at beginning of date, default case (wr)"
"English / Spanish / French / German"
""
SUM OUT1A AS '' OUT1B AS '' TRANSDATE NOPRINT
OVER OUT1C AS '' OUT1D AS ''
OVER OUT1E AS '' OUT1F AS ''
OVER OUT1G AS '' OUT1H AS ''ON TABLE SET PAGE-NUM OFF
ON TABLE SET STYLE *
GRID=OFF, $
END

114 iWay Software

DATETRAN: Formatting Dates in International Formats

The output is:

The following request prints a blank delimited date with an abbreviated month name in
English. Initial zeros in the day number are suppressed, and a suffix is added to the end of
the number:

DEFINE FILE VIDEOTRK
TRANS1/YYMD=20050104;
TRANS2/YYMD=20050302;

DATEW/W=TRANS1 ;
DATEW2/W=TRANS2 ;
DATEYYMD/YYMDW=TRANS1 ;
DATEYYMD2/YYMDW=TRANS2 ;

OUT2A/A15=DATETRAN(DATEYYMD, '(MDYY)', '(Btdo)', 'EN', 15, 'A15') ;
OUT2B/A15=DATETRAN(DATEYYMD2, '(MDYY)', '(Btdo)', 'EN', 15, 'A15') ;
END

TABLE FILE VIDEOTRK
HEADING
"FORMAT Btdo"
""
"Blank-delimited (B)"
"Abbreviated month name, default case (t)"
"Zero-suppress day number, end with suffix (do)"
"English"
""
SUM OUT2A AS '' OUT2B AS '' TRANSDATE NOPRINTON TABLE SET PAGE-NUM OFF
END

Functions Reference 115

6. Date Functions

The output is:

The following request prints a blank delimited date with an abbreviated month name in
German. Initial zeros in the day number are suppressed, and a period is added to the end
of the number:

DEFINE FILE VIDEOTRK
TRANS1/YYMD=20050104;
TRANS2/YYMD=20050302;

DATEW/W=TRANS1 ;
DATEW2/W=TRANS2 ;
DATEYYMD/YYMDW=TRANS1 ;
DATEYYMD2/YYMDW=TRANS2 ;

OUT3A/A12=DATETRAN(DATEYYMD, '(DMYY)', '(Btdp)', 'DE', 12, 'A12');
OUT3B/A12=DATETRAN(DATEYYMD2, '(DMYY)', '(Btdp)', 'DE', 12, 'A12');
END

TABLE FILE VIDEOTRK
HEADING
"FORMAT Btdp"
""
"Blank-delimited (B)"
"Abbreviated month name, default case (t)"
"Zero-suppress day number, end with period (dp)"
"German"
""
SUM OUT3A AS '' OUT3B AS '' TRANSDATE NOPRINT
ON TABLE SET PAGE-NUM OFF
END

116 iWay Software

DATETRAN: Formatting Dates in International Formats

The output is:

The following request prints a blank delimited date in French with a full day name at the
beginning and a full month name, in lowercase (the default for French):

DEFINE FILE VIDEOTRK
TRANS1/YYMD=20050104;
TRANS2/YYMD=20050302;

DATEW/W=TRANS1 ;
DATEW2/W=TRANS2 ;
DATEYYMD/YYMDW=TRANS1 ;
DATEYYMD2/YYMDW=TRANS2 ;

OUT4A/A30 = DATETRAN(DATEYYMD, '(DMYY)', '(Bwrtr)', 'FR', 30, 'A30');
OUT4B/A30 = DATETRAN(DATEYYMD2, '(DMYY)', '(Bwrtr)', 'FR', 30, 'A30');
END

TABLE FILE VIDEOTRK
HEADING
"FORMAT Bwrtr"
""
"Blank-delimited (B)"
"Full day of week name at beginning of date, default case (wr)"
"Full month name, default case (tr)"
"English"
""
SUM OUT4A AS '' OUT4B AS '' TRANSDATE NOPRINT
ON TABLE SET PAGE-NUM OFF
END

Functions Reference 117

6. Date Functions

The output is:

The following request prints a blank delimited date in Spanish with a full day name at the
beginning in lowercase (the default for Spanish) followed by a comma, and with the word
“de” between the day number and month and between the month and year:

DEFINE FILE VIDEOTRK
TRANS1/YYMD=20050104;
TRANS2/YYMD=20050302;

DATEW/W=TRANS1 ;
DATEW2/W=TRANS2 ;
DATEYYMD/YYMDW=TRANS1 ;
DATEYYMD2/YYMDW=TRANS2 ;

OUT5A/A30=DATETRAN(DATEYYMD, '(DMYY)', '(Bwrctrde)', 'ES', 30, 'A30');
OUT5B/A30=DATETRAN(DATEYYMD2, '(DMYY)', '(Bwrctrde)', 'ES', 30, 'A30');
END

TABLE FILE VIDEOTRK
HEADING
"FORMAT Bwrctrde"
""
"Blank-delimited (B)"
"Full day of week name at beginning of date, default case (wr)"
"Comma after day name (c)"
"Full month name, default case (tr)"
"Zero-suppress day number (d)"
"de between day and month and between month and year (e)"
"Spanish"
""
SUM OUT5A AS '' OUT5B AS '' TRANSDATE NOPRINT
ON TABLE SET PAGE-NUM OFF
END

118 iWay Software

DATETRAN: Formatting Dates in International Formats

The output is:

The following request prints a date in Japanese characters with a full month name at the
beginning, in the default case and with zero suppression:

DEFINE FILE VIDEOTRK
TRANS1/YYMD=20050104;
TRANS2/YYMD=20050302;

DATEW/W=TRANS1 ;
DATEW2/W=TRANS2 ;
DATEYYMD/YYMDW=TRANS1 ;
DATEYYMD2/YYMDW=TRANS2 ;

OUT6A/A30=DATETRAN(DATEYYMD , '(YYMD)', '(Ktrd)', 'JA', 30, 'A30');
OUT6B/A30=DATETRAN(DATEYYMD2, '(YYMD)', '(Ktrd)', 'JA', 30, 'A30');
END

TABLE FILE VIDEOTRK
HEADING
"FORMAT Ktrd"
""
"Japanese characters (K in conjunction with the language code JA)"
"Full month name at beginning of date, default case (tr)"
"Zero-suppress day number (d)"
"Japanese"
""
SUM OUT6A AS '' OUT6B AS '' TRANSDATE NOPRINT
ON TABLE SET PAGE-NUM OFF
END

Functions Reference 119

6. Date Functions

The output is:

The following request prints a blank delimited date in Greek with a full day name at the
beginning in the default case followed by a comma, and with a full month name in the default
case:

DEFINE FILE VIDEOTRK
TRANS1/YYMD=20050104;
TRANS2/YYMD=20050302;

DATEW/W=TRANS1 ;
DATEW2/W=TRANS2 ;
DATEYYMD/YYMDW=TRANS1 ;
DATEYYMD2/YYMDW=TRANS2 ;

OUT7A/A30=DATETRAN(DATEYYMD , '(DMYY)', '(Bwrctr)', 'GR', 30, 'A30');
OUT7B/A30=DATETRAN(DATEYYMD2, '(DMYY)', '(Bwrctr)', 'GR', 30, 'A30');
END

TABLE FILE VIDEOTRK
HEADING
"FORMAT Bwrctrde"
""
"Blank-delimited (B)"
"Full day of week name at beginning of date, default case (wr)"
"Comma after day name (c)"
"Full month name, default case (tr)"
"Greek"
""
SUM OUT7A AS '' OUT7B AS '' TRANSDATE NOPRINT
ON TABLE SET PAGE-NUM OFF
END

120 iWay Software

DATETRAN: Formatting Dates in International Formats

The output is:

FIYR: Obtaining the Financial Year

How to:

Obtain the Financial Year

The FIYR function returns the financial year, also known as the fiscal year, corresponding to
a given calendar date based on the financial year starting date and the financial year
numbering convention.

Since Dialogue Manager interprets a date as alphanumeric or numeric, and FIYR requires a
standard date stored as an offset from the base date, do not use FIYR with Dialogue Manager
unless you first convert the variable used as the input date to an offset from the base date.

How to Obtain the Financial YearSyntax:

FIYR(inputdate, lowcomponent, startmonth, startday, yrnumbering, output)

where:

inputdate

Date

Is the date for which the financial year is returned. The date must be a standard date
stored as an offset from the base date.

If the financial year does not begin on the first day of a month, the date must have Y(Y),
M, and D components, or Y(Y) and JUL components (note that JUL is equivalent to YJUL).
Otherwise, the date only needs Y(Y) and M components or Y(Y) and Q components.

Functions Reference 121

6. Date Functions

lowcomponent

Alphanumeric

Is one of the following:

D if the date contains a D or JUL component.

M if the date contains an M component, but no D component.

Q if the date contains a Q component.

startmonth

Numeric

1 through 12 are used to represent the starting month of the financial year, where 1
represents January and 12 represents December. If the low component is Q, the start
month must be 1, 4, 7, or 10.

startday

Numeric

Is the starting day of the starting month, usually 1. If the low component is M or Q, 1 is
required.

yrnumbering

Alphanumeric

Valid values are:

FYE to specify the Financial Year Ending convention. The financial year number is the
calendar year of the ending date of the financial year. For example, when the financial
year starts on October 1, 2008, the date 2008 November 1 is in FY 2009 Q1 because
that date is in the financial year that ends on 2009 September 30.

FYS to specify the Financial Year Starting convention. The financial year number is the
calendar year of the starting date of the financial year. For example, when the financial
year starts on April 6, 2008, the date 2008 July 6 is in FY 2008 Q2 because that date
is in the financial year that starts on 2008 April 6.

output

I, Y, or YY

The result will be in integer format, or Y or YY. This function returns a year value. In case
of an error, zero is returned.

Note: February 29 cannot be used as a start day for a financial year.

122 iWay Software

FIYR: Obtaining the Financial Year

Obtaining the Financial YearExample:

FIYR obtains the financial year for PERIOD, which has format YYM :

FIYR(PERIOD,'M', 4,1,'FYE','YY');

For PERIOD 2002/03, the result is 2002

For PERIOD 2002/04, the result is 2003.

FIQTR: Obtaining the Financial Quarter

How to:

Obtain the Financial Quarter

The FIQTR function returns the financial quarter corresponding to a given calendar date
based on the financial year starting date and the financial year numbering convention.

Since Dialogue Manager interprets a date as alphanumeric or numeric, and FIQTR requires
a standard date stored as an offset from the base date, do not use FIQTR with Dialogue
Manager unless you first convert the variable used as the input date to an offset from the
base date.

How to Obtain the Financial QuarterSyntax:

FIQTR(inputdate, lowcomponent, startmonth, startday, yrnumbering, output)

where:

inputdate

Date

Is the date for which the financial year is returned. The date must be a standard date
stored as an offset from the base date.

If the financial year does not begin on the first day of a month, the date must have Y(Y),
M, and D components, or Y(Y) and JUL components (note that JUL is equivalent to YJUL).
Otherwise, the date only needs Y(Y) and M components or Y(Y) and Q components.

lowcomponent

Alphanumeric

Is one of the following:

D if the date contains a D or JUL component.

M if the date contains an M component, but no D component.

Q if the date contains a Q component.

Functions Reference 123

6. Date Functions

startmonth

Numeric

1 through 12 are used to represent the starting month of the financial year, where 1
represents January and 12 represents December. If the low component is Q, the start
month must be 1, 4, 7, or 10.

startday

Numeric

Is the starting day of the starting month, usually 1. If the low component is M or Q, 1 is
required.

yrnumbering

Alphanumeric

Valid values are:

FYE to specify the Financial Year Ending convention. The financial year number is the
calendar year of the ending date of the financial year. For example, when the financial
year starts on October 1, 2008, the date 2008 November 1 is in FY 2009 Q1 because
that date is in the financial year that ends on 2009 September 30.

FYS to specify the Financial Year Starting convention. The financial year number is the
calendar year of the starting date of the financial year. For example, when the financial
year starts on April 6, 2008, the date 2008 July 6 is in FY 2008 Q2 because that date
is in the financial year that starts on 2008 April 6.

output

I or Q

The result will be in integer format, or Q. This function will return a value of 1 through
4. In case of an error, zero is returned.

Note: February 29 cannot be used as a start day for a financial year.

Obtaining the Financial QuarterExample:

FIQTR obtains the financial quarter for START_DATE (format YYMD) and returns a column
with format Q;

FIQTR(START_DATE,'D',10,1,'FYE','Q');

For 1997/10/01, the result is Q1.

For 1996/07/30, the result is Q4.

124 iWay Software

FIQTR: Obtaining the Financial Quarter

FIYYQ: Converting a Calendar Date to a Financial Date

How to:

Convert a Calendar Date to a Financial Date

The FIYYQ function returns a financial date containing both the financial year and quarter
that corresponds to a given calendar date. The returned financial date is based on the
financial year starting date and the financial year numbering convention.

Since Dialogue Manager interprets a date as alphanumeric or numeric, and FIYYQ requires
a standard date stored as an offset from the base date, do not use FIYYQ with Dialogue
Manager unless you first convert the variable used as the input date to an offset from the
base date.

How to Convert a Calendar Date to a Financial DateSyntax:

FIYYQ(inputdate, lowcomponent, startmonth, startday, yrnumbering, output)

where:

inputdate

Date

Is the date for which the financial year is returned. The date must be a standard date
stored as an offset from the base date.

If the financial year does not begin on the first day of a month, the date must have Y(Y),
M, and D components, or Y(Y) and JUL components (note that JUL is equivalent to YJUL).
Otherwise, the date only needs Y(Y) and M components or Y(Y) and Q components.

lowcomponent

Alphanumeric

Is one of the following:

D if the date contains a D or JUL component.

M if the date contains an M component, but no D component.

Q if the date contains a Q component.

startmonth

Numeric

1 through 12 are used to represent the starting month of the financial year, where 1
represents January and 12 represents December. If the low component is Q, the start
month must be 1, 4, 7, or 10.

Functions Reference 125

6. Date Functions

startday

Numeric

Is the starting day of the starting month, usually 1. If the low component is M or Q, 1 is
required.

yrnumbering

Alphanumeric

Valid values are:

FYE to specify the Financial Year Ending convention. The financial year number is the
calendar year of the ending date of the financial year. For example, when the financial
year starts on October 1, 2008, the date 2008 November 1 is in FY 2009 Q1 because
that date is in the financial year that ends on 2009 September 30.

FYS to specify the Financial Year Starting convention. The financial year number is the
calendar year of the starting date of the financial year. For example, when the financial
year starts on April 6, 2008, the date 2008 July 6 is in FY 2008 Q2 because that date
is in the financial year that starts on 2008 April 6.

output

Y[Y]Q or QY[Y]

In case of an error, zero is returned.

Note: February 29 cannot be used as a start day for a financial year.

Converting a Calendar Date to a Financial DateExample:

FIYYQ returns the financial date in format YQ that corresponds to START_DATE (format
YYMD);

FIYYQ(START_DATE,'D',10,1,'FYE','YQ');

For 1997/10/01, the result is 98 Q1.

For 1996/07/30, the result is 96 Q4.

126 iWay Software

FIYYQ: Converting a Calendar Date to a Financial Date

TODAY: Returning the Current Date

How to:

Retrieve the Current Date

The TODAY function retrieves the current date from the operating system in the format
MM/DD/YY or MM/DD/YYYY. It always returns a date that is current. Therefore, if you are
running an application late at night, use TODAY. You can remove the default embedded
slashes with the EDIT function.

You can also retrieve the date in the same format (separated by slashes) using the Dialogue
Manager system variable &DATE. You can retrieve the date without the slashes using the
system variables &YMD, &MDY, and &DMY. The system variable &DATEfmt retrieves the
date in a specified format.

How to Retrieve the Current DateSyntax:

TODAY(output)

where:

output

Alphanumeric, at least A8

The following apply:

If DATEFNS=ON and the format is A8 or A9, TODAY returns the 2-digit year.

If DATEFNS=ON and the format is A10 or greater, TODAY returns the 4-digit year.

If DATEFNS=OFF, TODAY returns the 2-digit year, regardless of the format of output.

Retrieving the Current DateExample:

TODAY retrieves the current date and stores it in a column with the format A10.

TODAY('A10')

Using Legacy Date Functions

In this section:

Using Old Versions of Legacy Date Functions

The legacy date functions were created for use with dates in integer, packed decimal, or
alphanumeric format.

Functions Reference 127

6. Date Functions

For detailed information on each legacy date function, see:

AYM: Adding or Subtracting Months on page 129

AYMD: Adding or Subtracting Days on page 130

CHGDAT: Changing How a Date String Displays on page 131

DA Functions: Converting a Legacy Date to an Integer on page 133

DMY, MDY, YMD: Calculating the Difference Between Two Dates on page 134

DOWK and DOWKL: Finding the Day of the Week on page 135

DT Functions: Converting an Integer to a Date on page 136

GREGDT: Converting From Julian to Gregorian Format on page 137

JULDAT: Converting From Gregorian to Julian Format on page 138

YM: Calculating Elapsed Months on page 139

Using Old Versions of Legacy Date Functions

How to:

Activate Old Legacy Date Functions

The functions described in this section are legacy date functions. They were created for use
with dates in integer or alphanumeric format. They are no longer recommended for date
manipulation. Standard date and date-time functions are preferred.

All legacy date functions support dates for the year 2000 and later. The old versions of these
functions may not work correctly with dates after December 31, 1999. However, in some
cases you may want to use the old version of a function, for example, if you do not use year
2000 dates. You can "turn off" the current version with the DATEFNS parameter.

How to Activate Old Legacy Date FunctionsSyntax:

SET DATEFNS = {ON|OFF}

where:

ON

Activates the function that supports dates for the year 2000 and later. ON is the default
value.

OFF

Deactivates a function that supports dates for the year 2000 and later.

128 iWay Software

Using Legacy Date Functions

AYM: Adding or Subtracting Months

How to:

Add or Subtract Months to or From a Date

The AYM function adds months to or subtracts months from a date in year-month format.
You can convert a date to this format using the CHGDAT or EDIT function.

How to Add or Subtract Months to or From a DateSyntax:

AYM(indate, months, output)

where:

indate

I4, I4YM, I6, or I6YYM

Is the legacy date in year-month format. If the date is not valid, the function returns the
value 0 (zero).

months

Integer

Is the number of months you are adding to or subtracting from the date. To subtract
months, use a negative number.

output

I4YM or I6YYM

Is the resulting legacy date.

Tip: If the input date is in integer year-month-day format (I6YMD or I8YYMD), divide the
date by 100 to convert to year-month format and set the result to an integer. This drops
the day portion of the date.

Adding Months to a DateExample:

AYM adds six months to HIRE_MONTH and stores the result in a column with the format
I4YM.

AYM(HIRE_MONTH, 6, 'I4YM')

For 99/04, the result is 99/10.

For 98/11, the result is 99/05.

Functions Reference 129

6. Date Functions

AYMD: Adding or Subtracting Days

How to:

Add or Subtract Days to or From a Date

The AYMD function adds days to or subtracts days from a date in year-month-day format.
You can convert a date to this format using the CHGDAT or EDIT function.

How to Add or Subtract Days to or From a DateSyntax:

AYMD(indate, days, output)

where:

indate

I6, I6YMD, I8, I8YYMD

Is the legacy date in year-month-day format. If the date is not valid, the function returns
the value 0 (zero).

days

Integer

Is the number of days you are adding to or subtracting from indate. To subtract days,
use a negative number.

output

I6, I6YMD, I8, or I8YYMD

Is the same format as indate.

If the addition or subtraction of days crosses forward or backward into another century,
the century digits of the output year are adjusted.

Adding Days to a DateExample:

AYMD adds 35 days to each value in the HIRE_DATE field, and stores the result in a column
with the format I6YMD.

AYMD(HIRE_DATE, 35, 'I6YMD')

For 99/08/01, the result is 99/09/05.

For 99/01/04, the result is 99/02/08.

130 iWay Software

AYMD: Adding or Subtracting Days

CHGDAT: Changing How a Date String Displays

How to:

Change the Date Display String

Reference:

Short to Long Conversion

The CHGDAT function rearranges the year, month, and day portions of an input character
string representing a date. It may also convert the input string from long to short or short
to long date representation. Long representation contains all three date components: year,
month, and day; short representation omits one or two of the date components, such as
year, month, or day. The input and output date strings are described by display options that
specify both the order of date components (year, month, day) in the date string and whether
two or four digits are used for the year (for example, 04 or 2004). CHGDAT reads an input
date character string and creates an output date character string that represents the same
date in a different way.

Note: CHGDAT requires a date character string as input, not a date itself. Whether the input
is a standard or legacy date, convert it to a date character string (using the EDIT or DATECVT
functions, for example) before applying CHGDAT.

The order of date components in the date character string is described by display options
comprised of the following characters in your chosen order:

DescriptionCharacter

Day of the month (01 through 31).D

Month of the year (01 through 12).M

Year. Y indicates a two-digit year (such as 94); YY indicates a four-digit year
(such as 1994).

Y[Y]

To spell out the month rather than use a number in the resulting string, append one of the
following characters to the display options for the resulting string:

DescriptionCharacter

Displays the month as a three-letter abbreviation.T

Displays the full name of the month.X

Functions Reference 131

6. Date Functions

Display options can consist of up to five display characters. Characters other than those
display options are ignored.

For example: The display options 'DMYY' specify that the date string starts with a two digit
day, then two digit month, then four digit year.

Note: Display options are not date formats.

Short to Long ConversionReference:

If you are converting a date from short to long representation (for example, from year-month
to year-month-day), the function supplies the portion of the date missing in the short
representation, as shown in the following table:

Portion Supplied by FunctionPortion of Date Missing

Last day of the month.Day (for example, from YM to YMD)

Last month of the year (December).Month (for example, from Y to YM)

The year 99.Year (for example, from MD to YMD)

If DATEFNS=ON, the century will be determined
by the 100-year window defined by DEFCENT
and YRTHRESH.

If DATEFNS=OFF, the year 19xx is supplied,
where xx is the last two digits in the year.

Converting year from two-digit to four-
digit (for example, from YMD to YYMD)

How to Change the Date Display StringSyntax:

CHGDAT('in_display_options','out_display_options',date_string,output)

where:

'in_display_options'

A1 to A5

Is a series of up to five display options that describe the layout of date_string. These
options can be stored in an alphanumeric field or supplied as a literal enclosed in single
quotation marks.

132 iWay Software

CHGDAT: Changing How a Date String Displays

'out_display_options'

A1 to A5

Is a series of up to five display options that describe the layout of the converted date
string. These options can be stored in an alphanumeric field or supplied as a literal
enclosed in single quotation marks.

date_string

A2 to A8

Is the input date character string with date components in the order specified by
in_display_options.

Note that if the original date is in numeric format, you must convert it to a date character
string. If date_string does not correctly represent the date (the date is invalid), the
function returns blank spaces.

output

Axx, where xx is a number of characters large enough to fit the date string specified by
out_display_options. A17 is long enough to fit the longest date string.

Note: Since CHGDAT uses a date string (as opposed to a date) and returns a date string
with up to 17 characters, use the EDIT or DATECVT functions or any other means to convert
the date to or from a date character string.

Converting the Date Display From YMD to MDYYXExample:

ALPHA_HIRE is HIRE_DATE converted from numeric to alphanumeric format. CHGDAT converts
each value in ALPHA_HIRE from displaying the components as YMD to MDYYX and stores
the result in a column with the format A17. The option X in the output value displays the full
name of the month.

CHGDAT('YMD', 'MDYYX', ALPHA_HIRE, 'A17')

DA Functions: Converting a Legacy Date to an Integer

How to:

Convert a Date to an Integer

The DA functions convert a legacy date to the number of days between it and a base date.
By converting a date to the number of days, you can add and subtract dates and calculate
the intervals between themthem, or you can add to or subtract numbers from the dates to
get new dates.

You can convert the result back to a date using the DT functions discussed in DT Functions:
Converting an Integer to a Date on page 136.

Functions Reference 133

6. Date Functions

There are six DA functions; each one accepts a date in a different format.

How to Convert a Date to an IntegerSyntax:

function(indate, output)

where:

function

Is one of the following:

DADMY converts a date in day-month-year format.

DADYM converts a date in day-year-month format.

DAMDY converts a date in month-day-year format.

DAMYD converts a date in month-year-day format.

DAYDM converts a date in year-day-month format.

DAYMD converts a date in year-month-day format.

indate

I6xxx or P6xxx, where xxx corresponds to the function DAxxx you are using.

Is the legacy date to be converted. If indate is a numeric literal, enter only the last two
digits of the year; the function assumes the century component. If the date is invalid,
the function returns a 0.

output

Integer

Converting Dates and Calculating the Difference Between ThemExample:

DAYMD converts DAT_INC and HIRE_DATE to the number of days since December 31, 1899
and the smaller number is then subtracted from the larger number:

DAYMD(DAT_INC, 'I8') - DAYMD(HIRE_DATE, 'I8')

DMY, MDY, YMD: Calculating the Difference Between Two Dates

How to:

Calculate the Difference Between Two Dates

The DMY, MDY, and YMD functions calculate the difference between two legacy dates in
integer, alphanumeric, or packed format.

134 iWay Software

DMY, MDY, YMD: Calculating the Difference Between Two Dates

How to Calculate the Difference Between Two DatesSyntax:

function(from_date, to_date)

where:

function

Is one of the following:

DMY calculates the difference between two dates in day-month-year format.

MDY calculates the difference between two dates in month-day-year format.

YMD calculates the difference between two dates in year-month-day format.

from_date

I, P, or A format with date display options.

Is the beginning legacy date,.

to_date

I, P, or A format with date display options.I6xxx or I8xxx where xxx corresponds to the
specified function (DMY, YMD, or MDY).

Is the end date.

Calculating the Number of Days Between Two DatesExample:

YMD calculates the number of days between the dates in HIRE_DATE and DAT_INC.

YMD(HIRE_DATE, DAT_INC)

DOWK and DOWKL: Finding the Day of the Week

How to:

Find the Day of the Week

The DOWK and DOWKL functions find the day of the week that corresponds to a date. DOWK
returns the day as a three letter abbreviation; DOWKL displays the full name of the day.

Functions Reference 135

6. Date Functions

How to Find the Day of the WeekSyntax:

{DOWK|DOWKL}(indate, output)

where:

indate

I6YMD or I8YMD

Is the legacy date in year-month-day format. If the date is not valid, the function returns
spaces. If the date specifies a two digit year and DEFCENT and YRTHRESH values have
not been set, the function assumes the 20th century.

output

DOWK: A4. DOWKL: A12

Finding the Day of the WeekExample:

DOWK determines the day of the week that corresponds to the value in the HIRE_DATE field
and stores the result in a column with the format A4.

DOWK(HIRE_DATE, 'A4')

For 80/06/02, the result is MON.

For 82/08/01, the result is SUN.

DT Functions: Converting an Integer to a Date

How to:

Convert an Integer to a Date

There are six DT functions; each one converts a number into a date of a different format.

136 iWay Software

DT Functions: Converting an Integer to a Date

How to Convert an Integer to a DateSyntax:

function(number, output)

where:

function

Is one of the following:

DTDMY converts a number to a day-month-year date.

DTDYM converts a number to a day-year-month date.

DTMDY converts a number to a month-day-year date.

DTMYD converts a number to a month-year-day date.

DTYDM converts a number to a year-day-month date.

DTYMD converts a number to a year-month-day date.

number

Integer

Is the number of days since the base date, possibly received from the functions DAxxx.

output

I8xxx, where xxx corresponds to the function DTxxx in the above list.

Converting an Integer to a DateExample:

DTMDY converts NEWF (which was converted to the number of days by DAYMD) to the
corresponding date and stores the result in a column with the format I8MDYY.

DTMDY(NEWF, 'I8MDYY')

For 81/11/02, the result is 11/02/1981.

For 82/05/01, the result is 05/01/1982.

GREGDT: Converting From Julian to Gregorian Format

How to:

Convert From Julian to Gregorian Format

The GREGDT function converts a date in Julian format (year-day) to Gregorian format (year-
month-day).

Functions Reference 137

6. Date Functions

A date in Julian format is a five- or seven-digit number. The first two or four digits are the
year; the last three digits are the number of the day, counting from January 1. For example,
January 1, 1999 in Julian format is either 99001 or 1999001; June21, 2004 in Julian format
is 2004173.

How to Convert From Julian to Gregorian FormatSyntax:

GREGDT(indate, output)

where:

indate

I5 or I7

Is the Julian date. If the date is invalid, the function returns a 0 (zero).

output

I6, I8, I6YMD, or I8YYMD

Converting From Julian to Gregorian FormatExample:

DTMDY converts NEWF (which was converted to the number of days by DAYMD) to the
corresponding date and stores the result in a column with the format I8MDYY.

DTMDY(NEWF, 'I8MDYY')

For 81/11/02, the result is 11/02/1981.

For 82/05/01, the result is 05/01/1982.

JULDAT: Converting From Gregorian to Julian Format

How to:

Convert From Gregorian to Julian Format

The JULDAT function converts a date from Gregorian format (year-month-day) to Julian format
(year-day). A date in Julian format is a five- or seven-digit number. The first two or four digits
are the year; the last three digits are the number of the day, counting from January 1. For
example, January 1, 1999 in Julian format is either 99001 or 1999001.

138 iWay Software

JULDAT: Converting From Gregorian to Julian Format

How to Convert From Gregorian to Julian FormatSyntax:

JULDAT(indate, output)

where:

indate

I6, I8, I6YMD, I8YYMD

Is the legacy date to convert.

output

I5 or I7

Converting From Gregorian to Julian FormatExample:

GREGDT converts JULIAN to YYMD (Gregorian) format. It determines the century using the
default DEFCENT and YRTHRESH parameter settings. The result is stored in a column with
the format I8.

GREGDT(JULIAN, 'I8')

For 82213, the result is 19820801.

For 82004, the result is 19820104.

YM: Calculating Elapsed Months

How to:

Calculate Elapsed Months

The YM function calculates the number of months between two dates. The dates must be
in year-month format. You can convert a date to this format by using the CHGDAT or EDIT
function.

How to Calculate Elapsed MonthsSyntax:

YM(fromdate, todate, output)

where:

fromdate

I4YM or I6YYM

Is the start date in year-month format (for example, I4YM). If the date is not valid, the
function returns the value 0 (zero).

Functions Reference 139

6. Date Functions

todate

I4YM or I6YYM

Is the end date in year-month format. If the date is not valid, the function returns the
value 0 (zero).

output

Integer

Tip: If fromdate or todate is in integer year-month-day format (I6YMD or I8YYMD), simply
divide by 100 to convert to year-month format and set the result to an integer. This drops
the day portion of the date, which is now after the decimal point.

Calculating Elapsed MonthsExample:

YM calculates the difference between HIRE_MONTH and MONTH_INC and stores the results
in a column with the format I3.

YM(HIRE_MONTH, MONTH_INC, 'I3')

140 iWay Software

YM: Calculating Elapsed Months

iWay

Date-Time Functions7
Date-Time functions are for use with timestamps in date-time formats, also known as H formats. A
timestamp value refers to internally stored data capable of holding both date and time components with
an accuracy of up to a nanosecond.

Topics:
HINPUT: Converting an Alphanumeric String to
a Date-Time Value

Using Date-Time Functions
HMIDNT: Setting the Time Portion of a
Date-Time Value to MidnightHADD: Incrementing a Date-Time Value

HCNVRT: Converting a Date-Time Value to
Alphanumeric Format

HNAME: Retrieving a Date-Time Component in
Alphanumeric Format

HDATE: Converting the Date Portion of a
Date-Time Value to a Date Format

HPART: Retrieving a Date-Time Component as
a Numeric Value

HDIFF: Finding the Number of Units Between
Two Date-Time Values

HSETPT: Inserting a Component Into a
Date-Time Value

HDTTM: Converting a Date Value to a
Date-Time Value

HTIME: Converting the Time Portion of a
Date-Time Value to a Number

HGETC: Storing the Current Date and Time in
a Date-Time Field

HTMTOTS: Converting a Time to a Timestamp

HYYWD: Returning the Year and Week Number
From a Date-Time ValueHHMMSS: Retrieving the Current Time

Functions Reference 141

Using Date-Time Functions

In this section:

Date-Time Parameters

Supplying Arguments for Date-Time Functions

The functions described in this section operate on fields in date-time format (sometimes
called H format).

However, you can also provide a date as a character string using the macro DT, followed by
a character string in parentheses, presenting date and time. Date components are separated
by slashes '/'; time components by colons ':'.

Alternatively, the day can be given as a natural day, like 2004 March 31, in parentheses.
Either the date or time component can be omitted. For example, the date-time format
argument can be expressed as DT(2004/03/11 13:24:25.99) or DT(March 11 2004).

The following is another example that creates a timestamp representing the current date
and time. The system variables &YYMD and &TOD are used to obtain the current date and
time, respectively:

-SET &MYSTAMP = &YYMD | ' ' | EDIT(&TOD,'99:$99:$99') ;

Today's date (&YYMD) is concatenated with the time of day (&TOD). The EDIT function is
used to change the dots (.) in the time of day variable to colons (:).

The following request uses the DT macro on the alphanumeric date and time variable
&MYSTAMP:

TABLE FILE CAR
 PRINT CAR NOPRINT
 COMPUTE DTCUR/HYYMDS = DT(&MYSTAMP);
 IF RECORDLIMIT IS 1;
END

142 iWay Software

Using Date-Time Functions

Date-Time Parameters

In this section:

Specifying the Order of Date Components

Specifying the First Day of the Week for Use in Date-Time Functions

Controlling Processing of Date-Time Values

The DATEFORMAT parameter specifies the order of the date components for certain types
of date-time values. The WEEKFIRST parameter specifies the first day of the week. The
DTSTRICT parameter determines the extent to which date-time values are checked for validity.

Specifying the Order of Date Components

How to:

Specify the Order of Date Components in a Date-Time Field

The DATEFORMAT parameter specifies the order of the date components (month/day/year)
when date-time values are entered in the formatted string and translated string formats. It
makes the input format of a value independent of the format of the variable to which it is
being assigned.

How to Specify the Order of Date Components in a Date-Time FieldSyntax:

SET DATEFORMAT = option

where:

option

Can be one of the following: MDY, DMY, YMD, or MYD. MDY is the default value for the
U.S. English format.

Functions Reference 143

7. Date-Time Functions

Specifying the First Day of the Week for Use in Date-Time Functions

How to:

Set a Day as the Start of the Week

View the Current Setting of WEEKFIRST

The WEEKFIRST parameter specifies a day of the week as the start of the week. This is used
in week computations by the HDIFF, HNAME, HPART, and HSETPT functions. The WEEKFIRST
parameter does not change the day of the month that corresponds to each day of the week,
but only specifies which day is considered the start of the week.

The HPART, HYYWD, and HNAME subroutines can extract a week number from a date-time
value. To determine a week number, they can use ISO 8601 standard week numbering,
which defines the first week of the year as the first week in January with four or more days.
Any preceding days in January belong to week 52 or 53 of the preceding year. The ISO
standard also establishes Monday as the first day of the week.

These functions can also define the first week of the year as the first week in January with
seven days. This is the definition they used in prior releases.

You specify which type of week numbering to use by setting the WEEKFIRST parameter.

Since the week number returned by HNAME and HPART functions can be in the current year
or the year preceding or following, the week number by itself may not be useful. The function
HYYWD returns both the year and the week from a given date-time value.

How to Set a Day as the Start of the WeekSyntax:

SET WEEKFIRST = {value|7}

where:

value

Can be:

1 through 7, representing Sunday through Saturday with non-standard week numbering.

or

ISO1 through ISO7, representing Sunday through Saturday with ISO standard week
numbering.

Note: ISO is a synonym for ISO2.

The ISO standard establishes Monday as the first day of the week, so to be fully ISO
compliant, the WEEKFIRST parameter should be set to ISO or ISO2.

144 iWay Software

Using Date-Time Functions

Setting Sunday as the Start of the WeekExample:

The following designates Sunday as the start of the week:

SET WEEKFIRST = 1

How to View the Current Setting of WEEKFIRSTSyntax:

? SET WEEKFIRST

This returns the integer value of the first day of the week. For example, the integer 1
represents Sunday.

Controlling Processing of Date-Time Values

How to:

Enable Strict Processing of Date-Time Values

Strict processing checks date-time values when they are input by an end user, read from a
transaction file, displayed, or returned by a subroutine to ensure that they represent a valid
date and time. For example, a numeric month must be between 1 and 12, and the day must
be within the number of days for the specified month.

How to Enable Strict Processing of Date-Time ValuesSyntax:

SET DTSTRICT = {ON|OFF}

where:

ON

Invokes strict processing. ON is the default value.

Strict processing checks date-time values when they are input by an end user, read from
a transaction file, displayed, or returned by a subroutine to ensure that they represent
a valid date and time. For example, a numeric month must be between 1 and 12, and
the day must be within the number of days for the specified month.

If DTSTRICT is ON and the result would be an invalid date-time value, the function returns
the value zero (0).

OFF

Does not invoke strict processing. Date-time components can have any value within the
constraint of the number of decimal digits allowed in the field. For example, if the field
is a two-digit month, the value can be 12 or 99, but not 115.

Functions Reference 145

7. Date-Time Functions

Supplying Arguments for Date-Time Functions

Reference:

Arguments for Use With Date and Time Functions

Date-time functions may operate on a component of a date-time value. This topic lists the
valid component names and abbreviations for use with thes functions.

Arguments for Use With Date and Time FunctionsReference:

The following component names, valid abbreviations, and values are supported as arguments
for the date-time functions that require them:

Valid ValuesAbbreviationComponent Name

0001-9999yyyear

1-4qqquarter

1-12 or a month name, depending on
the function.

mmmonth

1-366dyday-of-year

1-31 (The two component names are
equivalent.)

ddday or day-of-month

1-53wkweek

1-7 (Sunday-Saturday)dwweekday

0-23hhhour

0-59miminute

0-59sssecond

0-999msmillisecond

0-999999mcmicrosecond

0-999999999nsnanosecond

146 iWay Software

Using Date-Time Functions

Note:

For an argument that specifies a length of eight, ten, or 12 characters, use eight to
include milliseconds, ten to include microseconds, and 12 to include nanoseconds in
the returned value.

The last argument is always a USAGE format that indicates the data type returned by the
function. The type may be A (alphanumeric), I (integer), D (floating-point double precision),
H (date-time), or a date format (for example, YYMD).

HADD: Incrementing a Date-Time Value

How to:

Increment a Date-Time Value

The HADD function increments a date-time value by a given number of units.

How to Increment a Date-Time ValueSyntax:

HADD(datetime, 'component', increment, length, output)

where:

datetime

Date-time

Is the date-time value to be incremented.

component

Alphanumeric

Is the name of the component to be incremented enclosed in single quotation marks.
For a list of valid components, see Arguments for Use With Date and Time Functions on
page 146.

Note: WEEKDAY is not a valid component for HADD.

increment

Integer

Is the number of units (positive or negative) by which to increment the component.

Functions Reference 147

7. Date-Time Functions

length

Integer

Is the number of characters returned. Valid values are:

8 indicates a date-time value that includes one to three decimal digits (milliseconds).

10 indicates a date-time value that includes four to six decimal digits (microseconds).

12 indicates a date-time value that includes seven to nine decimal digits (nanoseconds).

output

Date-time

Incrementing a Date-Time ValueExample:

The following example increments thirty months to some specific date-time in the past

HADD(DT(2001/09/11 08:54:34), 'MONTH', 30, 8, 'HYYMDS')

and returns the timestamp 2004/03/11 08:54:34.00.

HCNVRT: Converting a Date-Time Value to Alphanumeric Format

How to:

Convert a Date-Time Value to Alphanumeric Format

The HCNVRT function converts a date-time value to alphanumeric format for use with operators
such as EDIT, CONTAINS, and LIKE.

How to Convert a Date-Time Value to Alphanumeric FormatSyntax:

HCNVRT(datetime, '(format)', length, output)

where:

datetime

Date-time

Is the date-time value to be converted.

format

Alphanumeric

Is the format of the date-time field enclosed in parentheses and single quotation marks.
It must be a date-time format (data type H, up to H23).

148 iWay Software

HCNVRT: Converting a Date-Time Value to Alphanumeric Format

length

Integer

Is the number of characters in the alphanumeric field that is returned. If length is smaller
than the number of characters needed to display the alphanumeric field, the function
returns a blank.

output

Alphanumeric

Converting a Date-Time Value to Alphanumeric FormatExample:

Assume that you have a date-time field DTCUR in H format. To convert this timestamp to an
alphanumeric string, use the following syntax:

HCNVRT(DTCUR, '(HMDYYS)', 20, 'A20')

The function returns the string '03/26/2004 14:25:58' that is assignable to an alphanumeric
variable.

HDATE: Converting the Date Portion of a Date-Time Value to a Date Format

How to:

Convert the Date Portion of a Date-Time Value to a Date Format

The HDATE function converts the date portion of a date-time value to the date format YYMD.
You can then convert the result to other date formats.

How to Convert the Date Portion of a Date-Time Value to a Date FormatSyntax:

HDATE(datetime, output

where:

datetime

Date-time

Is the date-time value to be converted.

output

Date

Functions Reference 149

7. Date-Time Functions

Converting the Date Portion of a Timestamp Value to a Date FormatExample:

This example converts the DTCUR field, which is the current date/time timestamp, into a
date field using the format DMY:

MYDATE/DMY = HDATE(DTCUR, 'YYMD');

The function returns the date in format YYMD, then assigns it to MYDATE after conversion
to its format MY as 03/04. Note that the output_format of HDATE is presented as a full
component date format MDYY, as required.

HDIFF: Finding the Number of Units Between Two Date-Time Values

How to:

Find the Number of Units Between Two Date-Time Values

The HDIFF function calculates the number of date or time component units between two
date-time values.

How to Find the Number of Units Between Two Date-Time ValuesSyntax:

HDIFF(end_dt, start_dt, 'component', output)

where:

end_dt

Date-time

Is the date-time value to subtract from.

start_dt

Date-time

Is the date-time value to subtradt.

component

Alphanumeric

Is the name of the component to be used in the calculation, enclosed in single quotation
marks. If the component is a week, the WEEKFIRST parameter setting is used in the
calculation.

150 iWay Software

HDIFF: Finding the Number of Units Between Two Date-Time Values

output

Floating-point double-precision

Finding the Number of Units Between Two Date-Time ValuesExample:

Assume that we have a date-time field DTCUR in H format, which is has a current date and
time timestamp. To find the number of days from President's Day 2004 to today use the
expression:

DIFDAY/I6 = HDIF(DTCUR, DT(2004/02/16), 'DAY', 'D6.0')

The function returns the number of days in double precision floating point format, then
assigns it to DIFDAY as integer value. If today is March 31, 2004, the DIFDAY is assigned
to 46.

If you wish to obtain results in seconds, use the expression

DIFSEC/I9 = HDIF(DTCUR, DT(2004 February 16), 'SECOND', 'D9.0')

which assigns 3801600 to DIFSEC. Note that the format 'D9.0' is used with HDIF. Using
'I9' for an output_format in HDIF is invalid.

HDTTM: Converting a Date Value to a Date-Time Value

How to:

Convert a Date Value to a Date-Time Value

The HDTTM function converts a date value to a date-time value. The time portion is set to
midnight.

How to Convert a Date Value to a Date-Time ValueSyntax:

HDTTM(date, length, output)

where:

date

Date

Is the date to be converted. It must be a full component format date. For example, it
can be MDYY or YYJUL.

Functions Reference 151

7. Date-Time Functions

length

Integer

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes milliseconds.

10 indicates a time value that includes microseconds.

12 indicates a time value that includes nanoseconds.

output

Date-time

Is the generated date-time value. The value must have a date-time format (data type H).

Converting a Date to a TimestampExample:

This example converts the President's Day date into a timestamp:

TS/HYYMDS = HDTTM('February 16 2004', 8, TS)

the function returns 2004/02/16 00:00:00 and assigns this timestamp to field TS. Note
the zero values of time components in the timestamp. Also note the use of natural date
constants in single quotation marks for the date in the first function parameter.

HGETC: Storing the Current Date and Time in a Date-Time Field

How to:

Store the Current Date and Time in a Date-Time Field

The HGETC function returns the current date and time in the desired date-time format. If
millisecond or microsecond values are not available in your operating environment, the
function retrieves the value zero for these components.

152 iWay Software

HGETC: Storing the Current Date and Time in a Date-Time Field

How to Store the Current Date and Time in a Date-Time FieldSyntax:

HGETC(length, output)

where:

length

Integer

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes milliseconds.

10 indicates a time value that includes microseconds.

12 indicates a time value that includes nanoseconds.

output

Date-time

Is the returned date-time value.

Storing the Current Date and Time as a TimestampExample:

This example,

HGETC(8, 'HYYMDS')

creates a timestamp representing the current date and time.

HHMMSS: Retrieving the Current Time

How to:

Retrieve the Current Time

The HHMMSS function retrieves the current time from the operating system as an eight
character string, separating the hours, minutes, and seconds with periods.

Functions Reference 153

7. Date-Time Functions

How to Retrieve the Current TimeSyntax:

HHMMSS(output)

where:

output

Alphanumeric, at least A8

Retrieving the Current TimeExample:

This example,

HMMSS('A10')

creates a character string representing current time, like 12.09.47. Note that shorter
output_format format will cause truncation of output.

HINPUT: Converting an Alphanumeric String to a Date-Time Value

How to:

Convert an Alphanumeric String to a Date-Time Value

The HINPUT function converts an alphanumeric string to a date-time value.

How to Convert an Alphanumeric String to a Date-Time ValueSyntax:

HINPUT(source_length, 'source_string', output_length, output)

where:

source_length

Integer

Is the number of characters in the source string to be converted.

source_string

Alphanumeric

Is the string to be converted.

output_length

Integer

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes one to three decimal digits (milliseconds).

10 indicates a time value that includes four to six decimal digits (microseconds).

154 iWay Software

HINPUT: Converting an Alphanumeric String to a Date-Time Value

12 indicates a time value that includes seven to nine decimal digits (nanoseconds).

output

Date-time

Is the returned date-time value.

Converting an Alphanumeric String to a TimestampExample:

This example,

DTM/HYYMDS = HINPUT(14, '20040229 13:34:00', 8, DTM);

converts the character string (20040229 13:34:00) into a timestamp, which is then assigned
to the date-time field DTM. DTM is displayed as 2004/02/29 13:34:00.

HMIDNT: Setting the Time Portion of a Date-Time Value to Midnight

How to:

Set the Time Portion of a Date-Time Value to Midnight

The HMIDNT function changes the time portion of a date-time value to midnight (all zeros
by default). This allows you to compare a date field with a date-time field.

How to Set the Time Portion of a Date-Time Value to MidnightSyntax:

HMIDNT(datetime, length, output)

where:

datetime

Date-time

Is the date-time value whose time is to be set to midnight.

length

Integer

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes milliseconds.

10 indicates a time value that includes microseconds.

12 indicates a time value that includes nanoseconds.

Functions Reference 155

7. Date-Time Functions

output

Date-time

Is the date-time return value whose time is set to midnight and whose date is copied
from timestamp.

Setting the Time Portion of a Timestamp to MidnightExample:

This example converts the character string (20040229 13:34:00) to a timestamp, which is
assigned to DTM:

DTM/HYYMDS = HINPUT(14, '20040229 13:34:00', 8, DTM);

This example resets the time portion of DTM to midnight and assigned the timestamp
(02/29/2004 00:00:00) to DTMIDNT:

DTMIDNT/HMDYYS = HMIDNT(DTM, 8, DTMIDNT);

HNAME: Retrieving a Date-Time Component in Alphanumeric Format

How to:

Retrieve a Date-Time Component in Alphanumeric Format

The HNAME function extracts a specified component from a date-time value and returns it
as digits in alphanumeric format.

How to Retrieve a Date-Time Component in Alphanumeric FormatSyntax:

HNAME(datetime, 'component', output)

where:

datetime

Date-time

Is the date-time value from which a component value is to be extracted.

component

Alphanumeric

Is the name of the component to be retrieved enclosed in single quotation marks. For
a list of valid component names, see Arguments for Use With Date and Time Functions
on page 146.
for a list of valid components.

156 iWay Software

HNAME: Retrieving a Date-Time Component in Alphanumeric Format

output

Alphanumeric, at least A2

The function converts all other components to strings of digits only. The year is always
four digits, and the hour assumes the 24-hour system.

Retrieving a Timestamp Date or Time Component as an Alphanumeric ValueExample:

Assuming that the current time obtained by the function HGETC in the first parameter is
13:22:11, this example returns the string '13' and assigns it to AHOUR:

AHOUR/A2 = HNAME(HGETC(8,'HYYMDS'),'HOUR', AHOUR);

Retrieving a Timestamp Date or Time Component as an Alphanumeric ValueExample:

Assuming that the current time obtained by the function HGETC in the first parameter is
13:22:11, this example returns the string '13' and assigns it to AHOUR:

AHOUR/A2 = HNAME(HGETC(8,'HYYMDS'),'HOUR', AHOUR);

HPART: Retrieving a Date-Time Component as a Numeric Value

How to:

Retrieve a Date-Time Component in Numeric Format

The HPART function extracts a specified component from a date-time value and returns it in
numeric format.

How to Retrieve a Date-Time Component in Numeric FormatSyntax:

HPART(datetime, 'component', output)

where:

datetime

Date-time

Is the date-time value from which the component is to be extracted.

component

Alphanumeric

Is the name of the component to be retrieved enclosed in single quotation marks. For
a list of valid components, see Arguments for Use With Date and Time Functions on page
146.

Functions Reference 157

7. Date-Time Functions

output

Integer

Retrieving a Timestamp Date or Time Component as Numeric ValueExample:

Assuming that the current time obtained by HGETC in the first parameter is 14:01:39, this
example returns a whole number, 14, and assigns it to IHOUR:

IHOUR/I2 = HPART(HGETC(8,'HYYMDS'),'HOUR', IHOUR);

HSETPT: Inserting a Component Into a Date-Time Value

How to:

Insert a Component Into a Date-Time Value

The HSETPT function inserts the numeric value of a specified component into a date-time
value.

How to Insert a Component Into a Date-Time ValueSyntax:

HSETPT(datetime, 'component', value, length, output)

where:

datetime

Date-time

Is the date-time value in which to insert the component.

component

Alphanumeric

Is the name of the component to be inserted enclosed in single quotation marks. See
Arguments for Use With Date and Time Functions on page 146 for a list of valid components.

value

Integer

Is the numeric value to be inserted for the requested component.

158 iWay Software

HSETPT: Inserting a Component Into a Date-Time Value

length

Integer

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes one to three decimal digits (milliseconds).

10 indicates a time value that includes four to six decimal digits (microseconds).

12 indicates a time value that includes seven to nine decimal digits (nanoseconds).

output

Date-time

Is the retruned date-time value whose chosen component is updated. All other
components are copied from the source date-time value.

Inserting a Component Into a Date-Time ValueExample:

Assuming that the current date and time obtained by HGETC in the first parameter are
03/31/2004 and 13:34:36, this example,

UHOUR/HMDYYS = HSETPT(HGETC(8,'HYYMDS'),'HOUR', 7, 8, UHOUR);

returns 03/31/2004 07:34:36.

HTIME: Converting the Time Portion of a Date-Time Value to a Number

How to:

Convert the Time Portion of a Date-Time Value to a Number

The HTIME function converts the time portion of a date-time value to the number of
milliseconds if the lengrh argument is eight, microseconds if the length argument is ten, or
nanoseconds if the length argument is 12.

Functions Reference 159

7. Date-Time Functions

How to Convert the Time Portion of a Date-Time Value to a NumberSyntax:

HTIME(length, datetime, output)

where:

length

Integer

Is the length of the input date-time value. Valid values are:

8 indicates a time value that includes one to three decimal digits (milliseconds).

10 indicates a time value that includes four to six decimal digits (microseconds).

12 indicates a time value that includes seven to nine decimal digits (nanoseconds).

datetime

Date-time

Is the date-time value from which to convert the time.

output

Floating-point double-precision

Converting the Time Portion of a Date-Time Value to a NumberExample:

Assuming that the current date and time obtained by HGETC in the second parameter are
03/31/2004 and 13:48:14, this example returns and assigns to NMILLI, 49,694,395.
(Note that this example uses milliseconds rather than microseconds.)

NMILLI/D12.0 = HTIME(8, HGETC(10,'HYYMDS'), NMICRO);

Assuming that the first parameter is equal to 10 and the timestamp format is HYYMDSS,
this example returns and assigns to NMICRO, 50,686,123,024.

NMICRO/D12.0 = HTIME(10, HGETC(10,'HYYMDSS'), NMICRO);

HTMTOTS: Converting a Time to a Timestamp

How to:

Convert a Time to a Timestamp

The HTMTOTS function returns a timestamp using the current date to supply the date
components of its value, and copies the time components from its input date-time value.

160 iWay Software

HTMTOTS: Converting a Time to a Timestamp

How to Convert a Time to a TimestampSyntax:

HTMTOTS(time, length, output)

where:

time

Date-Time

Is the date-time value whose time will be used. The date portion will be ignored.

length

Integer

Is the length of the result. This can be one of the following:

8 for input time values including milliseconds.
10 for input time values including microseconds.

12 for input time values including nanoseconds.

output_format

Date-Time

Is the timestamp whose date is set to current date, and whose time is copied from time.

Converting a Time to a TimestampExample:

This example produces a timestamp, whose date and time are current, and stores the result
in a column with the format in the field HMDYYS:

HMDYYS = HTMTOTS(DT(&MYTOD), 8, 'HMDYYS');

The result is 03/26/2004 13:48:14.

HYYWD: Returning the Year and Week Number From a Date-Time Value

How to:

Return the Year and Week Number From a Date-Time Value

The week number returned by HNAME and HPART can actually be in the year preceding or
following the input date.

The HYYWD function returns both the year and the week number from a given date-time
value.

The output is edited to conform to the ISO standard format for dates with week numbers,
yyyy-Www-d.

Functions Reference 161

7. Date-Time Functions

How to Return the Year and Week Number From a Date-Time ValueSyntax:

HYYWD(dtvalue, output)

where:

dtvalue

Date-time

Is the date-time value to be edited.

output

Alphanumeric

The output format must be at least 10 characters long. The output is in the following
format:

yyyy-Www-d

where:

yyyy

Is the four-digit year.

ww

Is the two-digit week number (01 to 53).

d

Is the single-digit day of the week (1 to 7). The d value is relative to the current
WEEKFIRST setting. If WEEKFIRST is 2 or ISO2 (Monday), then Monday is represented
in the output as 1, Tuesday as 2.

Using the EDIT function, you can extract the individual subfields from this output.

Returning the Year and Week Number From a Date-time ValueExample:

The following converts the TRANSDATE date-time value to the ISO standard format for dates
with week numbers. WEEKFIRST is set to ISO2, which produces ISO standard week numbering:

 ISODATE/A10 = HYYWD(TRANSDATE, 'A10');

For date component 1999/01/30 04:16, the value is 1999-W04-6.

For date component 1999/12/15, the value is 1999-W50-3.

162 iWay Software

HYYWD: Returning the Year and Week Number From a Date-Time Value

iWay

Format Conversion Functions8
Topics:

Format conversion functions convert
fields from one format to another.

ATODBL: Converting an Alphanumeric
String to Double-Precision Format

EDIT: Converting the Format of a Field

FPRINT: Converting Fields to
Alphanumeric Format

FTOA: Converting a Number to
Alphanumeric Format

HEXBYT: Converting a Decimal Integer
to a Character

ITONUM: Converting a Large Number
to Double-Precision Format

ITOPACK: Converting a Large Binary
Integer to Packed-Decimal Format

ITOZ: Converting a Number to Zoned
Format

PCKOUT: Writing a Packed Number of
Variable Length

PTOA: Converting a Packed-Decimal
Number to Alphanumeric Format

UFMT: Converting an Alphanumeric
String to Hexadecimal

XTPACK: Writing a Packed Number
With Up to 31 Significant Digits to an
Output File

Functions Reference 163

ATODBL: Converting an Alphanumeric String to Double-Precision Format

How to:

Convert an Alphanumeric String to Double-Precision Format

The ATODBL function converts a number in alphanumeric format to decimal (double-precision)
format.

How to Convert an Alphanumeric String to Double-Precision FormatSyntax:

ATODBL(source_string, length, output)

where:

source_string

Alphanumeric

Is the string consisting of digits and, optionally, one sign and one decimal point to be
converted.

length

Alphanumeric

Is the length of the source string in bytes. This can be a numeric constant, or a field or
variable that contains the value. If you specify a numeric constant, enclose it in single
quotation marks, for example '12'.

output

Double precision floating-point

Converting an Alphanumeric Field to Double-Precision FormatExample:

ATODBL converts EMP_ID into double-precision format.

ATODBL(EMP_ID, '09', 'D12.2')

For 112847612, the result is 112,847,612.00.

For 117593129, the result is 117,593,129.00.

164 iWay Software

ATODBL: Converting an Alphanumeric String to Double-Precision Format

EDIT: Converting the Format of a Field

How to:

Convert the Format of a Field

The EDIT function converts an alphanumeric field that contains numeric characters to numeric
format or converts a numeric field to alphanumeric format.

This function is usefule for manipulating a field in an expression that performs an operation
that requires operands in a particular format.

When EDIT assigns a converted value to a new field, the format of the new field must
correspond to the format of the returned value. For example, if EDIT converts a numeric field
to alphanumeric format, you must give the new field an alphanumeric format:

DEFINE ALPHAPRICE/A6 = EDIT(PRICE);

EDIT deals with a symbol in the following way:

When an alphanumeric field is converted to numeric format, a sign or decimal point in
the field is stored as part of the numeric value.

Any other non-numeric characters are invalid, and EDIT returns the value zero.

When converting a floating-point or packed-decimal field to alphanumeric format, EDIT
removes the sign, the decimal point, and any number to the right of the decimal point.
It then right-justifies the remaining digits and adds leading zeros to achieve the specified
field length. Converting a number with more than nine significant digits in floating-point
or packed-decimal format may produce an incorrect result.

EDIT also extracts characters from or add characters to an alphanumeric string. For more
information, see EDIT: Extracting or Adding Characters on page 37.

How to Convert the Format of a FieldSyntax:

EDIT(fieldname);

where:

fieldname

Alphanumeric or Numeric

Is the field name.

Functions Reference 165

8. Format Conversion Functions

Converting From Numeric to Alphanumeric FormatExample:

EDIT converts HIRE_DATE (a legacy date format) to alphanumeric format.

EDIT(HIRE_DATE)

For 82/04/01, the result it APRIL 01 1982.

For 81/11/02, the result it NOVEMBER 02 1981.

FPRINT: Converting Fields to Alphanumeric Format

How to:

Convert Fields Using FPRINT

Reference:

Usage Notes for the FPRINT Function

The FPRINT function converts any type of field except for a text field to its alphanumeric
equivalent for display. The alphanumeric representation will include any display options that
are specified in the format of the original field.

How to Convert Fields Using FPRINTSyntax:

FPRINT(in_value, 'usageformat', output)

where:

in_value

Any format except TX

Is the value to be converted.

usageformat

Alphanumeric

Is the usage format of the value to be converted, including display options. The format
must be enclosed in single quotation marks.

output

Alphanumeric

The output format must be long enough to hold the converted number itself, with a sign
and decimal point, plus any additional characters generated by display options, such as
commas, a currency symbol, or a percent sign.

166 iWay Software

FPRINT: Converting Fields to Alphanumeric Format

For example, D12.2 format is converted to A14 because it outputs two decimal digits,
a decimal point, a possible minus sign, up to eight integer digits, and two commas. If
the output format is not large enough, excess right-hand characters may be truncated.

Usage Notes for the FPRINT FunctionReference:

The output of FPRINT for numeric values is right-justified within the area required for the
maximum number of characters corresponding to the supplied format. This ensures that
all possible values are aligned vertically along the decimal point or units digit.

Converting a Numeric Field to Alphanumeric FormatExample:

FPRINT converts CURR_SAL (format D12.2)M to a column with format A15:

FPRINT(CURR_SAL, 'D12.2M', 'A15')

FTOA: Converting a Number to Alphanumeric Format

How to:

Convert a Number to Alphanumeric Format

The FTOA function converts a number up to 16 digits long from numeric format to
alphanumeric format. It retains the decimal positions of the number and right-justifies it with
leading spaces. You can also add edit options to a number converted by FTOA.

When using FTOA to convert a number containing decimals to a character string, you must
specify an alphanumeric format large enough to accommodate both the integer and decimal
portions of the number. For example, a D12.2 format is converted to A14. If the output
format is not large enough, decimals are truncated.

How to Convert a Number to Alphanumeric FormatSyntax:

FTOA(number, '(format)', output)

where:

number

Numeric F or D (single and double precision floating-point)

Is the number to be converted.

Functions Reference 167

8. Format Conversion Functions

format

Alphanumeric

Is the format of the number to be converted enclosed in parentheses. Only floating point
single-precision and double-precision formats are supported. Include any edit options
that you want to appear in the output. The D (floating-point double-precision) format
automatically supplies commas.

output

Alphanumeric

The length of this argument must be greater than the length of number and must account
for edit options and a possible negative sign.

Converting From Numeric to Alphanumeric FormatExample:

FTOA converts GROSS from floating point double-precision to alphanumeric format.

FTOA(GROSS, '(D12.2)', 'A15')

For $1,815.00, the result is 1,815.00.

For $2,255.00, the result is 2,255.00.

HEXBYT: Converting a Decimal Integer to a Character

How to:

Convert a Decimal Integer to a Character

The HEXBYT function obtains the ASCII, EBCDIC, or Unicode character equivalent of a decimal
integer, depending on your configuration and operating environment. It returns a single
alphanumeric character in the ASCII, EBCDIC, or Unicode character set. You can use this
function to produce characters that are not on your keyboard, similar to the CTRAN function.

In Unicode configurations, this function uses values in the range:

0 to 255 for 1-byte characters.

256 to 65535 for 2-byte characters.

65536 to 16777215 for 3-byte characters.

16777216 to 4294967295 for 4-byte characters (primarily for EBCDIC).

The display of special characters depends on your software and hardware; not all special
characters may appear. For printable ASCII and EBCDIC characters and their integer
equivalents see the Character Chart for ASCII and EBCDIC on page 19.

168 iWay Software

HEXBYT: Converting a Decimal Integer to a Character

How to Convert a Decimal Integer to a CharacterSyntax:

HEXBYT(decimal_value, output)

where:

decimal_value

Integer

Is the decimal integer to be converted to a single character. In non-Unicode environments,
a value greater than 255 is treated as the remainder of decimal_value divided by 256.

output

Alphanumeric

Converting a Decimal Integer to a CharacterExample:

HEXBYT converts LAST_INIT_CODE to its character equivalent and stores the result in in a
column with the format A1.

HEXBYT(LAST_INIT_CODE, 'A1')

On an ASCII platform, for 83, the result is S.

On ASCII platform, for 74, the result is J.

ITONUM: Converting a Large Number to Double-Precision Format

How to:

Convert a Large Binary Integer to Double-Precision Format

The ITONUM function converts a large number in a non-FOCUS data source from special long
integer to double-precision format.

This is useful for some programming languages and some non-FOCUS data storage systems
that use special long integers, which do not fit the regular integer format (four bytes in length)
supported in the synonym, and, therefore, require conversion to double-precision format.

You must specify how many of the right-most bytes in the input field are significant. The
result is an 8-byte double-precision field.

How to Convert a Large Binary Integer to Double-Precision FormatSyntax:

ITONUM(maxbytes, infield, output)

where:

maxbytes

Numeric

Functions Reference 169

8. Format Conversion Functions

Is the maximum number of bytes in the 8-byte binary input field that have significant
numeric data, including the binary sign. Valid values are:

5 ignores the left-most 3 bytes.

6 ignores the left-most 2 bytes.

7 ignores the left-most byte.

infield

A8

Is the field that contains the number. Both the USAGE and ACTUAL formats of the field
must be A8.

output

Double precision floating-point (Dn)

Converting a Large Binary Integer to Double-Precision FormatExample:

ITONUM converts BINARYFLD to double-precision format.

ITONUM(6, BINARYFLD, 'D14')

ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format

How to:

Convert a Large Binary Integer to Packed-Decimal Format

The ITOPACK function converts a large binary integer in a non-FOCUS data source to packed-
decimal format.

This is useful for some programming languages and some non-FOCUS data storage systems
that use special long integers, which do not fit the regular integer format (four bytes in length)
supported in the synonym, and, therefore, require conversion to packed-decimal format.

You must specify how many of the right-most bytes in the input field are significant. The
result is an 8-byte packed-decimal field of up to 15 significant numeric positions (for example,
P15 or P16.2).

Limit: For a field defined as 'PIC 9(15) COMP' or the equivalent (15 significant digits), the
maximum number that can be converted is 167,744,242,712,576.

170 iWay Software

ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format

How to Convert a Large Binary Integer to Packed-Decimal FormatSyntax:

ITOPACK(maxbytes, infield, output)

where:

maxbytes

Numeric

Is the maximum number of bytes in the 8-byte input field that have significant numeric
data, including the binary sign.

Valid values are:

5 ignores the left-most 3 bytes (up to 11 significant positions).

6 ignores the left-most 2 bytes (up to 14 significant positions).

7 ignores the left-most byte (up to 15 significant positions).

infield

A8

Is the field that contains the binary number. Both the USAGE and ACTUAL formats of
the field must be A8.

output

Numeric

The format must be Pn or Pn.d.

Converting a Large Binary Integer to Packed-Decimal FormatExample:

ITOPACK converts BINARYFLD to packed-decimal format.

ITOPACK(6, BINARYFLD, 'P14.4')

ITOZ: Converting a Number to Zoned Format

How to:

Convert a Number to Zoned Format

The ITOZ function converts a number in numeric format to zoned-decimal format. Although
a request cannot process zoned numbers, it can write zoned fields to an extract file for use
by an external program.

Functions Reference 171

8. Format Conversion Functions

How to Convert a Number to Zoned FormatSyntax:

ITOZ(length, in_value, output)

where:

length

Integer

Is the length of in_value in bytes. The maximum number of bytes is 15. The last byte
includes the sign.

in_value

Numeric

Is the number to be converted. The number is truncated to an integer before it is
converted.

output

Alphanumeric

Converting a Number to Zoned FormatExample:

ITOZ converts CURR_SAL to zoned format.

ITOZ(8, CURR_SAL, 'A8')

PCKOUT: Writing a Packed Number of Variable Length

How to:

Write a Packed Number of Variable Length

The PCKOUT function writes a packed-decimal number of variable length to an extract file.
When a request saves a packed number to an extract file, it typically writes it as an 8- or
16-byte field regardless of its format specification. With PCKOUT, you can vary the field's
length between 1 to 16 bytes.

How to Write a Packed Number of Variable LengthSyntax:

PCKOUT(in_value, length, output)

where:

in_value

Numeric

Is the input value. It can be in packed, integer, single- or double-precision floating point
format. If it is not in integer format, it is rounded to the nearest whole number.

172 iWay Software

PCKOUT: Writing a Packed Number of Variable Length

length

Numeric

Is the length of the output value, from 1 to 16 bytes.

output

Alphanumeric

The function returns the field as alphanumeric although it contains packed data.

Writing a Packed Number of Variable LengthExample:

PCKOUT converts CURR_SAL to a five-byte packed format.

PCKOUT(CURR_SAL, 5, 'A5')

PTOA: Converting a Packed-Decimal Number to Alphanumeric Format

How to:

Convert a Packed-Decimal Number to Alphanumeric Format

The PTOA function converts a number from numeric format to alphanumeric format. It retains
the decimal positions of the number and right-justifies it with leading spaces. You can also
add edit options to a number converted by PTOA.

When using PTOA to convert a number containing decimals to a character string, you must
specify an alphanumeric format large enough to accommodate both the integer and decimal
portions of the number. For example, a P12.2C format is converted to A14. If the output
format is not large enough, the right-most characters are truncated.

How to Convert a Packed-Decimal Number to Alphanumeric FormatSyntax:

PTOA(number, '(format)', output)

where:

number

Numeric P (packed-decimal) or F or D (single and double precision floating-point)

Is the number to be converted.

format

Alphanumeric

Functions Reference 173

8. Format Conversion Functions

Is the format of the number enclosed in parentheses.

output

Alphanumeric

The length of this argument must be greater than the length of number and must account
for edit options and a possible negative sign.

Converting From Packed to Alphanumeric FormatExample:

PTOA converts PGROSS from packed-decimal to alphanumeric format.

PTOA(PGROSS, FMT, 'A17')

UFMT: Converting an Alphanumeric String to Hexadecimal

How to:

Convert an Alphanumeric String to Hexadecimal

The UFMT function converts characters in an alphanumeric source string to their hexadecimal
representation. This function is useful for examining data of unknown format. As long as
you know the length of the data, you can examine its content.

How to Convert an Alphanumeric String to HexadecimalSyntax:

UFMT(source_string, length, output)

where:

source_string

Alphanumeric

Is the alphanumeric string to convert.

length

Integer

Is the number of characters in source_string.

output

Alphanumeric

The format of output must be alphanumeric and its length must be twice that of length.

174 iWay Software

UFMT: Converting an Alphanumeric String to Hexadecimal

Converting an Alphanumeric String to HexadecimalExample:

UFMT converts each value in JOBCODE to its hexadecimal representation and stores it in a
column with the format A6.

UFMT(JOBCODE, 3, 'A6')

For A01, the result is C1F0F1.

For A02, the result is C1F0F2.

XTPACK: Writing a Packed Number With Up to 31 Significant Digits to an
Output File

How to:

Store Packed Values in an Alphanumeric Field

The XTPACK function stores packed numbers with up to 31 significant digits in an
alphanumeric field, retaining decimal data. This permits writing a short or long packed field
of any length, 1 to 16 bytes, to an output file.

How to Store Packed Values in an Alphanumeric FieldSyntax:

XTPACK(in_value, outlength, outdec, output)

where:

infield

Numeric

Is the packed value.

outlength

Numeric

Is the length of the alphanumeric field that will hold the converted packed field. Can be
from 1 to 16.

outdec

Numeric

Is the number of decimal positions for output.

output

Alphanumeric

Functions Reference 175

8. Format Conversion Functions

Writing a Long Packed Number to an Output FileExample:

XTPACK converts LONGPCK to alphanumeric so that it can be saved in an output file:

XTPACK(LONGPCK,13,2,'A13');

176 iWay Software

XTPACK: Writing a Packed Number With Up to 31 Significant Digits to an Output File

iWay

Numeric Functions9
Numeric functions perform calculations on numeric constants and fields.

Topics:
LOG: Calculating the Natural Logarithm

ABS: Calculating Absolute Value MAX and MIN: Finding the Maximum or
Minimum Value

CHKPCK: Validating a Packed Field
NORMSDST: Calculating Standard Cumulative
Normal DistributionDMOD, FMOD, and IMOD: Calculating the

Remainder From a Division
NORMSINV: Calculating Inverse Cumulative
Normal DistributionEXP: Raising e to the Nth Power

EXPN: Evaluating a Number in Scientific
Notation

PRDNOR and PRDUNI: Generating Reproducible
Random Numbers

INT: Finding the Greatest Integer RDNORM and RDUNIF: Generating Random
Numbers

SQRT: Calculating the Square Root

Functions Reference 177

ABS: Calculating Absolute Value

How to:

Calculate Absolute Value

The ABS function returns the absolute value of a number.

How to Calculate Absolute ValueSyntax:

ABS(in_value)

where:

in_value

Numeric

Is the value for which the absolute value is returned. If you use an expression, use
parentheses as needed to ensure the correct order of evaluation.

Calculating Absolute ValueExample:

ABS calculates the absolute value of DIFF.

ABS(DIFF);

For 15, the result is 15.

For -2, the result is 2.

CHKPCK: Validating a Packed Field

How to:

Validate a Packed Field

The CHKPCK function validates the data in a field described as packed format (if available
on your platform). The function prevents a data exception from occurring when a request
reads a field that is expected to contain a valid packed number but does not.

To use CHKPCK:

1. Ensure that the Master File (USAGE and ACTUAL attributes) defines the field as
alphanumeric, not packed. This does not change the field data, which remains packed,
but it enables the request to read the data without a data exception.

178 iWay Software

ABS: Calculating Absolute Value

2. Call CHKPCK to examine the field. The function returns the output to a field defined as
packed. If the value it examines is a valid packed number, the function returns the value;
if the value is not packed, the function returns an error code.

How to Validate a Packed FieldSyntax:

CHKPCK(length, in_value, error, output)

where:

length

Numeric

Is the number of bytes in the packed field. It can be between 1 and 16 bytes.

infield

Alphanumeric

Is the value to be verified as packed decimal. Is the. The value must be described as
alphanumeric, not packed.

error

Numeric

Is the error code that the function returns if a value is not packed. Choose an error code
outside the range of data. The error code is first truncated to an integer, then converted
to packed format. However, it may appear on a report with a decimal point depending
on the output format.

output

Packed-decimal

Validating Packed DataExample:

CHKPCK validates the values in PACK_SAL, and store the result in a column with the format
P8CM. Values not in packed format return the error code -999. Values in packed format
appear accurately.

CHKPCK(8, PACK_SAL, -999, 'P8CM')

Functions Reference 179

9. Numeric Functions

DMOD, FMOD, and IMOD: Calculating the Remainder From a Division

How to:

Calculate the Remainder From a Division

The MOD functions calculate the remainder from a division. Each function returns the
remainder in a different format.

The functions use the following formula.

remainder = dividend - INT(dividend/divisor) * divisor

DMOD returns the remainder as a decimal number.

FMOD returns the remainder as a floating-point number.

IMOD returns the remainder as an integer.

For information on the INT function, see INT: Finding the Greatest Integer on page 183.

How to Calculate the Remainder From a DivisionSyntax:

function(dividend, divisor, output)

where:

function

Is one of the following:

DMOD returns the remainder as a decimal number.

FMOD returns the remainder as a floating-point number.

IMOD returns the remainder as an integer.

dividend

Numeric

Is the number being divided.

divisor

Numeric

Is the number dividing the dividend.

output

Numeric

Is the result whose format is determined by the function used.

180 iWay Software

DMOD, FMOD, and IMOD: Calculating the Remainder From a Division

Calculating the Remainder From a DivisionExample:

IMOD divides ACCTNUMBER by 1000 and stores the remainder in a column with the format
I3L.

IMOD(ACCTNUMBER, 1000, 'I3L')

For 122850108, the result is 108.

For 163800144, the result is 144.

EXP: Raising e to the Nth Power

How to:

Raise e to the Nth Power

The EXP function raises the value "e" (approximately 2.72) to a specified power. This function
is the inverse of the LOG function, which returns the logarithm of the argument.

EXP calculates the result by adding terms of an infinite series. If a term adds less than
.000001 percent to the sum, the function ends the calculation and returns the result as a
double-precision number.

How to Raise e to the Nth PowerSyntax:

EXP(power, output)

where:

power

Numeric

Is the power to which "e" is raised.

output

Double-precision floating-point

Raising e to the Nth PowerExample:

EXP raises "e" to the power designated by the &POW variable, specified here as 3. The
result is then rounded to the nearest integer with the .5 rounding constant. The result has
the format D15.3.

EXP(&POW, 'D15.3') + 0.5;

For 3, the result is APPROXIMATELY 20.

Functions Reference 181

9. Numeric Functions

EXPN: Evaluating a Number in Scientific Notation

How to:

Evaluate a Number in Scientific Notation

The EXPN function evaluates a number expressed in scientific notation.

How to Evaluate a Number in Scientific NotationSyntax:

EXPN(n.nn {E|D} {+|-} p)

where:

n.nn

Numeric

Is a numeric constant that consists of a whole number component, followed by a decimal
point, followed by a fractional component.

E, D

Denotes scientific notation. E and D are interchangeable.

+, -

Indicates if p is positive or negative.

p

Integer

Is the power of 10 to which to raise n.nn.

Note: EXPN does not use an output argument. The format of the result is floating-point
double precision.

Evaluating a Number in Scientific NotationExample:

EXPN evaluates SCI_DATA.

EXPN(SCI_DATA)

For 1.03E+2, the result is 103.

182 iWay Software

EXPN: Evaluating a Number in Scientific Notation

INT: Finding the Greatest Integer

How to:

Find the Greatest Integer

The INT function returns the integer component of a number.

How to Find the Greatest IntegerSyntax:

INT(in_value)

where:

in_value

Numeric

Is the value for which the integer component is returned. If you supply an expression,
use parentheses as needed to ensure the correct order of evaluation.

Note: INT does not use an output argument. The format of the result is floating-point double
precision.

Finding the Greatest IntegerExample:

INT finds the greatest integer in DED_AMT.

INT(DED_AMT)

For $1,261.40, the result is 1261.

For $1,668.69, the result is 1668.

LOG: Calculating the Natural Logarithm

How to:

Calculate the Natural Logarithm

The LOG function returns the natural logarithm of a number.

Functions Reference 183

9. Numeric Functions

How to Calculate the Natural LogarithmSyntax:

LOG(in_value)

where:

in_value

Numeric

Is the value for which the natural logarithm is calculated. If you supply an expression,
use parentheses as needed to ensure the correct order of evaluation. If in_value is less
than or equal to 0, LOG returns 0.

Note: LOG does not use an output argument. The format of the result is floating-point double
precision.

Calculating the Natural LogarithmExample:

LOG calculates the logarithm of CURR_SAL.

LOG(CURR_SAL)

For $29,700.00, the result is 10.30.

For $26,862.00, the result is 10.20.

MAX and MIN: Finding the Maximum or Minimum Value

How to:

Find the Maximum or Minimum Value

The MAX and MIN functions return the maximum or minimum value, respectively, from a list
of values.

How to Find the Maximum or Minimum ValueSyntax:

{MAX|MIN}(value1, value2, ...)

where:

MAX

Returns the maximum value.

MIN

Returns the minimum value.

184 iWay Software

MAX and MIN: Finding the Maximum or Minimum Value

value1, value2

Numeric

Are the values for which the maximum or minimum value is returned. If you supply an
expression, use parentheses as needed to ensure the correct order of evaluation.

Note: MAX and MIN do not use an output argument. The format of the result is floating-point
double precision.

Determining the Minimum ValueExample:

MIN returns either the value of ED_HRS or the constant 30, whichever is lower.

MIN(ED_HRS, 30)

For 45.00, the result is 30.00.

For 25.00, the result is 25.00.

NORMSDST: Calculating Standard Cumulative Normal Distribution

How to:

Calculate the Cumulative Standard Normal Distribution Function

Reference:

Characteristics of the Normal Distribution

The NORMSDST function performs calculations on a standard normal distribution curve,
calculating the percentage of data values that are less than or equal to a normalized value.
A normalized value is a point on the X-axis of a standard normal distribution curve in standard
deviations from the mean. This is useful for determining percentiles in normally distributed
data.

The NORMSINV function is the inverse of NORMSDST. For information about NORMSINV,
see NORMSINV: Calculating Inverse Cumulative Normal Distribution on page 187.

The results of NORMSDST are returned as double-precision and are accurate to 6 significant
digits.

A standard normal distribution curve is a normal distribution that has a mean of 0 and a
standard deviation of 1. The total area under this curve is 1. A point on the X-axis of the
standard normal distribution is called a normalized value. Assuming that your data is normally
distributed, you can convert a data point to a normalized value to find the percentage of
scores that are less than or equal to the raw score.

Functions Reference 185

9. Numeric Functions

You can convert a value (raw score) from your normally distributed data to the equivalent
normalized value (z-score) as follows:

z = (raw_score - mean)/standard_deviation

To convert from a z-score back to a raw score, use the following formula:

raw_score = z * standard_deviation + mean

The mean of data points xi, where i is from 1 to n is:

The standard deviation of data points xi, where i is from 1 to n is:

The following diagram illustrates the results of the NORMSDST and NORMSINV functions.

Characteristics of the Normal DistributionReference:

Many common measurements are normally distributed. A plot of normally distributed data
values approximates a bell-shaped curve. The two measures required to describe any normal
distribution are the mean and the standard deviation:

The mean is the point at the center of the curve.

The standard deviation describes the spread of the curve. It is the distance from the
mean to the point of inflection (where the curve changes direction).

186 iWay Software

NORMSDST: Calculating Standard Cumulative Normal Distribution

How to Calculate the Cumulative Standard Normal Distribution FunctionSyntax:

NORMSDST(value, 'D8');

where:

value

Is a normalized value.

D8

Is the required format for the result. The value returned by the function is double-precision.
You can assign it to a field with any valid numeric format.

Using the NORMSDST FunctionExample:

NORMSDST finds the percentile for Z and stores the result in a column with the format D8.

NORMSDST(Z, 'D8')

For -.07298, the result is .47091.

For -.80273 the result is .21106.

NORMSINV: Calculating Inverse Cumulative Normal Distribution

How to:

Calculate the Inverse Cumulative Standard Normal Distribution Function

The NORMSINV function performs calculations on a standard normal distribution curve,
finding the normalized value that forms the upper boundary of a percentile in a standard
normal distribution curve. This is the inverse of NORMSDST. For information about
NORMSDST, see NORMSDST: Calculating Standard Cumulative Normal Distribution on page
185.

The results of NORMSINV are returned as double-precision and are accurate to 6 significant
digits.

How to Calculate the Inverse Cumulative Standard Normal Distribution FunctionSyntax:

NORMSINV(value, 'D8');

where:

value

Is a number between 0 and 1 (which represents a percentile in a standard normal
distribution).

Functions Reference 187

9. Numeric Functions

D8

Is the required format for the result. The value returned by the function is double-precision.
You can assign it to a field with any valid numeric format.

Using the NORMSINV FunctionExample:

NORMSINV returns a normalized value from a percentile found using NORMSDST.

NORMSINV(NORMSD, 'D8')

For .21106, the result is -.80273.

For .47091, the result is -.07298

PRDNOR and PRDUNI: Generating Reproducible Random Numbers

How to:

Generate Reproducible Random Numbers

The PRDNOR and PRDUNI functions generate reproducible random numbers:

PRDNOR generates reproducible double-precision random numbers normally distributed
with an arithmetic mean of 0 and a standard deviation of 1.

PRDUNI generates reproducible double-precision random numbers uniformly distributed
between 0 and 1 (that is, any random number it generates has an equal probability of
being anywhere between 0 and 1).

How to Generate Reproducible Random NumbersSyntax:

{PRDNOR|PRDUNI}(seed, output)

where:

PRDNOR

Generates reproducible double-precision random numbers normally distributed with an
arithmetic mean of 0 and a standard deviation of 1.

PRDUNI

Generates reproducible double-precision random numbers uniformly distributed between
0 and 1.

188 iWay Software

PRDNOR and PRDUNI: Generating Reproducible Random Numbers

seed

Numeric

Is the seed or the field that contains the seed, up to 9 digits. The seed is truncated to
an integer.

output

Double-precision

Generating Reproducible Random NumbersExample:

PRDNOR assigns random numbers and stores them in a column with the format D12.2.

PRDNOR(40, 'D12.2')

RDNORM and RDUNIF: Generating Random Numbers

How to:

Generate Random Numbers

The RDNORM and RDUNIF functions generate random numbers:

RDNORM generates double-precision random numbers normally distributed with an
arithmetic mean of 0 and a standard deviation of 1.

RDUNIF generates double-precision random numbers uniformly distributed between 0
and 1 (that is, any random number it generates has an equal probability of being anywhere
between 0 and 1).

How to Generate Random NumbersSyntax:

{RDNORM|RDUNIF}(output)

where:

RDNORM

Generates double-precision random numbers normally distributed with an arithmetic
mean of 0 and a standard deviation of 1.

RDUNIF

Generates double-precision random numbers uniformly distributed between 0 and 1.

Functions Reference 189

9. Numeric Functions

output

Double-precision

Generating Random NumbersExample:

RDNORM assigns random numbers and stores them in a column with the format D12.2.

RDNORM('D12.2')

SQRT: Calculating the Square Root

How to:

Calculate the Square Root

The SQRT function calculates the square root of a number.

How to Calculate the Square RootSyntax:

SQRT(in_value)

where:

in_value

Numeric

Is the value for which the square root is calculated. If you supply an expression, use
parentheses as needed to ensure the correct order of evaluation. If you supply a negative
number, the result is zero.

Note: SQRT does not use an output argument. The result of the function is floating-point
double precision.

Calculating the Square RootExample:

SQRT calculates the square root of LISTPR.

SQRT(LISTPR)

For 19.98, the result is 4.47.

For 14.98, the result is 3.87.

190 iWay Software

SQRT: Calculating the Square Root

iWay

System Functions10
Topics:

System functions call the operating
system to obtain information about the
operating environment or to use a
system service.

CLSDDREC: Closing All Files Opened
by the PUTDDREC Function

FEXERR: Retrieving an Error Message

FGETENV: Retrieving the Value of an
Environment Variable

FPUTENV: Assigning a Value to an
Environment Variable

GETUSER: Retrieving a User ID

PUTDDREC: Writing a Character String
as a Record in a Sequential File

SLEEP: Suspending Execution for a
Given Number of Seconds

Functions Reference 191

CLSDDREC: Closing All Files Opened by the PUTDDREC Function

How to:

Close All Files Opened by the PUTDDREC Function

The CLSDDREC function closes all files opened by the PUTDDREC function. If PUTDDREC is
called in a Dialogue Manager -SET command, the files opened by PUTDDREC are not closed
automatically until the end of a request or connection. In this case, you can close the files
and free the memory used to store information about open file by calling the CLSDDREC
function. For information about PUTDDREC, see PUTDDREC: Writing a Character String as a
Record in a Sequential File on page 196.

How to Close All Files Opened by the PUTDDREC FunctionSyntax:

CLSDDREC(output)

where:

output

Integer

Is the return code, which can be one of the following values:
0 - Files are closed.
1 - Error while closing the files.

Closing Files Opened by the PUTDDREC FunctionExample:

This example closes files opened by the PUTDDREC function:

CLSDDREC('I1')

FEXERR: Retrieving an Error Message

How to:

Retrieve an Error Message

The FEXERR function retrieves an Information Builders error message. It is especially useful
in a procedure using a command that suppresses the display of output messages.

An error message consists of up to four lines of text. The first line contains the message
and the remaining three contain a detailed explanation, if one exists. FEXERR retrieves the
first line of the error message.

192 iWay Software

CLSDDREC: Closing All Files Opened by the PUTDDREC Function

How to Retrieve an Error MessageSyntax:

FEXERR(error, 'A72')

where:

error

Numeric

Is the error number, up to 5 digits long.

'A72'

Is the format of the output value. The format is A72, the maximum length of an
Information Builders error message.

Retrieving an Error MessageExample:

FEXERR retrieves the error message whose number is contained in the &ERR variable, in
this case 650. The result has the format A72.

FEXERR(&ERR, 'A72')

The result is (FOC650) THE DISK IS NOT ACCESSED.

FGETENV: Retrieving the Value of an Environment Variable

How to:

Retrieve the Value of an Environment Variable

The FGETENV function retrieves the value of an environment variable and returns it as an
alphanumeric string.

How to Retrieve the Value of an Environment VariableSyntax:

FGETENV(length, 'varname', outlen, output)

where:

length

Integer

Is the number of characters in the environment variable name.

varname

Alphanumeric

Is the name of the environment variable whose value is being retrieved.

Functions Reference 193

10. System Functions

outlen

Integer

Is the length of the environment variable value returned.

output

Alphanumeric

FPUTENV: Assigning a Value to an Environment Variable

How to:

Assign a Value to an Environment Variable

Available Operating Systems: IBM i (formerly referred to as i5/OS), Tandem, UNIX, Windows

The FPUTENV function assigns a character string to an environment variable.

Limit: You cannot use FPUTENV to set or change FOCPRINT, FOCPATH, or USERPATH; once
started, these variables are held in memory and not reread from the environment.

How to Assign a Value to an Environment VariableSyntax:

FPUTENV (varname_length,'varname',value_length, 'value', output)

where:

varname_length

Integer

Is the maximum number of characters in the name of the environment variable.

varname

Alphanumeric

Is the name of the environment variable. The name must be right-justified and padded
with blanks to the maximum length specified by varname_length.

value_length

Is the maximum length of the environment variable value.

Note: The sum of varname_length and value_length cannot exceed 64.

value

Alphanumeric

194 iWay Software

FPUTENV: Assigning a Value to an Environment Variable

Is the value you wish to assign to the environment variable. The string must be right-
justified and contain no embedded blanks. Strings that contain embedded blanks are
truncated at the first blank.

output

Integer

Is the return code. If the variable is set successfully, the return code is 0; any other
value indicates a failure occurred.

Assigning a Value to an Environment VariableExample:

FPUTENV assigns the value FOCUS/Shell to the PS1 variable and stores it in a field with the
format A12:

-SET &RC = FPUTENV(3,'PS1', 12 'FOCUS/Shell:', 'A12');

The request displays the following prompt when the user issues the UNIX shell command
SH:

FOCUS/Shell:

GETUSER: Retrieving a User ID

How to:

Retrieve a User ID

The GETUSER function retrieves the ID of the connected user.

How to Retrieve a User IDSyntax:

GETUSER(output)

where:

output

Alphanumeric, at least A8

Is the result field, whose length depends on the platform on which the function is issued.
Provide a length as long as required for your platform; otherwise the output will be
truncated.

Retrieving a User IDExample:

GETUSER retrieves the user ID of the person running the flow.

GETUSER(USERID)

Functions Reference 195

10. System Functions

PUTDDREC: Writing a Character String as a Record in a Sequential File

How to:

Write a Character String as a Record in a Sequential File

The PUTDDREC function writes a character string as a record in a sequential file. The file
must be identified with a FILEDEF (DYNAM on z/OS) command. If the file is defined as an
existing file (with the APPEND option), the new record is appended. If the file is defined as
NEW and it already exists, the new record overwrites the existing file.

PUTDDREC opens the file if it is not already open. Each call to PUTDDREC can use the same
file or a new one. All of the files opened by PUTDDREC remain open until the end of a request
or connection. At the end of the request or connection, all files opened by PUTDDREC are
automatically closed. For information about closing files opened by PUTDDREC in order to
free the memory used, see CLSDDREC: Closing All Files Opened by the PUTDDREC Function
on page 192.

If PUTDDREC is called in a Dialogue Manager -SET command, the files opened by PUTDDREC
are not closed automatically until the end of a request or connection. In this case, you can
close the files and free the memory used to store information about open file by calling the
CLSDDREC function.

How to Write a Character String as a Record in a Sequential FileSyntax:

PUTDDREC(ddname, dd_len, record_string, record_len, output)

where:

ddname

Alphanumeric

Is the logical name assigned to the sequential file in a FILEDEF command.

dd_len

Numeric

Is the number of characters in the logical name.

record_string

Alphanumeric

Is the character string to be added as the new record in the sequential file.

record_len

Numeric

Is the number of characters to add as the new record.

196 iWay Software

PUTDDREC: Writing a Character String as a Record in a Sequential File

It cannot be larger than the number of characters in record_string. To write all of
record_string to the file, record_len should equal the number of characters in record_string
and should not exceed the record length declared in the command. If record_len is
shorter than the declared length declared, the resulting file may contain extraneous
characters at the end of each record. If record_string is longer than the declared length,
record_string may be truncated in the resulting file.

output

Integer

Is the return code, which can have one of the following values:

 0 - Record is added.
-1 - FILEDEF statement is not found.
-2 - Error while opening the file.
-3 - Error while adding the record to the file.

Writing a Character String as a Record in a Sequential FileExample:

Using the CAR synonym as input,

FILEDEF LOGGING DISK baseapp/logging.dat

PUTDDREC('LOGGING', 7, 'Country:' | COUNTRY, 20, 'I5')

would return the value 0, and would write the following lines to logging.dat:

Country: ENGLAND

Country: JAPAN

Country: ITALY

Country: W GERMANY

Country: FRANCE

SLEEP: Suspending Execution for a Given Number of Seconds

How to:

Suspend Execution for a Specified Number of Seconds

The SLEEP function suspends execution for the number of seconds you specify as its input
argument.

This function is only supported in Dialogue Manager. It is useful when you need to wait to
start a specific procedure or application.

Functions Reference 197

10. System Functions

How to Suspend Execution for a Specified Number of SecondsSyntax:

SLEEP(delay, output);

where:

delay

Numeric

Is the number of seconds to delay execution. The number can be specified down to the
millisecond.

output

Numeric

The value returned is the same value you specify for delay.

Suspending Execution for Four SecondsExample:

SLEEP suspends execution for four seconds:

-SET &DELAY = SLEEP(4.0, 'I2');

198 iWay Software

SLEEP: Suspending Execution for a Given Number of Seconds

iWay

SQL Character Functions11
Topics:

SQL character functions manipulate
alphanumeric fields and character
strings. CHAR_LENGTH: Finding the Length of

a Character String

CONCAT: Concatenating Two Character
Strings

DIGITS: Converting a Numeric Value
to a Character String

EDIT: Editing a Value According to a
Format (SQL)

LCASE: Converting a Character String
to Lowercase

LTRIM: Removing Leading Spaces

POSITION: Finding the Position of a
Substring

RTRIM: Removing Trailing Spaces

SUBSTR: Extracting a Substring From
a String Value (SQL)

TRIM: Removing Leading or Trailing
Characters (SQL)

UCASE: Converting a Character String
to Uppercase

VARGRAPHIC: Converting to
Double-byte Character Data

Functions Reference 199

CHAR_LENGTH: Finding the Length of a Character String

How to:

Find the Length of a Character String

The CHAR_LENGTH function returns the length of a character string. CHARACTER_LENGTH
is identical to CHAR_LENGTH.

This function is most useful for columns described as VARCHAR (variable length character).
For example, if a column described as GLOSS VARCHAR(10) contains

'bryllig'
'slythy '
'toves '

then CHAR_LENGTH(GLOSS) would return

7
6
5

If the column is described as CHAR (non-variable length character), the same number is
returned for all rows. In this case, CHAR_LENGTH(GLOSS) would return

10
10
10

To avoid counting trailing blanks use CHAR_LENGTH(TRIM (TRAILING FROM GLOSS)). See
TRIM: Removing Leading or Trailing Characters (SQL) on page 208 for details.

How to Find the Length of a Character StringSyntax:

CHAR_LENGTH(arg)

where:

arg

Character string

Is the value whose length is to be determined.

This function returns an integer value.

200 iWay Software

CHAR_LENGTH: Finding the Length of a Character String

Finding the Length of a Character StringExample:

CHAR_LENGTH finds the length of the string. This example,

CHAR_LENGTH('abcdef')

returns 6.

This example,

CHAR_LENGTH('abcdef ')

returns 9, since trailing blanks are counted.

CONCAT: Concatenating Two Character Strings

How to:

Concatenate Two Character Strings

The CONCAT function concatenates the values of two arguments. The result is a character
string consisting of the characters of the first argument followed by the characters of the
second argument.

How to Concatenate Two Character StringsSyntax:

CONCAT(arg1, arg2)

where:

arg1, arg2

Character strings

Are the strings to be concatenated.

The length of the result is the sum of the lengths of the two arguments. If either argument
is variable-length, so is the result; otherwise, the result is fixed-length.

Concatenating Two Character StringsExample:

CONCAT concatenates two string. This example,

CONCAT('abc', 'def')

returns abcdef.

Functions Reference 201

11. SQL Character Functions

DIGITS: Converting a Numeric Value to a Character String

How to:

Convert a Numeric Value to a Character String

The DIGITS function extracts the digits of a decimal or integer value into a character string.
The sign and decimal point of the number (if present) are ignored.

Note: This function is available for DB2, ORACLE, and MS SQL Server. It does not work for
flat file sources.

How to Convert a Numeric Value to a Character StringSyntax:

DIGITS(arg)

where:

arg

Numeric (decimal or integer, not floating-point)

Is the numeric value.

The length of the resulting string is determined by the precision of the argument.

Converting a Numeric Value to a Character StringExample:

DIGITS converts a numeric value to a character string. This example,

DIGITS(-444.321)

returns 0000444321.

EDIT: Editing a Value According to a Format (SQL)

How to:

Edit a Value According to a Format

The EDIT function edits a numeric or character value according to a format specified by a
mask. (It works exactly like the EDIT function in FOCUS.)

A 9 in the mask indicates the corresponding character in the source value is copied into the
result. A $ in the mask indicates that the corresponding character is to be ignored. Any other
character is inserted into the result.

202 iWay Software

DIGITS: Converting a Numeric Value to a Character String

How to Edit a Value According to a FormatSyntax:

EDIT(arg, mask)

where:

arg

Numeric or character string

Is the value to be edited.

mask

character string

Indicates how the editing is to proceed.

This function returns a character string whose length is determined by the mask.

Editing a Value According to a FormatExample:

EDIT extracts a character from a string. This example,

EDIT('FRED' , '9$$$')

returns F.

This example,

EDIT('123456789', '999-99-9999')

returns 123-45-6789.

Functions Reference 203

11. SQL Character Functions

LCASE: Converting a Character String to Lowercase

How to:

Convert a Character String to Lowercase

The LCASE function converts a character string value to lowercase. That is, capital letters
are replaced by their corresponding lowercase values.

LOWER and LOWERCASE are identical to LCASE.

How to Convert a Character String to LowercaseSyntax:

LCASE(arg)

where:

arg

character string

Is the value to be converted to lowercase.

This function returns a varying character string. The length is the same as the input argument.

Converting a Character String to LowercaseExample:

LCASE converts a character string to lowercase. This example,

LCASE('XYZ')

returns xyz.

LTRIM: Removing Leading Spaces

How to:

Remove Leading Spaces

The LTRIM function removes leading spaces from a character string.

How to Remove Leading SpacesSyntax:

LTRIM(arg)

where:

arg

character string

204 iWay Software

LCASE: Converting a Character String to Lowercase

Is the value to be trimmed.

This function returns a varying character string. The data type of the result has a length
equal to that of the input argument (although the value may be shorter).

Removing Leading SpacesExample:

LTRIM removes leading spaces. This example,

LTRIM(' ABC ')

returns 'ABC '.

POSITION: Finding the Position of a Substring

How to:

Find the Position of a Substring

The POSITION function returns the position within a character string of a specified substring.
If the substring does not appear in the character string, the result is 0. Otherwise, the value
returned is one greater than the number of characters in the string preceding the start of
the first occurrence of the substring.

How to Find the Position of a SubstringSyntax:

POSITION(substring IN arg)

where:

substring

character string

Is the substring to search for.

arg

character string

Is the string to be searched for the substring.

This function returns an integer value.

Finding the Position of a SubstringExample:

POSITION returns the position of a substring. This example,

POSITION ('A' IN 'AEIOU')

returns 1.

Functions Reference 205

11. SQL Character Functions

This example,

POSITION ('IOU' IN 'AEIOU')

returns 3.

This example,

POSITION ('Y' IN 'AEIOU')

returns 0.

RTRIM: Removing Trailing Spaces

How to:

Remove Trailing Spaces

The RTRIM function removes trailing spaces from a character string.

How to Remove Trailing SpacesSyntax:

RTRIM(arg)

where:

arg

character string

Is the value to be trimmed.

This function returns a varying character string. The data type of the result has a length
equal to that of the input argument (although the value may be shorter).

Removing Trailing SpacesExample:

RTRIM removes trailing spaces. This example,

RTRIM(' ABC ')

returns ' ABC'.

206 iWay Software

RTRIM: Removing Trailing Spaces

SUBSTR: Extracting a Substring From a String Value (SQL)

How to:

Extract a Substring From a String Value

The SUBSTR function returns a substring of a character value. You specify the start position
of the substring within the value. You can also specify the length of the substring (if omitted,
the substring extends from the start position to the end of the string value). If the specified
length value is longer than the input string, the result is the full input string.

SUBSTRING is identical to SUBSTR.

How to Extract a Substring From a String ValueSyntax:

SUBSTR(arg FROM start-pos [FOR length])

or

SUBSTR(arg, start-pos [, length])

where:

arg

character string

Is the field containing the parent character string.

start-pos

Integer

Is the position within arg at which the substring begins.

length

Integer

If present, is the length of the substring. This function returns a varying character string.
The data type of the result has a length equal to that of the input argument (although
the value may be shorter).

Extracting a Substring From a String ValueExample:

SUBSTR function returns a substring. This example,

SUBSTR('ABC' FROM 2)

Returns BC.

Functions Reference 207

11. SQL Character Functions

This example,

SUBSTRING('ABC' FROM 1 FOR 2)

returns AB.

This example,

SUBSTR('ABC', 10)

returns ABC.

TRIM: Removing Leading or Trailing Characters (SQL)

How to:

Remove Leading or Trailing Characters

The TRIM function removes leading and/or trailing characters from a character string. The
character to be removed may be specified. If no character is specified, the space character
is assumed. Whether to remove leading and/or trailing characters may be specified. Without
this specification, both leading and trailing appearances of the specified character are
removed.

How to Remove Leading or Trailing CharactersSyntax:

TRIM(arg)
TRIM(trim-where [trim-char] FROM arg)
TRIM(trim-char FROM arg)

where:

arg

character string

Is the source string value to be trimmed.

trim-where

Value may be LEADING, TRAILING or BOTH. Indicates where characters will be removed.
If not specified, BOTH is assumed.

trim-char

character string

Is the character to be removed. If not specified, the space character is assumed.

This function returns a varying character string. The data type of the result has a length
equal to that of the input argument (although the value may be shorter).

208 iWay Software

TRIM: Removing Leading or Trailing Characters (SQL)

Removing Leading or Trailing CharactersExample:

TRIM removes leading and/or trailing characters. This example,

TRIM(' ABC ')

returns ABC.

This example,

TRIM(LEADING FROM ' ABC ')

returns 'ABC '.

This example,

TRIM(TRAILING FROM ' ABC ')
TRIM(BOTH 'X' FROM 'XXYYYXXX') = ('YYY')

returns ' ABC'

This example,

TRIM(BOTH 'X' FROM 'XXYYYXXX')

returns YYY.

UCASE: Converting a Character String to Uppercase

How to:

Convert a Character String to Uppercase

The UCASE function converts a character string value to uppercase. That is, lowercase letters
are replaced by their corresponding uppercase values. UPPER and UPPERCASE are identical
to UCASE.

How to Convert a Character String to UppercaseSyntax:

UCASE(arg)

where:

arg

character string

Is the value to be converted to uppercase.

This function returns a character string whose length is the same as that of the input
argument.

Functions Reference 209

11. SQL Character Functions

Converting a Character String to UppercaseExample:

UCASE converts a character string value to uppercase. This example,

UCASE('abc')

returns ABC.

VARGRAPHIC: Converting to Double-byte Character Data

How to:

Convert to the Double-byte Character Format

The VARGRAPHIC function converts the input value to double-byte character data

How to Convert to the Double-byte Character FormatSyntax:

VARGRAPHICarg

where:

arg

character, graphic, or date

Is the input value.

Note: This function can only be used for DB2 and can only be used with Direct or Automatic
Passthru. This function returns the value in double-byte character format.

210 iWay Software

VARGRAPHIC: Converting to Double-byte Character Data

iWay

SQL Date and Time Functions12
SQL date and time functions perform manipulations on date and time values.

Topics:
HOUR: Obtaining the Hour From
Time/Timestamp

CURRENT_DATE: Obtaining the Date
MICROSECOND: Obtaining Microseconds From
Time/TimestampCURRENT_TIME: Obtaining the Time

CURRENT_TIMESTAMP: Obtaining the
Timestamp (Date/Time)

MILLISECOND: Obtaining Milliseconds From
Time/Timestamp

DAY: Obtaining the Day of the Month From a
Date/Timestamp

MINUTE: Obtaining the Minute From
Time/Timestamp

DAYS: Obtaining the Number of Days Since
January 1, 1900

MONTH: Obtaining the Month From
Date/Timestamp

EXTRACT: Obtaining a Datetime Field From
Date/Time/Timestamp

SECOND: Obtaining the Second Field From
Time/Timestamp

YEAR: Obtaining the Year From
Date/Timestamp

Functions Reference 211

CURRENT_DATE: Obtaining the Date

How to:

Obtain the Current Date

The CURRENT_DATE function returns the current date of the operating system in the form
YYYYMMDD.

How to Obtain the Current DateSyntax:

CURRENT_DATE

This function returns the date in YYMD format.

Obtaining the Current DateExample:

On August 18, 2005, CURRENT_DATE will return 20050818.

CURRENT_TIME: Obtaining the Time

How to:

Obtain the Current Time

The CURRENT_TIME function returns the current time of the operating system in the form
HHMMSS. You may specify the number of decimal places for fractions of a second--0, 3, or
6 places. Zero (0) places is the default.

How to Obtain the Current TimeSyntax:

CURRENT_TIME[(precision)]

where:

precision

Integer constant

Is the number of decimal places for fractions of a second. Possible values are 0, 3, and
6.

This function returns the time (format: HHIS if no decimal places; HHISs if 3 decimal places;
HHISsm if 6 decimal places).

212 iWay Software

CURRENT_DATE: Obtaining the Date

Obtaining the Current TimeExample:

At exactly half past 11 AM:

CURRENT_TIME returns 113000.

CURRENT_TIME(3) returns 113000000.

CURRENT_TIME(6) returns 113000000000.

CURRENT_TIMESTAMP: Obtaining the Timestamp (Date/Time)

How to:

Obtain the Current Timestamp

The CURRENT_TIMESTAMP function returns the current timestamp of the operating system
(date and time) in the form YYYYMMDDHHMMSS. You may specify the number of decimal
places for fractions of a second--0, 3, or 6 places. Six (6) places is the default.

How to Obtain the Current TimestampSyntax:

CURRENT_TIMESTAMP[(precision)]

where:

precision

Integer constant

Is the number of decimal places for fractions of a second. Possible values are 0, 3, and
6.

This function returns a timestamp (format: HYYMDS if no decimal places; HYYMDs if 3
decimal places; HYYMDm if 6 decimal places).

Obtaining the Current TimestampExample:

At 2:11:23 PM on October 9, 2005:

CURRENT_TIMESTAMP returns 20051009141123000000.

CURRENT_TIMESTAMP(0) returns 20051009141123.

CURRENT_TIMESTAMP(3) returns 20051009141123000.

CURRENT_TIMESTAMP(6) returns 20051009141123000000.

Functions Reference 213

12. SQL Date and Time Functions

DAY: Obtaining the Day of the Month From a Date/Timestamp

How to:

Obtain the Day of the Month From a Date or Timestamp

The DAY function returns the day of the month from a date or timestamp value.

How to Obtain the Day of the Month From a Date or TimestampSyntax:

DAY(arg)

where:

arg

Date or timestamp

Is the input value.

This function returns an integer value.

Obtaining the Day of the Month From a Date or TimestampExample:

DAY returns the day of the month from a date or timestamp. This example,

DAY('1976-07-04')

returns 4.

This example,

DAY('2001-01-22 10:00:00')

returns 22.

DAYS: Obtaining the Number of Days Since January 1, 1900

How to:

Obtain the Number of Days Since January 1, 1900

The DAYS function returns the number of days since January 1, 1900.

214 iWay Software

DAY: Obtaining the Day of the Month From a Date/Timestamp

How to Obtain the Number of Days Since January 1, 1900Syntax:

DAYS(arg)

where:

arg

Date or timestamp

Is the input argument.

This function returns an integer value.

Obtaining the Number of Days Since January 1, 1900Example:

DAYS returns the number of days since January 1, 1900. This example,

DAYS('2000-01-01')

returns 36525.

EXTRACT: Obtaining a Datetime Field From Date/Time/Timestamp

How to:

Obtain a Datetime Field From a Date, Time, or Timestamp

The EXTRACT function can be used to obtain the year, month, day of month, hour, minute,
second, millisecond, or microsecond component of a date, time, or timestamp value.

How to Obtain a Datetime Field From a Date, Time, or TimestampSyntax:

EXTRACT(field FROM arg)

where:

arg

Date, time, or timestamp

Is the input argument.

field

Is the datetime field of interest. Possible values are YEAR, MONTH, DAY, HOUR, MINUTE,
SECOND, MILLISECOND and MICROSECOND.

This function returns an integer value.

Note:

YEAR, MONTH and DAY can be used only if the argument is date or timestamp.

Functions Reference 215

12. SQL Date and Time Functions

HOUR, MINUTE, SECOND, MILLISECOND and MICROSECOND can be used only if the
argument is time or timestamp.

Obtaining a Datetime Field From a Date, Time, or TimestampExample:

EXTRACT returns the components of a date, time, or timestamp. This example,

EXTRACT(YEAR FROM '2000-01-01')

returns 2000.

This example,

EXTRACT(HOUR FROM '11:22:33')

returns 11.

This example,

EXTRACT(MICROSECOND FROM '2000-01-01 11:22:33.456789')

returns 456,789.

HOUR: Obtaining the Hour From Time/Timestamp

How to:

Obtain the Hour From a Time or Timestamp

The HOUR function returns the hour field from a time or timestamp value.

How to Obtain the Hour From a Time or TimestampSyntax:

HOUR(arg)

where:

arg

Time or timestamp

Is the input value.

This function returns an integer value.

Obtaining the Hour From a Time or TimestampExample:

HOUR returns the hour from a time or timestamp. This example,

HOUR('11:22:33')

returns 11.

216 iWay Software

HOUR: Obtaining the Hour From Time/Timestamp

This example,

HOUR('2001-01-22 10:00:00')

returns 10.

MICROSECOND: Obtaining Microseconds From Time/Timestamp

How to:

Obtain the Number of Microseconds From a Time or Timestamp

The MICROSECOND function returns the number of microseconds from a time or timestamp
value.

How to Obtain the Number of Microseconds From a Time or TimestampSyntax:

MICROSECOND(arg)

where:

arg

Time or timestamp

Is the input value.

This function returns an integer value.

Obtaining the Number of Microseconds From a Time or TimestampExample:

MICROSECOND returns the microseconds from a time or timestamp. This example,

MICROSECOND('11:22:33.456789')

returns 456,789.

This example,

MICROSECOND('2001-01-22 10:00:00')

returns 0.

Functions Reference 217

12. SQL Date and Time Functions

MILLISECOND: Obtaining Milliseconds From Time/Timestamp

How to:

Obtain the Number of Milliseconds From a Time or Timestamp

The MILLISECOND function returns the number of milliseconds from a time or timestamp
value.

How to Obtain the Number of Milliseconds From a Time or TimestampSyntax:

MILLISECOND(arg)

where:

arg

Time or timestamp

Is the input value.

This function returns an integer value.

Obtaining the Number of Milliseconds From a Time or TimestampExample:

MILLISECOND returns the number of milliseconds from a time or timestamp. This example,

MILLISECOND('11:22:33.456')

returns 456.

This example,

MILLISECOND('2001-01-22 10:11:12')

returns 0.

MINUTE: Obtaining the Minute From Time/Timestamp

How to:

Obtain the Minute From a Time or Timestamp

The MINUTE function returns the number of minutes from a time or timestamp value.

How to Obtain the Minute From a Time or TimestampSyntax:

MINUTE(arg)

218 iWay Software

MILLISECOND: Obtaining Milliseconds From Time/Timestamp

where:

arg

Time or timestamp

Is the input value.

This function returns an integer value.

Obtaining the Minute From a Time or TimestampExample:

MINUTE returns the minutes from a time or timestamp. This example,

MINUTE('11:22:33')

returns 22.

This example,

MINUTE('2001-01-22 10:11:12')

returns 11.

MONTH: Obtaining the Month From Date/Timestamp

How to:

Obtain the Month From a Date or Timestamp

The MONTH function returns the month field from a date or timestamp value.

How to Obtain the Month From a Date or TimestampSyntax:

MONTH(arg)

where:

arg

Date or timestamp

Is the input value.

This function returns an integer value.

Functions Reference 219

12. SQL Date and Time Functions

Obtaining the Month From a Date or TimestampExample:

MONTH returns the month from a date or timestamp. This example,

MONTH('1976-07-04')

returns 7.

This example,

MONTH('2001-01-22 10:00:00')

returns 1.

SECOND: Obtaining the Second Field From Time/Timestamp

How to:

Obtain the Second Field From a Time or Timestamp

The SECOND function returns the second field from a time or timestamp value.

How to Obtain the Second Field From a Time or TimestampSyntax:

SECOND(arg)

where:

arg

Time or timestamp

Is the input value.

This function returns an integer value.

Obtaining the Second Field From a Time or TimestampExample:

SECOND returns seconds from a time or timestamp. This example,

SECOND('11:22:33')

returns 33.

This example,

SECOND('2001-01-22 12:24:36')

returns 36.

220 iWay Software

SECOND: Obtaining the Second Field From Time/Timestamp

YEAR: Obtaining the Year From Date/Timestamp

How to:

Obtain the Year From a Date or Timestamp

The YEAR function returns the year field from a date or timestamp value.

How to Obtain the Year From a Date or TimestampSyntax:

YEAR(arg)

where:

arg

Date or timestamp

Is the input value.

This function returns an integer value.

Obtaining the Year From a Date or TimestampExample:

YEAR returns the year from a date or timestamp value. This example,

YEAR('1976-07-04')

returns 1976.

This example,

YEAR('2001-01-22 10:00:00')

returns 2001.

Functions Reference 221

12. SQL Date and Time Functions

222 iWay Software

YEAR: Obtaining the Year From Date/Timestamp

iWay

SQL Data Type Conversion Functions13
Topics:

SQL data type conversion functions
convert fields from one data type to
another. CAST: Converting to a Specific Data

Type

CHAR: Converting to a Character String

DATE: Converting to a Date

DECIMAL: Converting to Decimal
Format

FLOAT: Converting to Floating Point
Format

INT: Converting to an Integer

SMALLINT: Converting to a Small
Integer

TIME: Converting to a Time

TIMESTAMP: Converting to a
Timestamp

Functions Reference 223

CAST: Converting to a Specific Data Type

How to:

Convert to a Specific Data Type

The CAST function converts the value of its argument to a specified data type.

How to Convert to a Specific Data TypeSyntax:

CAST(expression AS data_type[(length)])

where:

arg

Any data type that can be converted to the result data type

Is the value to be converted.

data-type

Is the result data type: CHARACTER, CHARACTER VARYING, NUMERIC, DECIMAL, INTEGER,
SMALLINT, FLOAT, REAL, DOUBLE PRECISION, DATE, TIME or TIMESTAMP.

length

Is an optional parameter of character data types.

This function returns the input value converted to the specified data type.

Converting to a Specific Data TypeExample:

CAST converts a value to a specified data type. This example,

CAST(2.5 AS INTEGER)

returns 2.

This example,

CAST('3.333' AS FLOAT)

returns 3.333.

224 iWay Software

CAST: Converting to a Specific Data Type

CHAR: Converting to a Character String

How to:

Convert to a Character String

The CHAR function converts its argument to a character string.

How to Convert to a Character StringSyntax:

CHAR(arg)

where:

arg

Any type

Is the value to be converted.

This function returns a character string whose length is of sufficient size to hold the value.

Converting to a Character StringExample:

CHAR converts a value to a character string. This example,

CHAR(566.23)

returns 566.23.

DATE: Converting to a Date

How to:

Convert to a Date

The DATE function converts its argument to a date. The type of the argument value may be
character, date, or timestamp.

If the argument is:

A character, its value must correctly represent a date; that date is the result.

A date, its value is returned.

A timestamp, the date portion of the timestamp value is returned.

Functions Reference 225

13. SQL Data Type Conversion Functions

How to Convert to a DateSyntax:

DATE(arg)

where:

arg

character string, date, or timestamp

Is the value to be converted.

The DATE function returns a date in YYMD format.

Converting to a DateExample:

DATE converts a value to a date. This example,

DATE('1999-03-29 14:39:30')

returns 19990329.

DECIMAL: Converting to Decimal Format

How to:

Convert to the Decimal Format

The DECIMAL function converts a number to fixed-length decimal format.

How to Convert to the Decimal FormatSyntax:

DECIMAL(arg, [length [,dec-places]])

where:

arg

Numeric

Is the input value.

length

Integer

The maximum number of digits in the integer portion of the result. The default is 15.

dec-places

Integer

Is the number of decimal places in the result. The default is the same number of decimal
places as in the type of the argument.

226 iWay Software

DECIMAL: Converting to Decimal Format

This function returns a numeric value in fixed-length decimal format.

Converting to Decimal FormatExample:

DECIMAL converts a number to fixed-length decimal format. This example,

DECIMAL(5.12345, 4, 2)

returns 5.12.

FLOAT: Converting to Floating Point Format

How to:

Convert to the Floating Point Format

The FLOAT function converts a number to floating-point format.

How to Convert to the Floating Point FormatSyntax:

FLOAT(arg)

where:

arg

Numeric

Is the input value.

This function returns the value in floating-point format.

Converting to Floating Point FormatExample:

FLOAT converts a number to floating-point format. This example,

FLOAT(3)

returns 3.0.

INT: Converting to an Integer

How to:

Convert to an Integer

The INT function converts a number to an integer. If the input value is not an integer, the
result is truncated.

Functions Reference 227

13. SQL Data Type Conversion Functions

INTEGER is identical to INT.

How to Convert to an IntegerSyntax:

INT(arg)

where:

arg

Numeric

Is the input value.

This function returns the number in integer format.

Converting to an IntegerExample:

INT converts a number to an integer. This example,

INT(4.8)

returns 4.

SMALLINT: Converting to a Small Integer

How to:

Convert to a Small Integer

The SMALLINT function converts a number to a small integer. Generally, a small integer
occupies only two bytes in memory.

How to Convert to a Small IntegerSyntax:

SMALLINT(arg)

where:

arg

Numeric

Is the input value.

This function returns the number in small integer format.

228 iWay Software

SMALLINT: Converting to a Small Integer

Converting to a Small IntegerExample:

SMALLINT converts a number to a small integer. This example,

SMALLINT(3.5)

returns 3.

TIME: Converting to a Time

How to:

Convert to a Time

The TIME function converts its argument to a time. The type of the argument value may be
character, time, or timestamp.

If the argument is a character, its value must correctly represent a time; that time is the
result.

If the argument is a time, its value is returned.

If the argument is a timestamp, the time portion of the timestamp value is returned.

How to Convert to a TimeSyntax:

TIME(arg)

where:

arg

character string, time, or timestamp

Is the input value.

This function returns a time.

Converting to a TimeExample:

TIME converts a value argument to a time. This example,

TIME('2004-03-15 01:02:03.444')

returns 010203444.

Functions Reference 229

13. SQL Data Type Conversion Functions

TIMESTAMP: Converting to a Timestamp

How to:

Convert to a Timestamp

The TIMESTAMP function converts its argument to a timestamp. The argument type can be
character, date, time, or timestamp.

If the argument is a character, its value must correctly represent a timestamp; that
timestamp is the result.

If the argument is a date, the value of the result is the timestamp, with the date
component equal to the argument and the time component equal to midnight.

If the argument is a time, the value of the result is the timestamp, with the date
component equal to the current date, and the time component equal to the argument.

If the argument is a timestamp, its value is returned.

How to Convert to a TimestampSyntax:

TIMESTAMP(arg)

where:

arg

character string, date, time, or timestamp

Is the input value.

This function returns a timestamp.

Converting to a TimestampExample:

TIMESTAMP converts a value to a timestamp. This example,

TIMESTAMP('2004-06-24')

returns 20040624000000.

This example,

TIMESTAMP('11:22:33')

returns 20010101112233, if the current date is January 1, 2001.

230 iWay Software

TIMESTAMP: Converting to a Timestamp

iWay

SQL Numeric Functions14
Topics:

SQL numeric functions perform
calculations on numeric constants and
fields. ABS: Returning an Absolute Value

(SQL)

LOG: Returning a Logarithm (SQL)

SQRT Returning a Square Root (SQL)

Functions Reference 231

ABS: Returning an Absolute Value (SQL)

How to:

Return an Absolute Value

The ABS function returns the absolute value of a number.

How to Return an Absolute ValueSyntax:

ABS(arg)

where:

arg

Numeric

Is the input value.

This function returns the value as the same datatype as the argument. For example, if the
argument is an integer, the result will be also be an integer.

Returning an Absolute ValueExample:

ABS returns the absolute value of a number. This example,

ABS(-5.5)

returns 5.5.

LOG: Returning a Logarithm (SQL)

How to:

Return a Logarithm

The LOG function returns the natural logarithm of the input value.

How to Return a LogarithmSyntax:

LOG(arg)

where:

arg

Numeric

Is the input value.

232 iWay Software

ABS: Returning an Absolute Value (SQL)

This function returns double precision numbers with three decimal places.

Returning a LogarithmExample:

LOG returns the natural logarithm of a value. This example,

LOG(4)

returns 1.386.

SQRT Returning a Square Root (SQL)

How to:

Return a Square Root

The SQRT function returns the square root of the input value.

How to Return a Square RootSyntax:

sqrt(arg)

where:

arg

Numeric

Is the input value.

This function returns double precision numbers with three decimal places.

Returning a Square RootExample:

SQRT returns the square root of a value. This example,

SQRT(4)

returns 2.000.

Functions Reference 233

14. SQL Numeric Functions

234 iWay Software

SQRT Returning a Square Root (SQL)

iWay

SQL Miscellaneous Functions15
Topics:

The SQL functions described in this
chapter perform a variety of conversions,
tests, and manipulations. COUNTBY: Incrementing Column

Values Row by Row

HEX: Converting to Hexadecimal

IF: Testing a Condition

LENGTH: Obtaining the Physical Length
of a Data Item

VALUE: Coalescing Data Values

Functions Reference 235

COUNTBY: Incrementing Column Values Row by Row

How to:

Increment Column Values Row by Row

The COUNTBY function produces a column whose values are incremented row by row by a
specified amount.

How to Increment Column Values Row by RowSyntax:

COUNTBY(arg)

where:

arg

Integer

Is the value that is incremented for each record.

This function returns an integer value.

Incrementing Column Values Row by RowExample:

In the query,

SELECT COUNTBY(1), COUNTBY(2) FROM T

the first column takes on the values 1, 2, 3, ..., and the second column takes on the values
2, 4, 6, ...

HEX: Converting to Hexadecimal

How to:

Convert to Hexadecimal

The HEX function converts its input value to hexadecimal.

Note: This function is available only for DB2, Ingres, and Informix.

How to Convert to HexadecimalSyntax:

HEX(character)

236 iWay Software

COUNTBY: Incrementing Column Values Row by Row

where:

character

Is the input value.

This function returns an alphanumeric value.

Converting a Value to HexExample:

This example,

HEX('n')

returns 6E.

IF: Testing a Condition

How to:

Test a Condition

The IF function tests a condition and returns a value based on whether the condition is true
or false.

How to Test a ConditionSyntax:

IF(test, val1, val2)

where:

test

Condition

Is an SQL search condition, which evaluates to true or false.

val1, val2

Are expressions of compatible types.

This function returns a value of the type of val1 and val2. If test is true, val1 is returned,
otherwise val2 is returned.

Functions Reference 237

15. SQL Miscellaneous Functions

Testing a ConditionExample:

This example tests COUNTRY. If the value is ENGLAND, it returns LONDON. Otherwise, it
returns PARIS.

IF(COUNTRY = 'ENGLAND', 'LONDON', 'PARIS') =
 'LONDON' if COUNTRY is 'ENGLAND'
 'PARIS' otherwise.

This example tests COUNTRY. If the value is ENGLAND, it returns LONDON. If the value is
FRANCE, it returns PARIS. Otherwise, it returns ROME.

IF(COUNTRY = 'ENGLAND', 'LONDON',
 IF(COUNTRY = 'FRANCE', 'PARIS', 'ROME')) =
 'LONDON' if COUNTRY is 'ENGLAND'
 'PARIS' if COUNTRY = 'FRANCE'
 'ROME' otherwise.

LENGTH: Obtaining the Physical Length of a Data Item

How to:

Obtain the Physical Length of a Data Item

The LENGTH function returns the actual length in memory of a data item.

How to Obtain the Physical Length of a Data ItemSyntax:

LENGTH(arg)

where:

arg

Any type

Is the length of the argument. It can be between 1 and 16 bytes.

This function returns an integer value.

Obtaining the Physical Length of a Data ItemExample:

LENGTH returns the length in memory of a data item. This example,

LENGTH('abcdef')

returns 6.

This example,

LENGTH(3)

238 iWay Software

LENGTH: Obtaining the Physical Length of a Data Item

returns 4.

VALUE: Coalescing Data Values
Note: The SQL function VALUE is not supported. Instead, use the SQL operator COALESCE.
For more information see COALESCE: Coalescing Data Values on page 244.

Functions Reference 239

15. SQL Miscellaneous Functions

240 iWay Software

VALUE: Coalescing Data Values

iWay

SQL Operators16
Topics:

SQL operators are used to evaluate
expressions.

CASE: SQL Case Operator

COALESCE: Coalescing Data Values

NULLIF: NULLIF Operator

Functions Reference 241

CASE: SQL Case Operator

How to:

Use the SQL Case Operator

The CASE operator allows a value to be computed depending on the values of expressions
or the truth or falsity of conditions.

How to Use the SQL Case OperatorSyntax:

In the first format below the value of test-expr is compared to value-expr-1, ..., value-expr-n
in turn:

If any of these match, the value of the result is the corresponding result-expr.

If there are no matches and the ELSE clause is present, the result is else-expr.

If there are no matches and the ELSE clause is not present, the result is NULL.

In the second format below the values of cond-1, ..., cond-n are evaluated in turn.

If any of these are true, the value of the result is the corresponding result-expr.

If no conditions are true and the ELSE clause is present, the result is else-expr.

If no conditions are true and the ELSE clause is not present, the result is NULL.

Format 1

CASE test-expr
 WHEN value-expr-1 THEN result-expr-1
 . . .
 WHEN value-expr-n THEN result-expr-n
 [ELSE else-expr]
END

Format 2

CASE
 WHEN cond-1 THEN result-expr-1
 . . .
 WHEN cond-n THEN result-expr-n
 [ELSE else-expr]
END

where:

test-expr

Any type

242 iWay Software

CASE: SQL Case Operator

Is the value to be tested in Format 1.

value-expr1, ... , value-expr-n

Any type of compatible with test-expr.

Are the values test-expr is tested against in Format 1.

result-expr1, ... , result-expr-n

Any type

Are the values that become the result value if:

The corresponding value-expr matches test-expr (Format 1).

or

The corresponding cond is true (Format 2).

The result expressions must all have a compatible type.

cond-1, ..., cond-n

Condition

Are conditions that are tested in Format 2.

else-expr

Any type

Is the value of the result if no matches are found. Its type must be compatible with the
result expressions.

This operator returns the compatible type of the result expressions.

Using the SQL Case OperatorExample:

CASE returns values based on expressions. This example,

CASE COUNTRY
 WHEN 'ENGLAND' THEN 'LONDON'
 WHEN 'FRANCE' THEN 'PARIS'
 WHEN 'ITALY' THEN 'ROME'
 ELSE 'UNKNOWN'
END

returns LONDON when the value is ENGLAND, PARIS when the value is FRANCE, ROME when
the value is ITALY, and UNKNOWN when there is no match.

Functions Reference 243

16. SQL Operators

COALESCE: Coalescing Data Values

How to:

Coalesce Data Values

The COALESCE operator can take 2 or more arguments. The first argument that is not NULL
is returned. If all arguments are NULL, NULL is returned.

How to Coalesce Data ValuesSyntax:

COALESCE(arg1, arg2, [... argn])

where:

arg1, arg2, ..., argn

Any type

Are data values. The types of the arguments must be compatible.

This operator returns the compatible type of the arguments.

Coalescing Data ValuesExample:

This example,

COALESCE('A', 'B')

return A.

This example,

COALESCE(NULL, 'B')

return B.

This example,

COALESCE(NULL, NULL)

return NULL.

244 iWay Software

COALESCE: Coalescing Data Values

NULLIF: NULLIF Operator

How to:

Use the NULLIF Operator

The NULLIF operator returns NULL if its two arguments are equal. Otherwise, the first
argument is returned.

How to Use the NULLIF OperatorSyntax:

NULLIF(arg1, arg2)

where:

arg1, arg2

Any type

Are data values. The types of the two arguments must be compatible.

This operator returns the compatible type of the arguments.

Using the NULLIF OperatorExample:

NULLIF operator returns NULL if two values are equal. This example,

NULLIF(IDNUM, -1)

returns NULL if the identification number is -1, otherwise it returns the number.

Functions Reference 245

16. SQL Operators

246 iWay Software

NULLIF: NULLIF Operator

iWay

Index

A

ABS function 178, 232

alphanumeric strings 164

ARGLEN function 28

ASIS function 29

ATODBL function 164

AYM function 129

AYMD function 130

B

bit strings 31, 32

BITSON function 30, 31

BITVAL function 31, 32

BUSDAYS parameter 96

business days 95, 96
BUSDAYS parameter 96

BYTVAL function 32

C

CASE operator 242

CAST function 224

CHAR function 225

CHAR_LENGTH function 200

character functions
ARGLEN 28
ASIS 29
BITSON 30, 31

character functions (continued)
BITVAL 31, 32
BYTVAL 32
CHKFMT 33
CTRAN 34, 35
CTRFLD 36
DCTRAN 74
DSTRIP 76, 77
EDIT 37, 38
GETTOK 38, 39
LCWORD 40, 41
LCWORD2 41
LCWORD3 42
LJUST 43
LOCASE 43, 44
OVRLAY 44, 45
PARAG 46, 47
POSIT 48, 49
RJUST 50, 51
SOUNDEX 51, 52
SPELLNM 52, 53
SQL 199
SQUEEZ 54
STRIP 55, 57
SUBSTR 57, 58, 59, 67
TRIM 59, 60
TRIMV 69
UPCASE 60, 61
variable length 63

character strings 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 43, 44, 46, 48, 50, 51, 52,
54, 57, 59, 60, 67

bits 30, 31
centering 36
comparing 51
converting case 43, 60
Dialogue Manager 29
dividing 46
extracting characters 37

Functions Reference 247

character strings (continued)
extracting substrings 38, 57, 59, 67
finding substrings 48
format 33
justifying 43, 50
measuring length 28
overlaying 44
reducing spaces 54
right-justifying 50
spelling out numbers 52
translating characters 32, 34, 35

CHGDAT function 131, 132, 133

CHKFMT function 33

CHKPCK function 178, 179

CLSDDREC 192, 196

COALESCE operator 244

components 147

CONCAT function 201

converting formats 164

COUNTBY function 236

cross-referenced data sources 91

CTRAN function 34, 35

CTRFLD function 36

CURRENT_DATE function 212

CURRENT_TIME function 212

CURRENT_TIMESTAMP function 213

D

DA functions 133, 134

DADMY function 133, 134

DADYM function 133, 134

DAMDY function 133, 134

DAMYD function 133, 134

data source functions 85, 90, 91, 92
FIND 90
LAST 90, 91
LOOKUP 91, 92

data source values 85, 88, 90, 91
decoding 88
retrieving 90, 91
verifying 90

data sources 85, 90, 91
cross-referenced 91
retrieving values 90, 91
values 85
verifying values 90

data type conversion functions 223

date and time functions 94, 100, 102, 103, 104,
105, 107, 127, 128, 129, 130, 131,
132, 133, 134, 135, 136, 137, 138,
139, 140, 142, 147, 148, 149, 150,
151, 152, 153, 154, 155, 156, 157,
158, 159, 160, 211

arguments and 147
AYM 129
AYMD 130
CHGDAT 131, 132, 133
DA 133, 134
DADMY 133, 134
DADYM 133, 134
DAMDY 133, 134
DAMYD 133, 134
DATEADD 100
DATECVT 102
DATEDIF 103, 104
DATEMOV 105
DATETRAN 107
DAYDM 133, 134
DAYMD 133, 134
DOWK 135, 136
DOWKL 135, 136
DTDMY 137
DTDYM 137
DTMDY 137, 138
DTMYD 137

248 iWay Software

Index

date and time functions (continued)
DTYDM 137
DTYMD 137
GREGDT 138
HADD 147
HCNVRT 148
HDATE 149
HDIFF 150
HDTTM 151
HGETC 152, 153
HHMMSS 153, 154
HINPUT 154
HMIDNT 155
HNAME 156
HPART 157
HSETPT 158
HTIME 159, 160
JULDAT 138, 139
legacy 128
SQL 211
standard 94
TODAY 127
YM 139, 140
YMD 135

date formats
international 107

DATE function 225

date functions
work days 95

date-time values
adding 129, 130
converting 159
converting formats 131, 133, 138, 148, 149,
151
elapsed time 139
finding day of week 135
finding difference 103, 134, 150
incrementing 147
moving dates 105
retrieving components 157
retrieving time 153
returning dates 127
setting time 155

date-time values (continued)
storing 152
subtracting 129, 130

DATEADD function 100

DATECVT function 102

DATEDIF function 103, 104

DATEFNS parameter 128

DATEFORMAT parameter 143

DATEMOV function 105

DATETRAN function 107, 113

DAY function 214

DAYDM function 133, 134

DAYMD function 133, 134

DAYS function 214

DB_LOOKUP function 86
COMPUTE command 86
DEFINE 86
MODIFY 86
TABLE COMPUTE 86

DCTRAN function 74

DECIMAL function 226

DECODE function 88, 89

decoding functions 85, 88, 89

decoding values 88, 89
from files 88
in a function 88, 89

DEDIT function 75

DIGITS function 202

DMOD function 180, 181

DMY function 134, 135

double-byte characters 74, 76

DOWK function 135, 136

DOWKL function 135, 136

Functions Reference 249

Index

DSTRIP function 76, 77

DSUBSTR function 77

DTDMY function 137

DTDYM function 137

DTMDY function 137, 138

DTMYD function 137

DTSTRICT parameter 145

DTYDM function 137

DTYMD function 137

E

EDIT function 37, 38, 165, 166, 202

environment variables 193, 194
assigning values 194
retrieving values 193

error messages 192

EXP function 181

EXPN function 182

EXTRACT function 215

F

FEXERR function 192, 193

FGETENV function 193

FIND function 89, 90

FIQTR function 123

FIYR function 121

FIYYQ function 125

FLOAT function 227

FMOD function 180, 181

format conversion functions
ATODBL 164
EDIT 165, 166
FPRINT 166
FTOA 167, 168
HEXBYT 168, 169
ITONUM 169
ITOPACK 171
ITOZ 171, 172
PCKOUT 172, 173
PTOA 173, 174
UFMT 174, 175

format conversions 164, 167, 168, 171, 172,
173, 174

packed numbers 172
to alphanumeric 167, 173
to characters 168
to hexadecimal 174
to zoned format 171

formats 164, 166
alphanumeric 166
converting 164

FPRINT function 166

FPUTENV function 194, 195

FTOA function 167, 168

function types
data source 85
decoding 85
numeric 177
system 191

functions 56, 63, 86, 90, 94, 121, 123, 125,
128, 142, 197, 199, 211, 223, 231, 235

character 199
data type conversion 223
date and time 94, 128, 142, 211
FIND 90
FIQTR 123
FIYR 121
FIYYQ 125
numeric 231
SLEEP 197
SQL 199, 211, 223, 231, 235

250 iWay Software

Index

functions (continued)
STRREP 56
variable length character 63

functions, LCWORD3 42

G

GETTOK function 38, 39

GETUSER function 195

GREGDT function 138, 139

H

HADD function 147

HCNVRT function 148

HDATE function 149

HDAY parameter 97, 98

HDIFF function 150

HDTTM function 151

HEX function 236

HEXBYT function 168, 169

HGETC function 152, 153

HHMMSS function 153, 154

HINPUT function 154

HMIDNT function 155

HNAME function 156

holidays 95, 97, 98
HDAY parameter 98
holiday files 97

HOUR function 216

HPART function 157

HSETPT function 158

HTIME function 159, 160

HTMTOTS function 160

HYYWD function 161

I

IF function 237

IMOD function 180, 181

INT function 183, 228

INTEGER function 228

international date formats 107

ITONUM function 169

ITOPACK function 171

ITOZ function 171, 172

J

JULDAT function 138, 139

L

LAST function 90, 91

LCASE function 204

LCWORD function 40, 41

LCWORD2 function 41

LCWORD3 function 42

LEADZERO parameter 99

legacy date functions
DATEFNS parameter 128
DMY 134, 135
legacy versions 128
MDY 134, 135
YMD 134, 135

Functions Reference 251

Index

LENGTH function 238

LJUST function 43

LOCAS function
variable length 65

LOCASE function 43, 44

LOG function 183, 184, 232

LOOKUP function 91, 92

LOWER function 204

LOWERCASE function 204

LTRIM function 204

M
Maintain-specific character functions

LCWORD2 41

MAX function 184

MDY function 134, 135

MICROSECOND function 217

MILLISECOND function 218

MIN function 184, 185

MINUTE function 218

MODIFY data source functions 90

MONTH function 219

N

NORMSDST function 185, 187

NORMSINV function 185, 187, 188

NULLIF operator 245

numbers 178, 180, 181, 183, 184, 185, 186,
187, 188, 189, 190

absolute value 178
calculating remainders 180

numbers (continued)
generating random 188, 189
greatest integer 183
logarithms 183
maximum 184
minimum 184
raising to a power 181
square root 190
standard normal deviation 185, 186, 187
validating packed fields 178

numeric functions 177, 178, 179, 180, 181, 183,
184, 185, 187, 188, 189, 190, 231

ABS 178
CHKPCK 178, 179
DMOD 180, 181
EXP 181
FMOD 180, 181
IMOD 180, 181
INT 183
LOG 183, 184
MAX 184
MIN 184, 185
NORMSDST 185, 187
NORMSINV 185, 187, 188
PRDNOR 188, 189
PRDUNI 188
RDNORM 189, 190
RDUNIF 189, 190
SQRT 190

numeric values 177

O

OVRLAY function 44, 45

P

packed numbers, writing to an output file 175

PARAG function 46, 47

PATTERN function 47

252 iWay Software

Index

PCKOUT function 172, 173

POSIT function 48, 49

POSITION function 205

PRDNOR function 188, 189

PRDUNI function 188

PTOA function 173, 174

PUTDDREC 196

R

RDNORM function 189, 190

RDUNIF function 189, 190

REVERSE function 50

RJUST function 50, 51

RTRIM function 206

S

SECOND function 220

SET parameters 95, 96, 97, 98, 99, 128, 145
BUSDAYS 96
DATEFNS 128
DTSTRICT 145
HDAY 97, 98
LEADZERO 99

single-byte characters 74, 76

SLEEP function 197

SMALLINT function 228

SOUNDEX function 51, 52

SPELLNM function 52, 53

SQL functions 199, 211, 223, 231, 235

SQL operators 241

SQRT function 190, 233

SQUEEZ function 54

standard date and time functions 94

standard normal deviation 185, 186, 187

string replacement 56

STRIP function 55, 57

STRREP function 56

SUBSTR function 57, 58, 59, 67, 207
variable length 67

SUBSTRING function 207

substrings 37, 38, 44, 48, 57, 59, 67
extracting 37, 38, 57, 59, 67
finding 48
overlaying character strings 44

system functions 191, 192, 193, 194, 195
FEXERR 192, 193
FGETENV 193
FPUTENV 194, 195
GETUSER 195

T

TIME function 229

TIMESTAMP function 230

TODAY function 127

TRIM function 59, 60, 208

TRIMV function 69

U

UCASE function 209

UFMT function 174, 175

UPCASE function 60, 61

UPPER function 209

Functions Reference 253

Index

UPPERCASE function 209

user IDs 195

V

VALUE function 239

values 88, 90
decoding 88
verifying 90

variable length character functions 63

W

WEEKFIRST parameter 144

work days 95, 96, 97
business days 95, 96
holidays 95, 97

X

XTPACK function 175

Y

YEAR function 221

YM function 139, 140

YMD function 134, 135

254 iWay Software

Index

iWay

Reader Comments

In an ongoing effort to produce effective documentation, the Documentation Services staff
at Information Builders welcomes any opinion you can offer regarding this manual.

Please use this form to relay suggestions for improving this publication or to alert us to
corrections. Identify specific pages where applicable. You can contact us through the following
methods:

Documentation Services - Customer SupportMail:
Information Builders, Inc.
Two Penn Plaza
New York, NY 10121-2898

(212) 967-0460Fax:

books_info@ibi.comE-mail:

http://www.informationbuilders.com/bookstore/derf.htmlWeb form:

Name:

Company:

Address:

Telephone: Date:

Email:

Comments:

Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433
Functions Reference DN3501991.0511
Version 7 Release 7.03

mailto:books_info@ibi.com
http://www.informationbuilders.com/bookstore/derf.html

Creating Reports With
WebFOCUS Language

Version 7 Release 6

 Information Builders

Two Penn Plaza

New York, NY 10121-2898

 Printed on recycled paper in the U.S.A.

Functions Reference
Version 7 Release 7.03

	Contents
	Preface
	Documentation Conventions
	Related Publications
	Customer Support
	Information You Should Have
	User Feedback
	iWay Software Training and Professional Services

	1. Functions Overview
	Function Arguments
	Function Categories
	Character Chart for ASCII and EBCDIC

	2. Character Functions
	ARGLEN: Measuring the Length of a String
	ASIS: Distinguishing Between Space and Zero
	BITSON: Determining If a Bit Is On or Off
	BITVAL: Evaluating a Bit String as an Integer
	BYTVAL: Translating a Character to Decimal
	CHKFMT: Checking the Format of a String
	CTRAN: Translating One Character to Another
	CTRFLD: Centering a Character String
	EDIT: Extracting or Adding Characters
	GETTOK: Extracting a Substring (Token)
	LCWORD: Converting a String to Mixed-Case
	LCWORD2: Converting a String to Mixed-Case
	LCWORD3: Converting a String to Mixed-Case
	LJUST: Left-Justifying a String
	LOCASE: Converting Text to Lowercase
	OVRLAY: Overlaying a Character String
	PARAG: Dividing Text Into Smaller Lines
	PATTERN: Generating a Pattern From a String
	POSIT: Finding the Beginning of a Substring
	REVERSE: Reversing the Characters in a String
	RJUST: Right-Justifying a Character String
	SOUNDEX: Comparing Character Strings Phonetically
	SPELLNM: Spelling Out a Dollar Amount
	SQUEEZ: Reducing Multiple Spaces to a Single Space
	STRIP: Removing a Character From a String
	STRREP: Replacing Character Strings
	SUBSTR: Extracting a Substring
	TRIM: Removing Leading and Trailing Occurrences
	UPCASE: Converting Text to Uppercase

	3. Variable Length Character Functions
	Overview
	LENV: Returning the Length of an Alphanumeric Field
	LOCASV: Creating a Variable Length Lowercase String
	POSITV: Finding the Beginning of a Variable Length Substring
	SUBSTV: Extracting a Variable Length Substring
	TRIMV: Removing Characters From a String
	UPCASV: Creating a Variable Length Uppercase String

	4. Character Functions for DBCS Code Pages
	DCTRAN: Translating A Single-Byte or Double-Byte Character to Another
	DEDIT: Extracting or Adding Characters
	DSTRIP: Removing a Single-Byte or Double-Byte Character From a String
	DSUBSTR: Extracting a Substring
	JPTRANS: Converting Japanese Specific Characters

	5. Data Source and Decoding Functions
	DB_LOOKUP: Retrieving Data Source Values
	DECODE: Decoding Values
	FIND: Verifying the Existence of a Value in a Data Source
	LAST: Retrieving the Preceding Value
	LOOKUP: Retrieving a Value From a Cross-referenced Data Source

	6. Date Functions
	Overview of Date Functions
	Using Standard Date Functions
	Specifying Work Days
	Specifying Business Days
	Specifying Holidays

	Enabling Leading Zeros For Date and Time Functions in Dialogue Manager

	DATEADD: Adding or Subtracting a Date Unit to or From a Date
	DATECVT: Converting the Format of a Date
	DATEDIF: Finding the Difference Between Two Dates
	DATEMOV: Moving a Date to a Significant Point
	DATETRAN: Formatting Dates in International Formats
	FIYR: Obtaining the Financial Year
	FIQTR: Obtaining the Financial Quarter
	FIYYQ: Converting a Calendar Date to a Financial Date
	TODAY: Returning the Current Date
	Using Legacy Date Functions
	Using Old Versions of Legacy Date Functions

	AYM: Adding or Subtracting Months
	AYMD: Adding or Subtracting Days
	CHGDAT: Changing How a Date String Displays
	DA Functions: Converting a Legacy Date to an Integer
	DMY, MDY, YMD: Calculating the Difference Between Two Dates
	DOWK and DOWKL: Finding the Day of the Week
	DT Functions: Converting an Integer to a Date
	GREGDT: Converting From Julian to Gregorian Format
	JULDAT: Converting From Gregorian to Julian Format
	YM: Calculating Elapsed Months

	7. Date-Time Functions
	Using Date-Time Functions
	Date-Time Parameters
	Specifying the Order of Date Components
	Specifying the First Day of the Week for Use in Date-Time Functions
	Controlling Processing of Date-Time Values

	Supplying Arguments for Date-Time Functions

	HADD: Incrementing a Date-Time Value
	HCNVRT: Converting a Date-Time Value to Alphanumeric Format
	HDATE: Converting the Date Portion of a Date-Time Value to a Date Format
	HDIFF: Finding the Number of Units Between Two Date-Time Values
	HDTTM: Converting a Date Value to a Date-Time Value
	HGETC: Storing the Current Date and Time in a Date-Time Field
	HHMMSS: Retrieving the Current Time
	HINPUT: Converting an Alphanumeric String to a Date-Time Value
	HMIDNT: Setting the Time Portion of a Date-Time Value to Midnight
	HNAME: Retrieving a Date-Time Component in Alphanumeric Format
	HPART: Retrieving a Date-Time Component as a Numeric Value
	HSETPT: Inserting a Component Into a Date-Time Value
	HTIME: Converting the Time Portion of a Date-Time Value to a Number
	HTMTOTS: Converting a Time to a Timestamp
	HYYWD: Returning the Year and Week Number From a Date-Time Value

	8. Format Conversion Functions
	ATODBL: Converting an Alphanumeric String to Double-Precision Format
	EDIT: Converting the Format of a Field
	FPRINT: Converting Fields to Alphanumeric Format
	FTOA: Converting a Number to Alphanumeric Format
	HEXBYT: Converting a Decimal Integer to a Character
	ITONUM: Converting a Large Number to Double-Precision Format
	ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format
	ITOZ: Converting a Number to Zoned Format
	PCKOUT: Writing a Packed Number of Variable Length
	PTOA: Converting a Packed-Decimal Number to Alphanumeric Format
	UFMT: Converting an Alphanumeric String to Hexadecimal
	XTPACK: Writing a Packed Number With Up to 31 Significant Digits to an Output File

	9. Numeric Functions
	ABS: Calculating Absolute Value
	CHKPCK: Validating a Packed Field
	DMOD, FMOD, and IMOD: Calculating the Remainder From a Division
	EXP: Raising e to the Nth Power
	EXPN: Evaluating a Number in Scientific Notation
	INT: Finding the Greatest Integer
	LOG: Calculating the Natural Logarithm
	MAX and MIN: Finding the Maximum or Minimum Value
	NORMSDST: Calculating Standard Cumulative Normal Distribution
	NORMSINV: Calculating Inverse Cumulative Normal Distribution
	PRDNOR and PRDUNI: Generating Reproducible Random Numbers
	RDNORM and RDUNIF: Generating Random Numbers
	SQRT: Calculating the Square Root

	10. System Functions
	CLSDDREC: Closing All Files Opened by the PUTDDREC Function
	FEXERR: Retrieving an Error Message
	FGETENV: Retrieving the Value of an Environment Variable
	FPUTENV: Assigning a Value to an Environment Variable
	GETUSER: Retrieving a User ID
	PUTDDREC: Writing a Character String as a Record in a Sequential File
	SLEEP: Suspending Execution for a Given Number of Seconds

	11. SQL Character Functions
	CHAR_LENGTH: Finding the Length of a Character String
	CONCAT: Concatenating Two Character Strings
	DIGITS: Converting a Numeric Value to a Character String
	EDIT: Editing a Value According to a Format (SQL)
	LCASE: Converting a Character String to Lowercase
	LTRIM: Removing Leading Spaces
	POSITION: Finding the Position of a Substring
	RTRIM: Removing Trailing Spaces
	SUBSTR: Extracting a Substring From a String Value (SQL)
	TRIM: Removing Leading or Trailing Characters (SQL)
	UCASE: Converting a Character String to Uppercase
	VARGRAPHIC: Converting to Double-byte Character Data

	12. SQL Date and Time Functions
	CURRENT_DATE: Obtaining the Date
	CURRENT_TIME: Obtaining the Time
	CURRENT_TIMESTAMP: Obtaining the Timestamp (Date/Time)
	DAY: Obtaining the Day of the Month From a Date/Timestamp
	DAYS: Obtaining the Number of Days Since January 1, 1900
	EXTRACT: Obtaining a Datetime Field From Date/Time/Timestamp
	HOUR: Obtaining the Hour From Time/Timestamp
	MICROSECOND: Obtaining Microseconds From Time/Timestamp
	MILLISECOND: Obtaining Milliseconds From Time/Timestamp
	MINUTE: Obtaining the Minute From Time/Timestamp
	MONTH: Obtaining the Month From Date/Timestamp
	SECOND: Obtaining the Second Field From Time/Timestamp
	YEAR: Obtaining the Year From Date/Timestamp

	13. SQL Data Type Conversion Functions
	CAST: Converting to a Specific Data Type
	CHAR: Converting to a Character String
	DATE: Converting to a Date
	DECIMAL: Converting to Decimal Format
	FLOAT: Converting to Floating Point Format
	INT: Converting to an Integer
	SMALLINT: Converting to a Small Integer
	TIME: Converting to a Time
	TIMESTAMP: Converting to a Timestamp

	14. SQL Numeric Functions
	ABS: Returning an Absolute Value (SQL)
	LOG: Returning a Logarithm (SQL)
	SQRT Returning a Square Root (SQL)

	15. SQL Miscellaneous Functions
	COUNTBY: Incrementing Column Values Row by Row
	HEX: Converting to Hexadecimal
	IF: Testing a Condition
	LENGTH: Obtaining the Physical Length of a Data Item
	VALUE: Coalescing Data Values

	16. SQL Operators
	CASE: SQL Case Operator
	COALESCE: Coalescing Data Values
	NULLIF: NULLIF Operator

	Index
	Reader Comments

